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We study a phase-tunable four-terminal Josephson junction formed in an InSbAs two-dimensional electron gas
proximitized by aluminum. By embedding the two pairs of junction terminals in asymmetric DC superconducting
quantum-interference devices (SQUIDs) we can control the superconducting phase difference across each pair,
thereby gaining information about their current-phase relation. Using a current-bias line to locally control the
magnetic flux through one SQUID, we measure a nonlocal Josephson effect, whereby the current-phase relation
across two terminals in the junction is strongly dependent on the superconducting phase difference across two
completely different terminals. In particular, each pair behaves as a φ0 junction with a phase offset tuned by
the phase difference across the other junction terminals. Lastly, we demonstrate that the behavior of an array of
two-terminal junctions replicates most features of the current-phase relation of different multiterminal junctions.
This highlights that these signatures alone are not sufficient evidence of true multiterminal Josephson effects
arising from hybridization of Andreev bound states in the junction.
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I. INTRODUCTION

Multiterminal Josephson junctions (JJs) formed from more
than two terminals have current-phase relations (CPRs) deter-
mined by the superconducting phases of all terminals [1]. The
Andreev bound state (ABS) spectrum of multiterminal junc-
tions can manifest topological phases containing Majorana
bound states [2] or protected Weyl nodes in their band struc-
ture [3–7], with the superconducting phases of the terminals
behaving as momentum degrees of freedom [3]. To form Weyl
nodes in the absence of a flux through the junction [8] at least
four terminals are required, because an n-terminal junction
manifests topology in n − 1 dimensions. Additionally, four-
terminal JJs (4TJJs) are expected to exhibit nontrivial CPRs
of the supercurrent through the junction [9–13], and can form
a superconducting phase qubit bypassing some constraints
of conventional flux qubits [14]. In particular, the phase dif-
ference across two terminals is expected to induce a phase
difference and supercurrent across the other two terminals,
giving them applicability as switching elements for supercon-
ducting electronics [13].

Previous work on multiterminal JJs observed multiterminal
DC and AC Josephson effects [15–23], signatures of su-
percurrent mediated by Cooper quartets [24–27], and strong
diode behavior [23,28,29]. Many signatures of quartet su-
percurrents can also be explained solely with two-terminal
junction physics however [30], though tunneling spectroscopy
measurements of the multiterminal JJ may reveal spectra of
the prerequisite extended ABS [31]. For three-terminal JJs,
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signatures of Andreev molecules [32,33] and more compli-
cated subgap state spectra affected by spin-orbit coupling have
been observed [34]. Meanwhile, despite numerous experi-
ments on 4TJJs [16–18,26,27], the CPR of any four-terminal
junction has yet to be probed with control over two or more
phase degrees of freedom.

We thus consider a 4TJJ embedded in two asymmetric
DC superconducting quantum-interference devices (SQUIDs)
penetrated by independently controllable magnetic fluxes.
This allows us to control two phase differences across pairs
of terminals in the junction. Accordingly, we can measure
SQUID oscillations containing information about the CPR
across their corresponding 4TJJ terminals in the form of a
current-flux relation (CFR). Furthermore, with four instead
of three terminals we are able to measure a Josephson ef-
fect which is fully “nonlocal” in that the CPR between two
superconducting terminals is modified by a phase difference
across a completely independent pair of terminals [11,12].
Correspondingly, two terminals of the 4TJJ form a tunable
φ0 junction with a phase offset tunable in a range larger than
0.2�0 where �0 = h/2e is the superconducting flux quantum
[35]. For this experiment and others in three-terminal JJs
[36,37], we model the junction as an array of two-terminal
junctions and find that this φ0-junction effect can exist even
in the absence of a hybridized ABS spectrum in the junc-
tion, necessitating other experimental signatures for ABS
hybridization.

II. DEVICE DESIGN AND CHARACTERIZATION

The devices (A and B) are formed in an InSb0.86As0.14 two-
dimensional electron gas (2DEG) proximitized by epitaxial
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FIG. 1. Experimental setup. (a) False-color optical image of measured device A, highlighting the 4TJJ’s depletion gate and reference
junction gates (red), the flux-bias line (blue), exposed portions of the 2DEG mesa (green), and the Al forming the SQUID circuits (yellow).
(b) False-color scanning electron micrograph of device A near its central 4TJJ. Unused misaligned gates in the second layer and unused
normal-metal tunnel probe leads are shown in gray, while the designed pattern of the Al 4TJJ is superimposed in black on the image. (c) As
in (b) but before any gates were deposited. Overetching of the Al caused the 4TJJ junction dimensions to be slightly larger than the design
shown in (b). Residues are visible surrounding the designed pattern, arising during an Al etching step. (d) Schematic of the device consisting
of SQUIDs labeled L and R penetrated by fluxes �L/R. (e) Schematic of the 4TJJ itself, with the superconducting terminals numbered, and
their wave-function phases and phase differences labeled.

aluminum. Selective etching of the Al defines the multiter-
minal DC SQUID [38] [see Figs. 1(a)–1(c)]. A schematic
depiction of the circuit is given in Fig. 1(d). The SQUIDs
are designed such that two pairs of terminals in the 4TJJ
each form one junction of a DC SQUID (labeled L or
R). For each SQUID, the other roughly 3-µm-wide ref-
erence junction (labeled JJL or JJR) is much larger and
therefore has a much higher critical current I ref

c,L or I ref
c,R.

In this DC SQUID configuration with asymmetric criti-
cal currents, the CPR of each pair of the 4TJJ terminals
can be directly measured if the SQUID loop inductance is
negligible [39,40].

Two Ti/Pd layers of gate electrodes were then patterned,
separated by a 20-nm-thick AlOx dielectric from the 2DEG
and from each other. These include top gates over the
reference junctions JJL and JJR of each SQUID applying
voltages VL,ref and VR,ref respectively. These allow us to
pinch off conductance through these junctions and remove
the corresponding SQUID’s flux-dependent behavior [38].
Second, a large depletion gate in the first layer surrounding
the 4TJJ [red in Fig. 1(b)] allows us to apply a voltage VD

depleting carriers surrounding it and eventually within the
junction itself. This gate is kept grounded for all measure-
ments except those in Appendix A where we investigate its
behavior. All other gates [gray in Figs. 1(a) and 1(b)] are kept
grounded unless otherwise specified, since an unintentional
misalignment with respect to the superconducting terminals
limited their functionality [41]. Metallic Ti/Pd probe contacts
near the 4TJJ are kept electrically floating or grounded to not
interfere with measurements [42]. Lastly, a NbTiN flux bias
line [blue in Figs. 1(a) and 1(d)] was sputtered around SQUID
R to locally bias the magnetic flux �R penetrating it without
significantly tuning the flux �L through SQUID L. This line
is biased by a current IF and has a critical current of 1.05 mA.
Due to Ampère’s circuital law, the current IF generates a
magnetic field penetrating SQUID R. Combined with a global
magnetic field with an almost fully out-of-plane component

B⊥ (calibrated in Appendix B), this allows for independent
control of the magnetic flux through both SQUIDs. For
additional fabrication details, see Ref. [43]. Measurements
are conducted at the 20–70-mK base temperature of a dilution
refrigerator.

Before proceeding to measurements, we remark that the
supercurrent across any two terminals i, j ∈ {1, 2, 3, 4} [la-
beled in Fig. 1(e)] of the 4TJJ is a �0-periodic function of
all phase differences φi′ j′ ≡ φi′ − φj′ of their superconducting
wave functions [1]. Because only the relative phase differ-
ences determine the junction’s behavior, there are only n − 1
phase degrees of freedom for any n-terminal JJ. As we embed
the 4TJJ in two DC SQUIDs, we have control of only φ12

and φ34, meaning that a third independent phase difference
(e.g., φ13) is not directly controlled by experimentally tunable
parameters.

To probe any uniquely multiterminal Josephson effects in
this 4TJJ, we deduce phase shifts in its CPR through SQUID
oscillation measurements, that is, measurements of the CFR.
For two-terminal JJs, an established technique for measuring
their CPR is to embed the JJ in a DC SQUID containing
another reference JJ and measure the SQUID’s critical current
as a function of flux. When the reference JJ’s critical current
is much higher than that of the probed junction the CFR of the
SQUID becomes equivalent to the CPR of the probed junction
[39,40,44]. It is important to note however that in the presence
of a small but finite loop inductance, this is not strictly true.
Nonetheless, we show that the CFR possesses key properties
of the true CPR: its periodicity in flux, and shifts in its phase
offset (see Appendix C).

To begin we characterize each SQUID individually, with
results summarized in Fig. 2. For these measurements, one
SQUID is probed while the other’s leads are kept floating [see
Fig. 2(a)]. To exclude effects from the opposing SQUID, we
set VL,ref = −1 V or VR,ref = −1.2 V to eliminate conductance
through the opposite SQUID’s reference junction. This pre-
vents applied fields from tuning the phase across the opposite
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FIG. 2. Characterization of individual SQUIDs. (a) Measure-
ment circuit configurations for CFR measurements of the individual
SQUIDs L (b, c),and R (d), taken with the opposite SQUID’s refer-
ence junction pinched off by setting VL/R,ref to a strongly negative
voltage, and with current applied across one SQUID’s leads with
the other’s floating. (b) A SQUID oscillation measurement with a
single current trace per B⊥ value for SQUID L. Current is swept pos-
itively from 0 A. (c) Maximum switching current max[Isw,R] (black)
extracted as the largest Isw,R measured across multiple current traces
of SQUID R as a function of the flux line current. Variation of
the switching current across the repeated traces is shown in gray.
(d) Analogous measurements of SQUID L as a function of flux line
current, where we observe a very weak cross coupling of the flux line
to this SQUID. All B⊥ scans are offset by B0

⊥ ≡ −7.5 mT determined
as the B⊥ value at which JJL and JJR showed a maximum critical
current in Fraunhofer measurements. The field is fixed to B⊥ = B0

⊥
when not being varied. Switching current offsets between (b) and
(d) result from shifts in the effective zero-field point over time due to
hysteresis in the system.

SQUID’s 4TJJ terminals. The junctions in these devices have
large enough self-capacitances that they are underdamped,
potentially from capacitances to the nearby floating 4TJJ ter-
minals. This is signified by their switching currents Isw,L and
Isw,R varying stochastically between values less than or equal
to their critical currents Ic,L/R [45,46]. Here, we define the
switching current as the applied current at which the voltage
across the SQUID circuit jumps from zero to a finite value.
Voltages VL or VR across the contacts of SQUID L or R are
measured in a current sweep upwards from IL or IR = 0 A
to ensure the switching current and not retrapping current is
measured, where IL/R is the current applied across the SQUID
with the other SQUID’s contacts floating. An example CFR
measurement is in Fig. 2(b), where we show switching current
oscillations of SQUID L measured with a single current trace
upwards from IL = 0 for each B⊥ value. At several B⊥ values
Isw,L appears much lower than the overall nearly sinusoidal
trend. We observe that SQUID L exhibits a �0 periodicity of
8.4 µT as a function of B⊥, expected to be roughly the same for
SQUID R as they have identical lithographically defined loop
areas. Since Isw,L/R � IC,L/R and Isw,L/R varies randomly be-
tween each trace, we focus on the maximum observed Isw,L/R

across repeated sweeps.

The resulting CFR measurements of SQUIDs L and R as a
function of IF are plotted in Figs. 2(c) and 2(d). SQUID R has
a periodicity of roughly one flux quantum per 85 µA change
in IF while SQUID L has a periodicity of 1.3 mA, indicating
that the flux-bias line almost exclusively tunes �R.

III. FLUX-TUNABLE NONLOCAL JOSEPHSON EFFECT

We proceed by conducting measurements involving both
SQUIDs, aiming to probe nonlocal effects of the phase dif-
ference across two terminals of the 4TJJ on the CPR through
the other two. To do so, we float the leads of SQUID R but
keep JJR conducting unless otherwise specified, measuring
the voltage VL across SQUID L as a function of B⊥ and IF.
Recall that B⊥ roughly equally tunes �L and �R while IF

almost exclusively tunes �R [see Figs. 2(c) and 2(d)]. This
means we can fully navigate the space of phase differences
φ12 and φ34 by sweeping these two parameters. Our results
are summarized in Fig. 3.

In Figs. 3(a) and 3(b) we fix IL = 1.1 µA to a value near
the SQUID L critical current and measure VL. The SQUID
voltage in its resistive state is a function of its critical current,
and so must have the same periodicity and phase offset [45].
Hence, from the positions of extrema in VL we can extract the
relative value of the φ0 offset �φ12 across terminals 1 and 2.
When JJR is closed as in Fig. 3(a) so that φ34 is not tuned
by B⊥ or IF, only local SQUID oscillations as a function of
B⊥ are visible, tilted upwards due to the small cross coupling
of IF into �L. Remarkably however, when VR,ref = 0 V as in
Fig. 3(b), lobes of SQUID oscillation maxima appear in a zig-
zag pattern. The lines of maximum VL (highlighted in gray)
are oriented diagonally along the B⊥ and IF axes in a different
direction than the maxima lines in Fig. 3(a). This feature thus
arises due to a variation in �R changing φ34. In other words,
the supercurrent through terminals 1 and 2 of the 4TJJ is
tuned by the phase difference across two completely different
terminals of the junction, manifesting a a flux-tunable φ0

junction. Three-terminal circuits of two JJs sharing a common
lead have enabled observations of similar nonlocal Josephson
effects [36,37,47] as well as one controlled by excess spins
in the junction [48]. In these experiments, nonlocal coupling
between junctions was claimed to arise due to the direct
wave-function overlap of ABSs in either junction. While these
experiments have no obvious analog in four-terminal circuits,
the effect observed here may be described as the limit of ABS
wave functions in two JJs completely merging together [32].
We compare these experiments with theory further in Sec. IV.

To make this observation concrete, in Fig. 3(c) we measure
repeated current traces of SQUID L along the green line
highlighted in Fig. 3(b). The maximum observed switching
current across all traces is shown as a black line while the
variation of Isw,L is shown in gray. Large �0.1 µA oscillations
in the switching currents are visible as a function of IF with
the periodicity of SQUID oscillations in SQUID R. Since a
change of over 1 mA in IF is required to tune �L by one flux
quantum due to direct cross coupling, these SQUID oscilla-
tions are purely due to coupling of φ34 to the CPR between
terminals 1 and 2. Additionally, we quantify the degree to
which the φ0 offset between terminals 1 and 2 can be tuned in
Fig. 3(d). From the positions of successive SQUID oscillation
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FIG. 3. Flux-tunable Josephson effect in device A SQUID L. (a), (b) Voltage measured with the junction in a resistive state after applying a
IL = 1.1 µA current across SQUID L with SQUID R leads floating (inset) and (a) JJR pinched off or (b) with it at 0 V. Extracted VL maxima are
plotted in faint white, and show a zig-zag like variation with a periodicity equal to SQUID R’s h/2e periodicity in flux line current. (c) Extracted
maximum switching current (black) along the green line in (b), calculated from ten current traces swept upwards from zero current. Variation
across the repeated current traces is shown in gray. Maxima in Isw,L correspond to maxima in the measured voltage of (b). Cross coupling of
the flux-line field to SQUID L is negligible in this flux-current range, so the observed oscillations in the CPR are purely due to the nonlocal
superconducting phase difference across terminals 3 and 4. (d) Phase offsets of SQUID L’s local CPR (gray) for the four flux periods visible
in (b), and their mean (black), calculated from (b) up to a constant offset. We observe a φ0 tunability in a range greater than 0.2 flux quanta.

maxima plotted in Fig. 3(b) in white, we extract the relative
change �φ12 of each peak as a function of IF. Since we can
only extract the relative apparent φ12 offset of the junction,
we arbitrarily define �φ12 = 0 as the maximum position at
IF = 0. A linear offset is also subtracted from each maximum
to remove the effect of cross coupling between IF and �L, and
the result is converted into units of flux quanta from the B⊥
periodicity of SQUID L oscillations. The average �φ12 across
all maxima is plotted in black, while individual peak oscilla-
tions are in gray. We see that the φ0 junction formed across
terminals 1 and 2 can have its phase offset tuned continuously
in a range of over 0.2�0. Behavior consistent with this is
observed for analogous measurements of SQUID R, shown in
Appendix D, and similar effects are also seen in measurements
of a second device of identical design in Appendix E.

Importantly, the �0-periodic circulating current in SQUID
R could couple trivially to the flux through SQUID L via the
loops’ mutual inductance in the absence of any four-terminal
junction effects. Due to the device design maximizing the
spatial separation between SQUID loops however [Fig. 1(a)],
such a coupling could not cause the observed strength of
oscillations in �φ12: the magnetic field produced by such
loops carrying currents of less than 2 µA produces less than
1 % of a flux quantum in the opposing loop.

IV. MULTITERMINAL JUNCTIONS
AS TWO-TERMINAL JUNCTION ARRAYS

In multiterminal JJs and Andreev molecule devices, tun-
able φ0 junctions are often considered a signature of behavior
distinct to hybridized ABSs [49,50] or of an ABS spec-
trum distinctly associated with multiterminal JJs [11]. In this
section, we demonstrate that modeling these systems with

networks of two-terminal JJs produces a tunable φ0-junction
behavior which may be difficult to distinguish from the case
where bound states in these junctions are truly hybridized into
a multiterminal JJ or an Andreev molecule. Namely, while
several superconducting terminals connected to a semicon-
ducting region smaller than the superconducting coherence
length ξ is naturally described by a hybridized ABS spectrum
[1], similar nontrivial behavior in the CPR is also expected
for a network of two-terminal JJs connecting each termi-
nal. Notably, when a network of JJs contains multiple loops
sharing branches with Josephson junctions, the phase differ-
ences across the junctions become interdependent [51]. As
a minimal model, we consider circuits of JJs neglecting lin-
ear inductances and capacitive effects, and approximate each
junction as possessing a sinusoidal CPR. As examples, we
consider a two-terminal JJ network designed to emulate the
results measured in Fig. 3(b) and others to reproduce results of
recent experiments observing CPRs consistent with Andreev
molecule effects [36,37].

Beginning with the 4TJJ embedded in two asymmetric
DC SQUIDs as in this experiment, we model the 4TJJ as
four two-terminal JJs of critical current Ic,i j coupling each
neighboring superconducting terminal i, j ∈ {1, 2, 3, 4} [see
Fig. 4(a)]. Though SQUID R appears as two superconducting
islands in Fig. 4(a), its two terminals are disconnected at the
location of room-temperature electronics such that each half
of the SQUID is connected to a macroscopic piece of fridge
wiring and possesses no charging energy. From switching
current measurements of SQUID L with its reference junc-
tion pinched off, we estimate the equivalent critical current
between terminals 1 and 2 as Ic,12 = Ic,34 = 100 nA, approx-
imating the same between terminals 3 and 4 by symmetry
in the device design. Since the distance between terminals
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FIG. 4. Simulations of multiterminal JJs as networks of two-terminal JJs. (a)–(c) Two-terminal JJ models of the 4TJJ in this paper (a), and
of the Andreev molecule device geometries of Ref. [36] (b) and Ref. [37] (c). We model the 4TJJ (green) as four two-terminal JJs between
each neighboring terminal. For the Andreev molecule devices we model two nearby JJs (labeled A and B with phase differences φA and φB) as
well as an incidental JJ (gray, with phase difference φNL) shunting the two JJs through the same semiconducting region (green). Large crosses
indicate reference JJs with critical currents much larger than those of the JJs in the green regions. (d) Close-up schematic of the layout of leads
(gray) in the green regions of (c) and (d) patterned over a semiconducting 2DEG (green). (e) Simulated critical current Ic of SQUID L with
SQUID R floating as a function of B⊥ and IF in units of flux quanta, modeling the 4TJJ-SQUID circuit with the circuit model in (a). We use
Ic,12 = Ic,34 = 100 nA and Ic,13 = Ic,24 = 80 nA. Critical current maxima qualitatively reproduce the zig-zag pattern observed in Fig. 3(b). (f,
g) Simulated critical current of the circuits in (b) and (c) as a function of the fluxes �1 and �2 threading the loops. We use Ic,A/B = 450 nA (f)
and Ic,A/B = 200 nA (g) as in Refs. [36,37], respectively. Additionally, we choose Ic,NL = 180 nA (e) and Ic,NL = 70 nA. In all plots, Ic is offset
by the reference junction’s critical current.

1 and 3 or 2 and 4 is larger, we select Ic,13 = Ic,24 = 80 nA
to approximate the qualitative behavior of the CFR maxima
seen in Fig. 3(b). By applying Kirchhoff’s current law and
flux quantization while assuming the flux threading the 4TJJ
[green in Fig. 4(a)] is negligible, we can calculate the critical
current across SQUID L [51]. Results are shown in Fig. 4(e).
While the functional dependence of VL measured at fixed
current in the resistive state is not expected to precisely match
the CPR, it is expected to have the same periodicity and phase
offset [45]. The simulated critical current exhibits a similar
zig-zag pattern in the positions of maximum critical current.
This indicates that a tunable φ0 junction alone is not unique
to multiterminal JJ behavior. Namely, this demonstrates that
while the lithographic design of the devices measured here
contains a 4TJJ, the φ0 junction could appear even if the ABSs
formed between each pair of terminals were not hybridized
with any other ABSs.

As further examples, we model devices expected to host
ABSs hybridized into Andreev molecules [49,50]. These de-
vices consist of two two-terminal JJs of critical current Ic,A/B

and phase difference φA/B sharing a common superconducting
lead and separated by a distance on the order of ξ , depicted
in Fig. 4(d). Due to wave-function overlap between the ABS
in each junction, an Andreev molecular state is expected to
form. A stark signature of this state is a phase offset in one

junction tunable by the phase difference across the other junc-
tion [49,50]. In practice however, measured CPRs of Andreev
molecule devices have formed the two JJs from a common
region of semiconducting material [36,37]. Since their separa-
tion is less than ξ , supercurrent could pass between the outer
terminals in the absence of any hybridization of the ABSs in
the intended junctions.

We thus model the device geometries of Refs. [36,37] with
the circuits shown in Figs. 4(b) and 4(c) respectively. Nonlocal
effects are modeled by a JJ directly coupling the outer leads
with phase difference φNL and critical current Ic,NL < Ic,A/B.
Since each pair of leads is expected to support supercurrent in
the absence of the remaining lead, this is roughly equivalent to
considering the three-terminal junction with hybridization of
the ABSs formed in each junction neglected. Specific values
of Ic,A/B are extracted directly from Refs. [36,37], while Ic,NL

values are chosen to best match their measurements. The re-
sulting simulations are shown in Figs. 4(f) and 4(g). They bear
remarkable similarity with the measurements, in particular
producing similar φ0-junction tunability to these experiments
in the absence of any ABS hybridization. For more details of
these calculations, see Appendix F.

Naturally, as these junctions are defined in a region smaller
than ξ , hybridization between ABSs in the junctions is ex-
pected to have contributed to the measured CPRs [52]. The
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above modeling shows, however, that the level of ABS hy-
bridization in existing experiments does not yield CPRs
easily distinguishable from the case of a noninteracting three-
terminal junction. To exclude this trivial coupling between
leads in Andreev molecule devices, measuring similar devices
designed with no direct path through the semiconductor be-
tween the outer superconducting leads rules out this shunting
effect. For example, each junction could be formed from
different semiconducting nanowires [47,53]. Importantly, tun-
neling spectroscopy measurements of the semiconducting
region could also reveal an ABS spectrum exhibiting an-
ticrossings indicative of hybridization between the ABSs
[32,34,49].

V. CONCLUSIONS AND OUTLOOK

We have studied a 4TJJ by embedding it in two asymmetric
DC SQUIDs, observing nontrivial properties of the CPR of a
4TJJ. Namely, we were able to measure SQUID oscillations of
two pairs of terminals forming the junction and independently
tune two of the three independent phase differences control-
ling it. From these measurements, we observed a nonlocal
Josephson effect: two terminals of the 4TJJ behaved as a
φ0 junction with a phase offset tunable by the nonlocal flux
biasing the phase difference across two independent junction
terminals. This tunability had a range exceeding 0.2�0, and
allows the 4TJJ to serve as a superconducting current switch
[13]. Modeling multiterminal junctions as two-terminal JJ
arrays, we also found that φ0-junction effects alone are not
sufficient evidence of hybridization between extended ABSs
in the junction.

Future devices with a barrier gate separating the lead pairs
could demonstrate for the first time tunable direct wave-
function overlap between phase-tunable ABSs. Coupling
between relatively distant ABSs mediated by supercurrents
or photons in a macroscopic circuit has been observed
[54,55], but demonstrating a tunable local coupling would
enable the formation of Andreev molecule-based quasipar-
ticle charge qubits [49,56], or densely spaced conventional
Andreev qubits. Andreev molecule devices where ABSs are
coupled with a superconducting lead in between have ex-
hibited hybridization effects [32,33], but their coupling is
fixed by the superconducting lead dimensions [49,52]. A
tunable wave-function overlap with directly tunnel-coupled
ABSs in JJs provides an alternate mechanism for realizing
qubits based on ABSs or Kitaev chains [57], allowing for read-
out via inductive coupling of resonators to the phase-biased
loops containing each JJ [58,59]. Last and most notably, with
control over one more phase difference in the 4TJJ, Weyl
singularities in this system’s subgap state spectrum could be
probed [3,7,60].

Raw data and scripts for plotting the figures in this paper
are available from Zenodo [61].
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APPENDIX A: GATE PERFORMANCE

In Fig. 5 we plot a characterization of SQUID L oscilla-
tions as a function of the nonlocal flux �R tuned by IF in
device A as the central device depletion gate voltage [red in
Fig. 1(b)] VD is swept down from 0 V. Repeating multiple
current traces at each IF value, we plot the maximum observed
switching current as it is closest to the SQUID critical current.
As the gate depletes carriers in the 4TJJ, the amplitude of os-
cillations decreases until none are observed by VD = −0.75 V.
When VD = 0, the SQUID oscillations are slightly skewed to
the left, and this skewness also appears to reduce, leaving
the oscillations more sinusoidal at intermediate VD values. A
detailed investigation of the influence of patterned gates on
the 4TJJ characteristics was made impossible by the misalign-
ment of gates in the second layer (gray in Fig. 1). These gates
were designed to tune the chemical potential selectively be-
tween pairs of terminals, enable tunneling spectroscopy with
the normal metal probes, and tunably isolate SQUID L from
SQUID R.

APPENDIX B: FIELD DIRECTION CALIBRATION

For all measurements in the main text of this paper, the
external magnetic field Bx (as opposed to the field generated
by the flux current IF) was along a three-axis magnet’s “x”
direction, mostly out of plane of the chip [see Fig. 6(a)].
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(a)

(c) (d)

(b)

FIG. 6. Field direction calibration in device B. (a) Diagram
schematically depicting how the applied field in the Bx direction
translates to an out-of-plane component B⊥ as well as small compo-
nents By and Bz in the y and z directions respectively. The angle θx is
exaggerated for clarity. (b) Measurement configuration for field ori-
entation calibration. (c), (d) SQUID L oscillations as a function of Bx

and By (c) and Bz (d) with a fixed current IL = IR = 1.45 µA applied
by independent sources across both SQUIDs, though these measure-
ments are only used to infer the oscillation periodicity of SQUID
L in each field direction. For these measurements, VD = −0.15 V
while each second-layer gate except the rightmost one [gray gates
in Fig. 1(b)] has +0.8 V applied. From these scans, we infer a mean
peak spacing of oscillations along each axis of approximately �Bx =
8.5 µT, �By = 64 µT, and �Bz = 0.14 mT. Measurements are with
respect to an approximate zero-field point along the Bx direction of
B0

⊥ = −7.15 mT calculated from Fraunhofer pattern measurements
of the reference junctions.

To calculate the out-of-plane component B⊥ as labeled in
both figures, we calibrate the field direction with measure-
ments on device B, summarized in Fig. 6. Measuring SQUID
oscillations of SQUID L in its resistive state, akin to the mea-
surements of Figs. 3(a) and 3(b), we extract the periodicity of
oscillations along each of the magnets’ three axes. From these
measurements, we infer that the angles θ j for j ∈ {x, y, z}
of field Bj with respect to the out-of-plane vector are θx =
8.3 ◦, θy = 82 ◦, and θz = 86 ◦. This implies that the h/2e
periodicity of SQUID L with respect to B⊥ is approximately
8.4 µT in device B, consistent with the devices’ loop areas [see
Fig. 1(a)].

As device A may have been loaded in a different direction
with respect to the magnet compared to device B, these angles
are not the same for device A. Despite this, because device A
has the same lithographical design as device B, its SQUIDs’
oscillation periodicities are expected to be the same. Hence,
from the Bx periodicity of SQUID L extracted from the data
of Fig. 3(a) before converting the Bx axis to B⊥, we infer θx =
14 ◦ for device A. This enables us to calculate B⊥ from the
applied field.

APPENDIX C: CURRENT-PHASE RELATIONS
OF FOUR-TERMINAL JUNCTIONS EMBEDDED

IN ASYMMETRIC SQUIDS

On its own, it is impossible to measure the CPR of the
4TJJ because the phase differences φi j across its terminals
{1, 2, 3, 4} cannot be controlled. Embedding each pair of
terminals (namely {1, 2} and {3, 4}) from the 4TJJ into a
DC SQUID penetrated by magnetic fluxes �L and �R al-
lows control of φ12 and φ34, respectively, through tuning of
these fluxes. Reference junctions JJL and JJR must also be
embedded in each SQUID loop to prevent the SQUID’s crit-
ical current from being too large to practically measure. In
that case, the supercurrent across SQUID L when the other
SQUID’s leads are floating is

I = I ref
c,L fL(φL) + Ic,M f12(φ12, φ34, φ13) (C1)

where φL/R is the phase difference across reference junction
L/R with critical current I ref

c,L/R, Ic,M is the critical current
of the 4TJJ, and fL and f12 are some �0-periodic functions
such that | fL|, | f12| � 1 [62]. In other words, IcM fi j is the
current phase relation of the 4TJJ between leads i and j, which
depends on all phase differences across it.

We assume the other SQUID’s leads are floating so that
current into the 4TJJ is conserved. By flux quantization, we
have that

φ12 − φL = 2π (�L + LLJL)

�0
mod (2π ) (C2)

where LL/R and JL/R are the self-inductance and the circulat-
ing current around SQUID L/R. Note that JL/R must itself
be �0 periodic in flux. Because we have that I ref

c,L/R � Ic,M,
the phase difference φL will adjust itself to whichever value
φmax

L maximizes the current flowing through JJL, since this in
turn maximizes the SQUID’s critical current. As the 4TJJ by
comparison has a negligible effect on the SQUID supercur-
rent, the phase difference φ12 adjusts to the value allowing the
flux quantization condition to be satisfied: φ12 = 2π (�L +
LLJL)/�0 + φmax

L . Meanwhile, the opposite SQUID has no
current bias applied directly across it, and before the circuit
critical current is reached, cannot have more than Ic,M circu-
lating through it. Because Ic,R � Ic,M, this means φR must
be at a value corresponding to a near zero fraction of its
critical current, namely φR ≈ 0. The critical current of the
entire SQUID is then

Ic,L = I ref
c,L + Ic,M f12

×
(

2π (�L + LLJL)

�0
+ φmax

L ,
2π (�R + LRJR)

�0
, φ13

)
.

(C3)

When the loop inductances LL/R are negligible, note that φ12

and φ34 are linear in the applied flux, so we can directly
control the phase difference across each pair of the 4TJJ’s
leads by tuning �L/R. Hence, the critical current of the SQUID
is equal to the CPR of the 4TJJ across two terminals shifted
by the critical current of the reference junction and skewed by
nonzero loop inductances LL and LR.

Summarily, we have that φ12/34 = 2π (�L/R +
LL/RJL/R )/�0 plus a constant offset. Conservatively
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estimating that the individual SQUIDs have inductances
of LL/R < 100 pH and circulating currents bounded by
JL/R � (I ref

c,L/R + Ic,M)/2 ≈ 0.7 µA, circulating currents
perturb φ12/34 by less than 0.09 rad. Without knowing
LL/R precisely, the CFR still possesses key properties of the
true CPR due to the periodicity of JL/R: its periodicity in flux,
and shifts in its phase offset.

APPENDIX D: NONLOCAL FLUX
DEPENDENCE IN SQUID R

For comparison with Fig. 3, we measure the nonlocal cou-
pling of �L into the SQUID R oscillations containing the
junction formed across terminals 3 and 4, with results sum-
marized in Fig. 7. The manifestation or strength of nonlocal
effects is distorted in this case because the parameter tuning
the nonlocal flux �L is B⊥, which nearly equally tunes �R.
Conversely, in this case the parameter IF tuning the local
flux �R has a negligible effect on the nonlocal flux. As in
Fig. 3(b), we first fix the current IR across SQUID R near Ic,R

and measure voltage VR in Fig. 7(a).
Despite B⊥ tuning both �L and �R, nonlocal features are

still visible in Fig. 7(a). Namely, in addition to the expected
diagonal VR oscillations associated with local SQUID R os-
cillations, the intensity of the voltage oscillations changes
periodically with SQUID L’s B⊥ periodicity. To emphasize
this, we plot the positions of SQUID L oscillation maxima
extracted from Fig. 3(b) in white, where it aligns with the
local maxima in VR along the diagonal. Additionally, a mi-
nor zig-zag perturbation of the SQUID R oscillations from
a simple diagonal path is visible, but because of the strong
dependence of �R on both B⊥ and IF, it is difficult to quan-
tify the degree to which �L tunes this junction into a φ0

junction.
To investigate the degree to which four-terminal Joseph-

son effects are present across terminals 3 and 4, we plot
full current traces with JJL open [Fig. 7(b)] and closed off
[Fig. 7(c)]. Each plot is averaged over many IR and B⊥ mea-
surements to alleviate effects from instability of the SQUIDs
as a function of B⊥. Remarkably, when JJL has a finite critical
current, lobes in the SQUID oscillations are visible spaced by
half the SQUID L B⊥ periodicity. Conversely, when JJL is
closed, these higher harmonic lobes vanish, though the oscil-
lations remain significantly nonsinusoidal. In Fig. 7(a) only
�0-periodic oscillations are visible along both axes, however.
Based on existing theories of 4TJJs [11,12], this behavior is
actually expected, and can be thought of as two flux quanta
being threaded into the SQUIDs per �0 period of B⊥. For such
junctions, there are regions of (φ12, φ34) space where phase
slips of the JJ occur due to the appearance of vortex states
inside the junction, producing additional local extrema in the
CPR along lines of equal φ12 and φ34.

Interestingly, these additional extrema in the critical cur-
rent are not reflected in the voltage measured in the resistive
state, emphasized by linecuts in Fig. 7(d). A nearly sinusoidal
resistive-state voltage is observed even when VL,ref = 0, in-
dicating that certain features of the CPR are not noticeably
reflected in VR. From the perspective of a resistively and
capacitively shunted junction model [45], for example, this is
possible for an underdamped junction possessing a substantial

VL,ref=-1 VVL,ref=0 V

(a)

(b) (c) (d)

FIG. 7. Nonlocal Josephson effect SQUID R on device A.
(a) Voltage VR measurements at a fixed current IR = 1.25 µA across
SQUID R with SQUID L leads floating (inset). Because B⊥ tunes
both the nonlocal flux �L and local flux �R, SQUID L oscillations
appear perpendicular to the diagonal. Nonlocal effects from SQUID
L perturb the path of local SQUID oscillations in a zig-zag fashion,
and cause oscillations along the diagonal of the voltage measured. In
white, positions of SQUID L oscillation maxima from Fig. 3(b) are
plotted to emphasize these correlations. (b) Current-voltage traces
of SQUID R oscillations at IF = 0 with the SQUID L reference
junction open, where strongly nonsinusoidal effects are observable,
in addition to apparent minima lobes in Ic,R spaced by half the flux
periodicity. Each full B⊥ and current sweep is repeated 25 times and
averaged. (c) As in (b), but with the SQUID L reference junction
closed off VL,ref = −1 V and averaged 15 times. SQUID oscillations
are still highly nonsinusoidal, but distinctly lack the additional lobes
present in (b). (d) Averaged linecuts at fixed current taken along the
vertical lines in (b) and (c). The positions of maxima and minima in
these linecuts align with extrema in the full current sweep measure-
ments, but the resistive voltage lacks the additional (�0/2)-periodic
oscillation component and appears sinusoidal. As in the main text,
B0

⊥ = −7.5 mT for device A.

self-capacitance. Due to the stochastically varying switching
current observed in current traces (see the averaged traces of
Fig. 2 for example), it is clear that the 4TJJ is underdamped.
Nonetheless, we emphasize that the periodicity and phase off-
set of the fixed-current measurements accurately reflect that
of the CPR.
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ΦL

ΦR

ΦL

ΦR

(a)

(c) (d)

(b)

FIG. 8. Fixed-current SQUID oscillations in device B. (a, b)
SQUID oscillation measurement circuit for (c) and (d), respec-
tively. (c, d) Fixed-current CPR measurements in the resistive state
of SQUID L (c) with IL = 1.45 µA and SQUID R (d) with IR =
1.45 µA, with the opposite SQUID’s leads floating. The magnetic
field was swept near an approximate zero-field point B0

⊥ = 7.15 mT
determined from Fraunhofer pattern measurements of the reference
Josephson junctions.

APPENDIX E: SUPPORTING DATA ON A SECOND DEVICE

Here we present a second set of nonlocal SQUID oscil-
lation measurements akin to those in Figs. 3(b) and 7(a) on
another device (device B), with results shown in Fig. 8. This
device has an identical design to device A and was fabri-
cated on the same chip. Measurements for both SQUID L
and SQUID R are presented in Figs. 8(c) and 8(d), respec-
tively. The corresponding measurement circuits are shown in
Figs. 8(a) and 8(b). In these measurements, with the opposite
SQUID’s leads floating, we observe �0-periodic oscillations
in VL primarily as a function of B⊥ and in VR both as a
function of B⊥ and IF, consistent with the flux-bias line almost
exclusively affecting �R by design. In addition to the small
direct cross coupling of IF to �L giving the SQUID L oscilla-
tions a slight tilt in Fig. 8(c), periodic oscillations in the peak
height are observed as a function of IF. The oscillations also
exhibit a slight zig-zag pattern comparable to those of device
A seen in Fig. 3, but due to the significant jitter visible in the
measurements, extracting a φ0 shift of the junction is difficult.
The measurements of SQUID R are also qualitatively similar
to those of device A.

APPENDIX F: TWO-TERMINAL JUNCTION ARRAY
MODELS OF MULTITERMINAL JUNCTIONS

Herein we derive expressions for the critical current of the
four- and three-terminal JJ circuits shown in Figs. 4(a)–4(c)
by maximizing the supercurrent carried through the terminal
labeled with an input current I . In both cases, we assume

that the flux threading the multiterminal JJ is negligible. We
also assume that the reference junction critical currents are
much larger than the critical currents of all two-terminal JJs
describing the multiterminal JJ. For simplicity we neglect
capacitances and linear inductances, and assume all junctions
have CPRs of the form Ic sin (φ) where φ is the phase differ-
ence across the junction.

We begin with the Andreev molecule device of Fig. 4(b),
which is designed to contain two JJs sharing a common super-
conducting terminal and separated by a distance on the order
of the superconducting coherence length ξ [see Fig. 4(d)].
To separately control the phase differences φA/B across each
junction, the two junctions are embedded in loops threaded
by fluxes �1 and �2 (in units of 2π/�0). Lastly, in one of
the loops a reference junction of large critical current I ref

c
is embedded to measure one of the JJ’s CPRs. As these
devices in previous experiments have been formed by con-
necting three superconducting contacts to a continuous region
of conducting semiconducting material smaller than the co-
herence length [36,37], it is feasible that supercurrent can
directly travel between the two outermost terminals even in
the absence of a central terminal. Consequently, we model
the nonlocal coupling between the two JJs as a third JJ con-
necting the two outer terminals while bypassing the central
one [gray in Fig. 4(d)]. Notably, this model does not include
wave-function overlap between ABSs from different individ-
ual junctions.

Given the phase differences across the junctions as de-
fined in Fig. 4(b), by flux quantization we have that φA =
�2 modulo 2π (we consider the modulus as implied for all
further mentioned flux quantization conditions) [51]. Next,
since the critical current of the reference junction is very
large compared to all others, its phase difference will adjust
to whichever value maximizes the supercurrent through it, in
this case π/2. Finally, by flux quantization we then have that
π/2 − φNL = �1 and φNL − φB − φA = 0. The signs of the
phase differences are determined by an arbitrary but consistent
definition of the current direction through each circuit branch
[51], with fluxes defined as being associated with a clockwise
current through a given loop. Accordingly, the critical current
of the circuit is

Ic = I ref
c + Ic,B cos (�1 + �2) + Ic,NL cos (�1). (F1)

Notably, the decision to approximate the flux �1 producing
a phase difference across the shunting junction as opposed to
directly tuning φA/B was somewhat arbitrary. Modeling the
circuit as the shunting junction existing out of plane such that
�1 tunes φA/B produces the same result as in Eq. (F1) except
shifted by π along the �1 axis.

Proceeding to the circuit of Fig. 4(c) representing the de-
vice geometry of Ref. [37], we conduct similar calculations
using flux quantization rules. In this case, there are reference
junctions of critical currents I ref

c,1 and I ref
c,2 in the �1- and �2-

threaded loops, respectively. With current I being passed into
the top left port and the others grounded, maximizing the
supercurrent requires maximizing the current through refer-
ence junction 1, since we assume the reference junctions have
arbitrarily large critical current. Hence, its phase will tend
to π/2. For the other reference junction, it is connected to
grounded terminals on both sides and so is not a bottleneck
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for the device’s critical current. We can thus take the limit of
infinite critical current such that no phase drop occurs across
this junction, and we have φB = �2. This is evident from
the fact that a large wire containing no Josephson junction,
where no phase drop is expected to occur, can equally well be
considered as a Josephson junction with an arbitrarily large
critical current.

Other flux quantization loops yield �A = π/2 − �1 and
φNL = φA − φB = π/2 − �1 − �2. Hence, by calculating
the current through each circuit branch connecting to the I
input, we find the device critical current to be

Ic = I ref
c,1 + Ic,A cos (�1) + Ic,NL cos (�1 + �2). (F2)

Lastly, we consider the 4TJJ circuit of Fig. 4(a). Again,
there are reference junctions of large critical currents I ref

c,L

and I ref
c,R in the loops threaded by �L and �R. The current

I flows through the branches containing reference junction
L, the junction between terminals 1 and 2, and the junc-
tion between terminals 1 and 3. Since I ref

c,L is assumed very
large, its phase infinitesimally below the critical current by
the same reasoning as before is roughly π/2. Again, as in
the previous case we can take I ref

c,R → ∞ since it is not a
bottleneck for the critical current. More precisely, given that
all supercurrent passing between the JJs with phase difference
φ13 and φ42 can either pass through this reference junction
or the JJ with phase difference φ34, the latter two junctions’
phases are only constrained by flux quantization of their
loop threaded by �R. In the absence of other constraints,
the system will tend to a state which minimizes its energy,
here given by the Josephson energy of both junctions. This
energy is proportional to −I ref

cR cos (φR) − Ic,34 cos (φ34) [45],
where φR is the phase difference across reference junction
R. Since I ref

cR � Ic,34, this energy is minimized when φR ≈ 0.

Whatever current must pass through these parallel arms can
pass through the reference junction with only a negligible
correction to its phase difference due to its large critical cur-
rent, while φ34 can adjust to satisfy flux quantization without
substantially increasing the total energy. From flux quanti-
zation, we then obtain φ12 = �L + π/2, φ34 = −�R, and
φ13 + φ34 + φ42 − φ12 = 0. To obtain enough equations to
solve for all phases, we note that by Kirchhoff’s current law
we have Ic,13 sin (φ13) = Ic,42 sin (φ42). Solving the last flux
quantization condition for φ42 and substituting the result into
the current conservation equation, we obtain

Ic,13 sin (φ13) = Ic,42 cos (�L + �R − φ13). (F3)

This equation has solutions

φ13 = tan−1

(
Ic,42 cos (�L + �R)

[Ic,13 − Ic,42 sin (�L + �R)]

)
+ nπ (F4)

where n ∈ Z. This includes two solutions for φ13 ∈ [0, 2π )
for every �L and �R. The critical current of the circuit
is by definition the maximum possible supercurrent it can
sustain, so for every (�L,�R ) value we choose the (�L,�R)-
dependent value φmax

13 from Eq. (F4) which maximizes I . The
critical current of the circuit is then the sum of the current
through the three paths branching from the input current I ,
given as

Ic = I ref
c,L + Ic,12 cos (�L) + Ic,13 sin

(
φmax

13

)
. (F5)

For the calculated results in Fig. 4(e), we plot them as a
function of the flux generated by IF and B⊥, considering cross
coupling of IF into SQUID L determined from the oscillation
periodicities of Fig. 2. The IF axis is converted into units of �0

by defining 1 × �0 as a single flux quantum threading SQUID
R due to IF as well as the resulting cross coupling to SQUID L.
For B⊥, 1 × �0 is defined as a single flux quantum threading
both SQUIDs.
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