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The unambiguous identification of Majorana zero modes (MZMs) is one of the most outstanding problems
of condensed matter physics. Thermal transport provides a detection tool that is sensitive to these chargeless
quasiparticles. We study thermoelectric transport between metallic leads transverse to a Josephson junction.
The central double quantum dot hosts conventional or topological Andreev states that depend on the phase
difference φ. We show that the presence of MZMs can be identified by a significant amplification of both the
electrical and thermal conductance at φ ≈ π as well as the Seebeck coefficient at φ ≈ 0. In addition, we show
that the Wiedemann-Franz law is strongly violated in the presence of MZMs around φ ≈ π when compared to
the conventional case. We further investigate the robustness of our results against Cooper pair splitting processes.
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I. INTRODUCTION

Josephson junctions (JJs) have been extensively studied
in numerous works, driven by their wide range of applica-
tions, from metrology [1,2] and quantum simulation [3] to
quantum computation [4–6]. Recently, topological JJs gained
significant attention as they provide robust platforms hosting
Majorana zero modes (MZMs) [7–10]. In particular, similar
quantum-dot-based setups have demonstrated promising po-
tential as platforms for flying qubits [11,12], as these systems
feature well-established quantum interferometers [13–15].

Even though the unequivocal detection of MZMs remains
an open problem, several approaches have been proposed to
investigate the topological nature of JJs, such as analyzing the
current-phase relation [16–21]. While the quantized electrical
conductance was initially considered an exclusive feature of
topological materials, it was later realized that it can arise
from any zero-energy mode [22–25].

Since the establishment of standard thermoelectric mea-
surement techniques in the early 1990s [26,27], they have
advanced to promising tools to detect chargeless MZMs,
with their signatures manifested in the thermal conductance
[28,29], voltage thermopower [30–32], or the violation of the
Wiedemann-Franz law [33–35]. In quantum-dot-based multi-
terminal setups, it was reported that a possible smoking gun
to detect MZMs is an opposite sign behavior of the Seebeck
coefficient as a function of the energy level of the quantum dot
(QD) compared to a conventional superconductor [36–41].

In this paper, we study the multiterminal system depicted
in Fig. 1(a), which also represents a generalization of Cooper
pair splitting (CPS) setups [42–45]. The central region con-
sists of two coupled QDs, each of them connected to one

*These authors contributed equally to this work.

metallic lead and both are connected to two superconducting
leads. We restrict our analysis to the noninteracting limit since
it has already been shown that the low-energy behavior and
the conductance is dominated by the effects of MZMs even in
the Kondo regime [46,47]. In contrast to previous discussions
aforementioned, we find that the presence of a MZM does not
generally result in the sign change of the Seebeck coefficient.
Therefore, alternative methods are required for their definitive
identification. For this purpose, we propose a measurement of
the transverse thermoelectric transport coefficients as a func-
tion of the phase difference φ = ϕB − ϕT between the bottom
(B) and top (T) superconductors. In particular, we show that
the linear-response signals of both the electrical and thermal
conductance around φ ≈ π as well as the Seebeck coefficient
around φ ≈ 0 show a huge amplification in the presence of
MZMs. We also show that MZMs lead to a strong violation of
the Wiedemann-Franz law around phase differences φ ≈ π .

II. DOUBLE-QUANTUM-DOT MODEL

We consider the four-terminal junction shown in Fig. 1(a)
with a central spin-degenerate, noninteracting double QD.
The central Hamiltonian reads HQD =∑α,σ εαd†

ασ dασ , where
d (†)

ασ annihilates (creates) an electron of spin σ ∈ {↑,↓} at the
on-site energy εα ∈ R of QD α ∈ {L, R} and the interdot cou-
pling of strength w � 0 is given by VQD = −w

∑
σ (d†

Lσ dRσ +
d†

Rσ dLσ ). The full model including the leads is represented
by the Hamiltonian H = HQD + VQD + Hleads + Htunnel, where
Hleads describes the four terminals modeled by semi-infinite
chains [48,49], with details provided in Appendixes A
and B. The dot-to-leads coupling is described by Htunnel,
characterized by the parameter �N,S for normal and supercon-
ducting leads, respectively. To study the effect of topological
superconductivity on transverse thermoelectric transport,
the superconductors are either of conventional s-wave or
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(a) (b)

FIG. 1. (a) Two QDs (green) with energy levels εL,R and interdot
coupling w. The left (L) (right (R)) normal-metal terminal (yellow)
at temperature TL (TR) and chemical potential μL (μR) is coupled
to the left (right) QD with coupling �N . The top (T) and bottom
(B) superconductors (cyan) with phases ϕT,B are equally coupled to
both dots with strengths �S . (b) CPS is controlled with the nonlocal
coupling �CPS. If �CPS = 0, each QD is coupled to a copy of the
superconductor with identical phase ϕ.

topological p-wave type. For simplicity, the latter case is
modeled by semi-infinite spinless Kitaev chains in the deep
topological regime [49,50], which are members of symmetry
class BDI [51]. More realistic models based of a semiconduct-
ing nanowires with strong spin-orbit coupling in a magnetic
field, which belong to symmetry class D [52], should yield
the same results in the fully spin-polarized (i.e., effectively
spinless) regime, in which Majorana end states appear.

As sketched in Fig. 1(b), the parameter �CPS describes the
nonlocal splitting of Cooper pairs into two electrons, each
being transferred to a different QD. In general, �CPS depends
on the geometry of the contact and the coherence length of the
Cooper pairs [53] and allows the modeling of more realistic
situations.

III. TRANSMISSION FUNCTIONS AND BAND INVERSION

We study the transmission functions between the two
normal-metal electrodes as an effective two-terminal setup.
Due to the connection to the superconductors, the center
hosts Andreev bound states (ABS) that mediate the transverse
thermoelectric transport. As shown in Appendix C, the trans-
mission functions between the terminals 	1, 	2 ∈ {L, R} in the
spinless p-wave case read

T τ1τ2
	1	2

(ε) = 4 �2
N Gr

	1τ1,	2τ2
(ε) Ga

	2τ2,	1τ1
(ε), (1)

where Gr,a is the dressed retarded/advanced Green’s function
of the center and τ1, τ2 ∈ {e, h} are the electron-hole compo-
nents. For two s-wave terminals, all Green’s functions are spin
symmetric due to the absence of spin-flip terms, which results
in an additional factor of 2 in the transmission functions in
Eq. (1). Due to particle-hole symmetry, the transmission func-
tions satisfy T τ1τ2

	1	2
(ε) = T τ̄1 τ̄2

	1	2
(−ε) with τ̄ = h, e if τ = e, h.

This allows us to focus on electron cotunneling (EC) T ee
RL ,

local Andreev reflection (LAR) T eh
RR , and crossed Andreev

reflection (CAR) T eh
RL , which determine the transverse ther-

moelectric properties of the junction [cf. Eqs. (2)–(4) below].
The main differences between conventional s-wave and

topological p-wave terminals are best observed in the EC
transmission function T ee

RL and the local density of states
(LDOS) of the central region defined as Tr[Im(Ga)], where
the trace runs over site and particle-hole degrees of freedom.

(a)

(b)

FIG. 2. (a) LDOS on the double QD coupled to either two s-wave
(top row) or two p-wave (bottom row) superconductors with �N = 0.
(b) EC transmission T ee

RL with �N = �/5 for two s-wave (top row) or
p-wave (bottom row) superconductors. Parameters: �S = �, �CPS =
�S , εL = εR = −�/2.

We first show in Fig. 2(a) the LDOS as a function of the
phase difference φ for strong CPS (�CPS = �S) and symmetric
dot levels (εL = εR). For both conventional and topological
leads, we find a single pair of nondispersive states and a
single pair of ABS at energies |ε| < �, where � is the order
parameter of the two superconductors. While the ABS are
changing with φ, the constant states are fixed at energies
ε ≈ ±(εavg + w) due to the strong interference enabled by
�CPS = �S , where εavg = (εL + εR)/2 is the average energy
level of the double QD. Generally, the ABS in the s-wave case
are gapped around φ = π , while there is always a protected
MZM at φ = π for p-wave terminals.

In Fig. 2(b), we show the EC transmission function T ee
RL .

In both cases, the electronic constant resonant state shows
a strong transmission at ε ≈ εavg + w and increasing w > 0
leads to a shift of the constant resonant line toward positive en-
ergies. Pushing these states further to energies |ε| > � reveals
the resonant behavior of the dispersing ABS. While there is
strong electron transmission for the ABS at negative energy in
the s-wave case, the p-wave configuration shows a dominant
electron transmission at positive energies. This relative inverse
behavior is a strong signature of band inversion in topological
p-wave superconductors. However, the overall behavior in
both cases is not fixed to be particlelike or holelike and can
be changed by changing the QD energies. In the symmetric
case εL = εR, the inversion point follows the simple condition
w = |εavg|, as shown in Fig. 6 in Appendix D.

For asymmetric values, εL �= εR, the constant energy states
hybridize with the dispersing ABS. However, as shown in
Fig. 7 in Appendix D, the transmission function is then still
dominated by a resonant line at energies ε ≈ εavg + w. This
neither changes the qualitative behavior nor our previous dis-
cussion. Finally, smaller �CPS < �S , as being of relevance in
CPS experiments [42–44], will lead to the appearance of a
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second pair of dispersing ABS, while the formerly constant
energy states start to merge with the continuum |ε| > �. In
that sense, this parameter interpolates between double-dot and
effective (multilevel) single-dot behavior, the latter defined by
�CPS = 0 [cf. Fig. 1(b)].

IV. THERMOELECTRIC RESPONSE

We are interested in the thermoelectric charge and heat cur-
rents, IR and JR, respectively, in the right contact within linear
response at the Fermi energy μ = 0. We consider the small
voltage and temperature bias, δV and δT , respectively, to be
applied to the right terminal, which implies TL = T , μL = 0,
TR = T + δT , and μR = e δV . Then, starting from Eqs. (C8)
and (C9) in Appendix C, the linear response Onsager relations
read [54] (

IR/e
JR/(kBT )

)
= 1

h

(
L11 L12

L21 L22

)(
e δV
kB δT

)
, (2)

where L = (Lmn)m,n=1,2 is the Onsager matrix with

Lmn =
∫ ∞

−∞

(
ε

kBT

)m+n−2

Tmn(ε)

(
−∂ f

∂ε

)
dε. (3)

Here, f (ε) = (1 + eε/(kBT ) )−1 is the equilibrium Fermi func-
tion and T, kB, e, h > 0 are the temperature, Boltzmann
constant, elementary charge, and Planck constant, respec-
tively. Using Eq. (1) and particle-hole symmetry, the total
transmission functions read

T11 = T21 = T ee
RL + T eh

RL + 2T eh
RR , (4a)

T12 = T22 = T ee
RL + T eh

RL . (4b)

The linear electrical conductance and the Peltier coeffi-
cient, measured at thermal equilibrium δT = 0, read G =
G0L11 and � = kBTL21/(eL11), respectively, where G0 =
e2/h is the electrical conductance quantum. The linear thermal
conductance and Seebeck coefficient, measured at IR = 0,
read K = 3K0det(L)/(π2L11) and S = kBL12/(eL11), respec-
tively, where K0 = π2k2

BT/(3h) is the thermal conductance
quantum [54]. Since electrons and holes from the same termi-
nal see the same QD, T eh

RR will always be a symmetric function
of energy ε resulting in L12 = L21 and � = T S.

Note that the Wiedemann-Franz law [55], K ∝ G, which
would imply L22 ∝ L11 if L12 	 L11 at low temperature, is
generally violated due to LAR contributions to IR if the volt-
age bias is applied to the right terminal [54,56]. In contrast, a
temperature gradient does not generate LAR contributions to
the thermal current JR.

For completeness, we show this violation in Fig. 3 for
different phase differences φ in the s- and p-wave case. In
the s-wave case, shown in Fig. 3(a), this violation is always
present at phases φ �= π and becomes largest at φ = 0. At
φ = π , the Wiedemann-Franz law is satisfied due to the sym-
metric choice of all couplings to the superconductors, which
results in vanishing CAR and LAR transmission functions.
Furthermore, the qualitative behavior of the violation does not
change between weak or strong CPS controlled by �CPS. In
contrast, the p-wave case [Fig. 3(b)] shows a strong violation
for all phases (except some isolated points where L = L0), and

(a) s-wave (b) p-wave

FIG. 3. Violation of the Wiedemann-Franz law as a function
of the phase difference φ for several values 0 � �CPS � �S . We
plot L := K/(GT ) = 3 L0 det(L)/(π 2L2

11), where L0 = π 2k2
B/(3e2)

is the Lorenz number. The Wiedemann-Franz law is satisfied for
L = L0 (dotted line). Parameters: w = 3�, εL = −�/2, εR = 0,
kBT = 10−2�, �N = �/5, �S = �.

in particular for φ ≈ π , as long as �CPS < �S . In the strong
CPS case �CPS = �S , the violation is only appearing around
the phase difference φ ≈ π , i.e., the region close to the MZM.
From this violation it can be concluded that the MZM leads to
finite LAR contributions at low energy.

A. Seebeck coefficient

The Seebeck coefficient S is a measure of whether the
thermoelectric transport through a system is particle or hole
dominated. In Fig. 4, we first discuss the influence of band in-
version on S for both the s- and p-wave case (solid and dashed
curves, respectively). To understand the effect of the MZM in
the p-wave case, we turn our attention to the two characteristic
phase differences φ = 0 and φ = π , for which S is largest as
a function of εL. To distinguish between Majorana-mediated
physics and nonlocal effects, we also consider several values
of the nonlocal Cooper pair splitting �CPS.

In the absence of pair-breaking effects (�CPS = 0),
the Seebeck coefficient in the p-wave case [black dashed
curve in Fig. 4(b)] is inverted compared to the corresponding
s-wave case [black solid curve in Fig. 4(a)]; an effect solely

(a) (b)

FIG. 4. Seebeck coefficient S for varying εL at different �CPS.
(a) s-wave at φ = π (solid) and p-wave at φ = 0 (dashed). The
orange and black dashed lines are scaled down by a factor 0.1.
(b) s-wave at φ = 0 (solid) and p-wave at φ = π (dashed). The blue
dashed line is scaled down by a factor 0.1. Parameters: w = 3�,
�N = �/5, �S = �, εR = 0 �, kBT = 10−2�.
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caused by the presence of MZMs and band inversion in the
topological junction.

On a qualitative level, increasing �CPS does not change
too much the general behavior of S in the s-wave case, while
there is a strong dependence for two p-wave terminals. In the
latter case for strong �CPS (dashed blue lines in Fig. 4), the
magnitude of the Seebeck coefficient is the same regardless of
the phase difference and the region in which the sign change
appears is very narrow. This robust behavior can be explained
with the presence of the resonant nondispersing level that
appears at the energy ε ≈ εavg + w. The only qualitative dif-
ference between the dashed blue lines in Fig. 4 is the presence
of the MZM at φ = π [Fig. 4(b)] with a large conductance
G, which leads to a suppression of S ∝ G−1 everywhere else.
When �CPS < �S , the p-wave case can be well distinguished
from the s-wave case with the aid of the phase difference
φ. Due to the small conductance, the Seebeck coefficient at
φ = π in the s-wave case is one order of magnitude larger
[orange and black solid curves in Fig. 4(a)] than the similar
topological case [orange and black dashed curves in Fig. 4(b)].
At φ = 0 the topological case shows a huge Seebeck response
[orange and black dashed curves in Fig. 4(a)] for the same
reason, while the corresponding conventional case is one or-
der of magnitude smaller [orange and black solid curves in
Fig. 4(b)].

Note that S in Fig. 4(a) is solely determined by the EC
transmission function T ee

RL , as LAR and CAR are absent for
these phase differences at the symmetric choice of the direct
couplings to the superconductors [cf. Fig. 1] and remain negli-
gible for small asymmetries. However, LAR is not negligible
in the conductance at other phases [i.e., Fig. 4(b)] and it is
dominant in the p-wave case due to the MZM, as discussed in
detail in Appendix E.

B. Effect of the phase difference and CPS

As we now show, measuring the thermoelectric coeffi-
cients in combination with tuning the applied phase difference
across the JJ allows us to identify the presence of MZMs. For
this purpose, we show in Fig. 5 the electrical conductance
G, the Seebeck coefficient S, and the thermal conductance
K for different JJs. As a first observation in the s-wave case
[Fig. 5(a)], G, S, and K show only an overall weak signal that
is largest at φ = π . While both G and K do not significantly
change on a qualitative level for different �CPS, S shows a
sign change around φ ≈ π as �CPS is increased. In contrast,
the magnitude of the signals in the p-wave case [Fig. 5(b)]
are much larger compared to the s-wave case. In particu-
lar, G shows the expected quantized conductance peak from
LAR at the MZM at φ = π with G = 2G0 [49] that is also
robust against increasing �CPS, which is shown in Fig. 8(a)
in Appendix E. At �CPS = �S , G is generally not quantized,
but drops to G = G0 in the case of symmetric couplings and
equal dot levels εL = εR. Furthermore, K only shows a sig-
nificant signal around phase differences close to φ ≈ π for
a large range of �CPS � 0.3 �S that increases for increasing
�CPS. This behavior is a consequence of the violation of the
Wiedemann-Franz law due to the presence of LAR; see Eq. (4)
and Fig. 3. Although K is zero at exactly φ = π for a large
range of �CPS, it increases to the quantized value of K = K0/2

(a) s-wave (b) p-wave

FIG. 5. Electrical conductance G, Seebeck coefficient S, and
thermal conductance K for varying φ and �CPS. (a) s-wave case.
(b) p-wave case. |S| in (b) is plotted on a logarithmic scale and is in
the range (eS/kB ) ∈ [−5.27, 0.03]. Parameters: w = 3�, �N = �/5,
�S = �, εL = εR = −�/2, kBT = 10−3�.

in the case of symmetric coupling and equal dot energy, as
shown in Fig. 8(b) in Appendix E, which was also reported
in Ref. [29] for a continuous setup. In addition, S takes large
values for small �CPS at φ ≈ 0 due to the vanishingly small
electrical conductance. This region [dark red area for S in
Fig. 5(b)] also extends to larger phase differences at large
�CPS � �S .

V. CONCLUSION

In the four-terminal setup shown in Fig. 1, we have investi-
gated how ABS mediate the thermoelectric transport between
two normal-metal contacts transverse to a Josephson junction.
In contrast to previous claims [36–41], we have shown that an
inverted Seebeck coefficient is not a unique feature of MZMs
and that ABS coexisting with resonant states [Fig. 2] or the
strength of CPS in multidot systems also induce sign changes
even in conventional JJs [Figs. 4 and 5(a)].

Moreover, we have compared the linear thermoelectric
transport coefficients between conventional and topological
JJs [Fig. 5]. In general, the signals in the conventional case
are expected to be one to three orders of magnitude smaller
than for the topological case. In particular, both the electrical
and thermal conductance are strongly amplified at φ ≈ π in
the presence of MZMs, while the Seebeck coefficient is large
around φ ≈ 0 due to the vanishingly small conductance. In
addition, we have shown that the Wiedemann-Franz law is
always strongly violated in the p-wave case around φ ≈ π ,
while it is always satisfied in the s-wave case. This should
represent a phase-sensitive and robust detection criterion for
MZMs in such devices. As Cooper pair splitter experiments
have been successfully performed and transverse geometries
are in experimental reach in multiterminal setups, we believe
that our theoretical proposal is ready to be implemented with
current state of the art technology.

There are still numerous open questions in these types
of systems, e.g., how these results connect to larger-scale
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continuous junctions or how the ABS in a mixed s- and
p-wave situation influence the thermoelectric properties.
Furthermore, it will be interesting to investigate whether
quasi-Majorana zero modes and the resulting Andreev bound
states in nanowire-based Josephson junctions in the trivial
regime can be distinguished from real MZMs in the topo-
logical regime with the help of transverse phase-dependent
thermoelectric transport [57–59].
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APPENDIX A: BOUNDARY GREEN’S FUNCTIONS
OF THE FOUR TERMINALS

The left (L), right (R), top (T ), and bottom (B) leads
in the four-terminal junction that is sketched in Fig. 1(a) of
the main text are all modeled by semi-infinite tight-binding
chains, generally described by the set of Hamiltonians

Hleads = H (n)
L + H (n)

R + H (s/p)
T + H (s/p)

B . (A1)

We assume that the left and right terminals are normal metallic
electrodes (superscript n), while the top and bottom leads are
superconductors of either conventional s-wave or topological
p-wave type (superscript s or p). The Hamiltonian H (s)

	 for
the conventional s-wave superconductors is given by the tight-
binding chain

H (s)
	 =

∑
j

[
−t
∑

σ

(c†
	, j,σ c	, j+1,σ + c†

	, j+1,σ c	, j,σ ) + �eiϕ	c†
	, j,↑c†

	, j,↓ + �e−iϕ	c	, j,↓c	, j,↑

]

=
∑

k

(c†
	,k,↑, c	,−k,↓)(−2t cos(k)τ3 + �eiϕ	τ3τ1)

(
c	,k,↑

c†
	,−k,↓

)
, (A2)

where c	, j,σ =∑k c	,k,σ e−i jk/
√

N annihilates and c†
	, j,σ =∑k c†

	,k,σ
ei jk/

√
N creates an electron of spin σ ∈ {↑,↓} on site j

in terminal 	 = T, B. Furthermore, t > 0 is the hopping parameter that is related to the lattice spacing defining the effective
bandwidth in the model, the number of sites is N → ∞, � � 0 is the superconducting order parameter, and ϕ	 is its phase. We
also introduced a set of Pauli matrices τ1, τ2, and τ3 in Nambu space, with τ0 being the identity.

If the top and bottom superconducting terminals are of topological p-wave type, we describe them by spinless Kitaev chains
(at zero on-site potential) with the Hamiltonian [49,50]

H (p)
	 = 1

2

∑
j

[−t (c†
	, jc	, j+1 + c†

	, j+1c	, j ) + �eiϕ	c†
	, jc

†
	, j+1 + �e−iϕ	c	, j+1c	, j]

= 1

2

∑
k

(c†
	,k, c	,−k )(−t cos(k)τ3 + � sin(k)eiϕ	τ3τ2)

(
c	,k

c†
	,−k

)
. (A3)

Note that the topological p-wave terminal is considered to be
spinless and, hence, c(†)

	, j does not depend on spin. In both the

s-wave and p-wave case, the normal-metal Hamiltonian H (n)
	

(	 = L, R) follows from H (s)
	 for � = 0.

Following standard Green’s function techniques
[48,49,62,63], we obtain the bare matrix boundary Green’s
functions [in their respective basis defined in Eqs. (A2) and
(A3)] for the semi-infinite terminals as

g(n)
	 (z) = − i

t
sgn(Im(z))τ0, 	 = L, R, (A4a)

g(s)
	 (z) = −(zτ0 + �eiϕ	τ3τ1)

t
√

�2 − z2
, 	 = T, B, (A4b)

g(p)
	 (z) =

√
�2 − z2τ0 + �	eiϕ	τ3τ1

tz
, 	 = T, B, (A4c)

where z = ε + iη, with energy ε ∈ R and a small Dynes pa-
rameter η → 0± [64]. In our numerical calculations we used
|η| = 10−3� for Figs. 2–4 and |η| = 10−5� for Fig. 5 in the
main text. The retarded and advanced Green’s functions are
defined for η > 0 and η < 0, respectively. We further assumed
that the band parameter t , which also plays the role of the
inverse normal-metal density of states at the Fermi energy,
is the largest energy scale in the total system (wide-band
approximation) [48]. Finally, note that the order parameter in
the topological case reads �T = � and �B = −� due to the
p-wave nature of the superconducting pairing [49].

In the wide-band limit, the normal-metal Green’s function
g(n)

	 (z) in Eq. (A4a) is constant in energy, while the conven-
tional superconductor described by g(s)

	 (z) in Eq. (A4b) shows
the characteristic BCS singularities at the energies ε = ±�. In
contrast, the topological superconductor described by g(p)

	 (z)
in Eq. (A4c) hosts a single Majorana state at ε = 0.
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APPENDIX B: DRESSED CENTRAL DOUBLE-QUANTUM DOT AND COUPLINGS

As explained in the main text, the central quantum-dot system is described by an interconnected double-quantum dot. In the
spinful (i.e., s-wave) case, the two quantum dots are considered to be spin degenerate and noninteracting, as described by the
Hamiltonian

H (s)
QD =

∑
α

∑
σ

εαd†
ασ dασ − w

∑
σ

(d†
Lσ dRσ + d†

Rσ dLσ ) = (d†
L↑, dL↓, d†

R↑, dR↓)

[(
εL −w

−w εR

)
⊗ τ3

]
︸ ︷︷ ︸

ĤQD

⎛
⎜⎜⎜⎝

dL↑
d†

L↓
dR↑
d†

R↓

⎞
⎟⎟⎟⎠, (B1)

where d (†)
ασ annihilates (creates) an electron of spin σ ∈ {↑,↓} at the on-site energy εα ∈ R of QD α ∈ {L, R} and w � 0 is the

coupling strength between the two quantum dots. For the spinless p-wave case, we get the similar result

H (p)
QD =

∑
α

εαd†
αdα − w(d†

LdR + d†
RdL ) = 1

2
(d†

L, dL, d†
R, dR)ĤQD

⎛
⎜⎜⎜⎝

dL

d†
L

dR

d†
R

⎞
⎟⎟⎟⎠. (B2)

As sketched in Fig. 1(a) in the main text, the left (right) normal-metal terminal is only coupled to the left (right) quantum dot,
while the top and bottom superconducting terminals are each coupled to both quantum dots simultaneously. The full coupling
Hamiltonian between the terminals and the central quantum dot system reads

H (s)
tunnel =

∑
	=L,R,T,B

H (s)
	D , (B3)

where in the s-wave case

H (s)
	D =

∑
kσ

(−t	d†
	σ c	kσ + H.c.) =

∑
k

(
(d†

	↑, d	↓)V	

(
c	k↑

c†
	,−k,↓

)
+ H.c.

)
, 	 = L, R, (B4a)

H (s)
	D =

∑
α=L,R

∑
kσ

(−t	αd†
ασ c	kσ + H.c.) =

∑
k

(
(d†

α↑, dα↓)V	α

(
c	k↑

c†
	,−k,↓

)
+ H.c.

)
, 	 = T, B, (B4b)

and in the p-wave case

H (p)
	D =

∑
k

(−t	d†
	 c	k + H.c.) = 1

2

∑
k

(
(d†

	 , d	)V	

(
c	k

c†
	,−k

)
+ H.c.

)
, 	 = L, R, (B5a)

H (p)
	D =

∑
α=L,R

∑
k

(−t	αd†
αc	k + H.c.) = 1

2

∑
α=L,R

∑
k

(
(d†

α, dα )V	α

(
c	k

c†
	,−k

)
+ H.c.

)
, 	 = T, B. (B5b)

We also defined the coupling matrices V	 = −t	τ3 and V	α = −t	ατ3, where t	, t	α � 0. We use the Dyson equation G =
g + g�G to calculate the dressed retarded and advanced Green’s function ĜCC of the central system as

ĜCC (z) =
(

GLL(z) GLR(z)
GRL(z) GRR(z)

)
= [z1̂4 − ĤQD − �̂(z)]−1, (B6)

where 1̂4 is a 4 × 4 unit matrix, z = ε + iη [cf. Eq. (A4)], and the self-energy matrix is given by

�̂(z) =
(

�LL(z) �LR(z)
�RL(z) �RR(z)

)
, (B7)

where

�		′ (z) = δ		′V	g(n)
	 (z)V	 +

∑
α=T,B

Vα,	g(s/p)
α (z)Vα,	′ (B8)
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and δ		′ is the Kronecker δ, which simplifies to

�		′ (z) = −iδ		′
t2
	

t
sgn[Im(z)]τ0 +

∑
β=T,B

−tβ	tβ	′ (zτ0 − �eiϕβτ3τ1)

t
√

�2 − z2
(s-wave), (B9a)

�		′ (z) = −iδ		′
t2
	

t
sgn[Im(z)]τ0 +

∑
β=T,B

tβ	tβ	′ (
√

�2 − z2τ0 − �βeiϕβτ3τ1)

tz
(p-wave). (B9b)

In Eq. (B9), the origin of the first term is the coupling of the left (right) quantum dot to the left (right) normal-metal terminal,
while the second term arises due to the coupling of both dots to both top and bottom superconducting leads. In addition, the
coupling of both dots to a single superconductor adds nonlocal terms �LR(z) and �RL(z) that lead Cooper pair splitting (CPS)
into two electrons.

As introduced in the main text, the normal-metal terminals are coupled to the double quantum dot with the effective couplings
�	 = t2

	 /t � 0 (	 = L, R), while the superconducting terminals are locally coupled to the double quantum dot with the effective
couplings �β,	 = t2

β,	/t � 0 (β = T, B). In addition, the nonlocal couplings �β,NL = tβ,Ltβ,R/t � 0 control the CPS. Since in

general experimental situations we have �β,NL <
√

�β,L�β,R, we consider �β,NL as an independent parameter in our theory. In
the main text, we choose symmetric couplings for simplicity: �N := �L = �R, �S := �T,L = �T,R = �B,L = �B,R, and �CPS :=
�T,NL = �B,NL.

Note that for the symmetric choice of couplings and the assumption of equal magnitude of the pairings, the self-energies
simplify to

�		′ (z) = −iδ		′
t2
	

t
sgn[Im(z)]τ0 − tS,	tS,	′

t
√

�2 − z2
(2zτ0 − �[eiϕT τ3 + eiϕBτ3 ]τ1) (s-wave). (B10a)

�		′ (z) = −iδ		′
t2
	

t
sgn[Im(z)]τ0 + tS,	tS,	′

tz
(2
√

�2 − z2τ0 − �[eiϕT τ3 − eiϕBτ3 ]τ1) (p-wave). (B10b)

Hence, there is no effect of superconductivity at a phase difference φ = ϕB − ϕT = π in the s-wave case, while the same effect
happens at a phase difference φ = ϕB − ϕT = 0 in the p-wave case, which leads to the absence of both local and crossed Andreev
reflection at these phase differences.

APPENDIX C: TRANSMISSION FUNCTIONS
FOR CHARGE AND HEAT CURRENTS

In the following, we focus on the electric current IR and
the heat current JR in the right normal-metal contact that are
generated by applying a voltage or thermal bias to the right
contact. Since we do not consider a voltage bias between the
superconducting terminals, these currents will be stationary
(i.e., time independent). Hence, by starting from the defi-
nition of the currents IR = −e〈dNR/dt〉 and JR = 〈d (HR −
μRNR)/dt〉, with the elementary charge e > 0 and NR, HR, and
μR being the particle number operator, the Hamiltonian, and
the chemical potential in the right contact, respectively, and
by using a Fourier transformation to energy space, we get(

IR

JR

)
= 1

2h

∫ ∞

−∞
Tr

{(
eτ3

ετ0 − μRτ3

)

× [VRC G<
CR(ε) − G<

RC (ε)VCR]

}
dε. (C1)

Note that the trace is taken over the particle-hole (Nambu) de-
grees of freedom. Furthermore, h is Planck’s constant, G<

RC (ε)
and G<

CR(ε) are lesser dressed Green’s functions, and V	C =
VC	 = −t	τ3 are hoppings between the central quantum dot
and the terminals. We use the Dyson equations for the lesser
Green’s function [48],

G<
CR = G<

CCVCRga
R + Gr

CCVCRg<
R , (C2a)

G<
RC = g<

RVRCGa
CC + gr

RVRCG<
CC, (C2b)

where the superscripts r and a are for the retarded and
advanced Green’s functions, respectively. Using the general
relation G< − G> = Ga − Gr that holds for both dressed and
bare Green’s functions [48], Eq. (C1) becomes(

IR

JR

)
= 1

2h

∫ ∞

−∞
Tr

{(
eτ3

ετ0 − μRτ3

)

× [VRCG>
CCVCRg<

R − VRCG<
CCVCRg>

R

]}
dε. (C3)

Finally, we use the symmetric version of the Dyson equa-
tion for the dressed lesser and greater Green’s function [48]

G<,>
CC =

∑
	=L,R

Gr
CCVC	g<,>

	 V	CGa
CC (C4)

to arrive at(
IR

JR

)
= 1

2h

∑
	=L,R

∫ ∞

−∞
Tr

{(
eτ3

ετ0 − μRτ3

)

× VRCGr
CCVC	

[
g>

	 V	CGa
CCVCRg<

R

− g<
	 V	CGa

CCVCRg>
R

]}
dε. (C5)

Note that we neglect the current contributions from and into
the superconductors in Eq. (C4) since we are only interested
in linear response around zero energy. The uncoupled normal
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s-
w
av
e

p-
w
av
e

(a) (b)

FIG. 6. EC transmission function to show the inversion between electron or hole-dominated transport. The inversion is always happening
in both systems when the gap is closed in the s-wave case. Definition: εavg/diff = (εL ± εR )/2. (a) For εdiff = 0, the crossover takes place at
εavg = w. (b) For εdiff = 2�, the crossover takes place at εavg ≈ 3.6�. Common parameters: w = 3�, η = 10−3�, kBT = 10−2�, �N = �/5,
�S = �, �CPS = �S .

terminals are in equilibrium, in which the bare lesser and greater Green’s function is given by

g<
	 = (

ga
	 − gr

	

)( f e
	 0
0 f h

	

)
(A4a)= 2i

t

(
f e
	 0
0 f h

	

)
, (C6a)

g>
	 = −(ga

	 − gr
	

)(1 − f e
	 0

0 1 − f h
	

)
(A4a)= −2i

t

(
1 − f e

	 0
0 1 − f h

	

)
. (C6b)

Here, f e,h
	 (ε) = 1/[1 + e(ε∓μ	 )/(kBT	 )] is the Fermi function for electrons and holes, respectively, of the left and right terminals,

which are at chemical potential μ	 and temperature T	, and kB is Boltzmann’s constant. Substituting Eq. (C6) into Eq. (C5) and
taking the trace over particle-hole space, we finally get(

IR

JR

)
= 1

2h

∫ ∞

−∞

(
e
[
T ee

RL

(
f e
R − f e

L

)+ T eh
RL

(
f e
R − f h

L

)− T he
RL

(
f h
R − f e

L

)− T hh
RL

(
f h
R − f h

L

)]
(ε − μR)

[
T ee

RL

(
f e
R − f e

L

)+ T eh
RL

(
f e
R − f h

L

)]+ (ε + μR)
[
T he

RL

(
f h
R − f e

L

)+ T hh
RL

(
f h
R − f h

L

)]
)

dε

+ 1

2h

∫ ∞

−∞

(
e
(
T eh

RR + T he
RR

)
(ε − μR)T eh

RR − (ε + μR)T he
RR

)(
f e
R − f h

R

)
dε, (C7)

where we defined the transmission functions

T τ1τ2
	1	2

(ε) = 4�	1�	2 Gr
	1τ1,	2τ2

(ε) Ga
	2τ2,	1τ1

(ε). (C8)

The special case for �L = �R = �N is presented in Eq. (1)
of the main text. Using particle-hole symmetry, which states
f τ
	 (ε) = 1 − f τ̄

	 (−ε) and T τ1τ2
	1	2

(ε) = T τ̄1 τ̄2
	1	2

(−ε) with τ̄ = e, h
if τ = h, e, we can further simplify Eq. (C7) to obtain

(
IR

JR

)
= 1

h

∫ ∞

−∞

(
e

ε − μR

)[
T ee

RL

(
f e
R − f e

L

)
+ T eh

RL

(
f e
R − f h

L

)+ T eh
RR

(
f e
R − f h

R

)]
dε. (C9)

As explained in the main text, we consider a small voltage
δV and thermal bias δT applied at the right normal-metal
terminal, i.e.: e δV 	 kBT and δT 	 T , respectively. Hence,
we choose TL = T , μL = 0, TR = T + δT , and μR = e δV .
By expanding the integrand in Eq. (C9) to linear order in δT
and δV , we arrive at the linear Onsager relations presented in
Eqs. (2)–(4) in the main text.

APPENDIX D: COMPLEMENTARY FIGURES

Figure 6 shows the transition between the hole- and
electron-dominated transport regimes by means of the EC
transmission function T ee

RL . In general, the crossover between
these two regimes takes place whenever the gap in the s-wave
case is closed at φ = π (top row in Fig. 6). This also happens
at the same parameter set in the p-wave case, although the
gap is always closed due to its topological protection and the
presence of a Majorana zero mode (MZM) at φ = π . Note
that the EC transmission function is symmetric in energy ε at
the crossover point and does not contribute to the off-diagonal
Onsager coefficients L12 and L21. For a symmetric choice of
QD energies εL = εR [Fig. 6(a)], the crossover takes place at
εavg = w. The same closing of the gap happens also in the
asymmetric case εL �= εR shown in Fig. 6(b), which, however,
shifts the crossover point to a different value of εavg.

Figure 7 shows the complementary cases to Fig. 2 that were
briefly mentioned in the main text. In particular, in Figs. 7(a)
and 7(b) we show the LDOS and EC transmission function for
small asymmetric values of the quantum dot energies, εL �=
εR. Again, for �CPS = �S , we observe the constant resonant
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s-wave p-wave(a) (b)

(c) (d)

FIG. 7. Complementary figures to Fig. 2 of the main text of the LDOS and the EC transmission function. (a), (b) Asymmetric quantum dot
energies εL = −�/2, εR = 0 and maximal CPS �CPS = �S . (c), (d) Symmetric quantum dot energies εL = εR = −�/2 and no CPS �CPS = 0.
Common parameters: η = 10−3�, kBT = 10−2�, �N = �/5, �S = �.

line in the EC transmission function, which we also see in
the symmetric case, although now the states are hybridized.
Furthermore, as shown in Figs. 7(c) and 7(d), the constant
resonant line disappears for weak CPS and a second pair of
Andreev states emerges.

APPENDIX E: LINEAR RESPONSE ELECTRICAL AND
THERMAL CONDUCTANCE AT LOW TEMPERATURE

The general elements of the Onsager matrix L are given
in Eq. (3) in the main text. Their low-temperature behavior
is obtained by means of a Sommerfeld expansion of Lmn,
resulting in [54]

L11 ≈ T11(0), (E1a)

L12 ≈ π2

3
kBT

∂T12

∂ε

∣∣∣∣
ε=0

, (E1b)

L21 ≈ π2

3
kBT

∂T21

∂ε

∣∣∣∣
ε=0

, (E1c)

L22 ≈ π2

3
T22(0), (E1d)

where the general transmission functions Tmn are defined in
Eq. (4) in the main text. Note that, although T21 �= T12 due
to local Andreev reflection, we still have L12 = L21 since
the corresponding transmission function T eh

RR is symmetric in

energy and its derivative at zero energy is zero. From these
equations, we get the low-temperature behavior of the electri-
cal and thermal conductance as

G

G0
= L11 ≈ T11(0), (E2a)

K

K0
= 3

π2

det(L)

L11

≈ T22(0) − π2

3

(kBT )2

T11(0)

∂T12

∂ε

∣∣∣∣
ε=0

∂T21

∂ε

∣∣∣∣
ε=0

, (E2b)

resulting in K ≈ K0 T22(0) at low temperature as long as the
second term remains negligible. Since in general T11 �= T22

due to LAR, Eq. (E2) shows the violation of the WF law that
is illustrated in Fig. 3.

The low-temperature limit allows us to get analytical
results for both conventional and topological Josephson junc-
tions, since we only have to determine the retarded and
advanced Green’s functions at zero energy by replacing z =
±iη. Keeping in mind that η → 0+ in the end, we also per-
form an expansion for small η. To keep the analysis simple, we
use �S := �T,L = �T,R = �B,L = �B,R and focus on the two
cases �CPS = 0 and �CPS = �S for phases φ = π and φ �= π .

For a topological Josephson junction, evaluating the trans-
mission functions in the presence of a MZM requires special
care, since the result changes drastically for φ = π . The
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transverse transmission functions become

T ee
RL (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(η4), φ �= π and �CPS = 0
O(η2), φ = π and �CPS = 0

4�L�R
(�L+�R )2+(εL+εR+2w)2 + O(η), φ �= π and �CPS = �S

�L�R(�2
L+(εL+w)2 )(�2

R+(εR+w)2 )
[�L(�2

R+(εR+w)2 )+�R(�2
L+(εL+w)2 )]2 + O(η), φ = π and �CPS = �S

, (E3a)

T eh
RL (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, φ = 0
O(η6), φ �= 0, π and �CPS = 0
O(η2), φ = π and �CPS = 0
O(η2), φ �= 0, π and �CPS = �S

�L�R(�2
L+(εL+w)2 )(�2

R+(εR+w)2 )
[�L(�2

R+(εR+w)2 )+�R(�2
L+(εL+w)2 )]2 + O(η), φ = π and �CPS = �S

, (E3b)

T eh
RR (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, φ = 0
O(η2), φ �= 0, π and �CPS = 0
1 + O(η), φ = π and �CPS = 0
O(η2), φ �= 0, π and �CPS = �S

�2
R(�2

L+(εL+w)2 )2

[�L(�2
R+(εR+w)2 )+�R(�2

L+(εL+w)2 )]2 + O(η), φ = π and �CPS = �S

, (E3c)

which results in the transmissions [cf. Eq. (4) in the main text]

T11(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(η4), φ = 0 and �CPS = 0
2 + O(η), φ = π and �CPS = 0
O(η2), φ �= 0, π and �CPS = 0

4�L�R
(�L+�R )2+(εL+εR+2w)2 + O(η), φ �= π and �CPS = �S

2�R(�2
L+(εL+w)2 )

�L(�2
R+(εR+w)2 )+�R(�2

L+(εL+w)2 ) + O(η), φ = π and �CPS = �S

, (E4a)

T22(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(η4), φ = 0 and �CPS = 0
O(η2), φ = π and �CPS = 0
O(η4), φ �= 0, π and �CPS = 0

4�L�R
(�L+�R )2+(εL+εR+2w)2 + O(η), φ �= π and �CPS = �S

2�L�R(�2
L+(εL+w)2 )(�2

R+(εR+w)2 )
[�L(�2

R+(εR+w)2 )+�R(�2
L+(εL+w)2 )]2 + O(η), φ = π and �CPS = �S

. (E4b)

We see that the electrical conductance is negligible at
φ �= π for �CPS = 0 and it is quantized with G = 2G0 at
φ = π , similar to the result in Ref. [49] for a topological
superconductor-normal metal junction. Furthermore, we see
that G is completely determined by pure local Andreev reflec-
tion at the MZM. As presented in Fig. 8(a), this conductance
quantization is very robust for a wide range of 0 � �CPS �
�S , with a suppression only for strong �CPS → �S .

For �CPS = �S , the electrical conductance at φ �= π fol-
lows the standard Lorentzian result for electron cotunneling

through a resonant level at the energy εL + εR + 2w [48].
Hence, it is completely dominated by electron cotunneling
through the resonant level that is visible in Fig. 2 in the main
text. At φ = π , the general electrical conductance is a mix-
ture of all tunneling processes. However, for the symmetric
choice of parameters εL = εR and �L = �R, the conductance
is G = G0, which is also shown in Fig. 8(a).

On the other hand, as shown in Fig. 8(b), the thermal
conductance at φ = π is negligible at weak CPS. This is due
to the absence of LAR processes in the thermal conductance.
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(b)(a)

FIG. 8. Robustness of the (a) electrical and (b) thermal conduc-
tance quantization in topological Josephson junctions for increasing
CPS. Parameters: w = 3�, εL = −�/2, η = 10−5�, kBT = 10−3�,
�L = �/5, �S = �, φ = π .

Similar to G at �CPS = �S , the precise value is not quantized
and it is generally a mixture of EC and CAR contributions.
However, for the symmetric choice of parameters εL = εR and
�L = �R, the thermal conductance is K = K0/2, which is also
shown in Fig. 8(b).

In contrast to the topological case, the transverse trans-
mission functions for a conventional Josephson junction are
smooth functions of the phase difference φ. We will not
present the similar results for the s-wave case since the general
results are (i) too cumbersome and (ii) not particularly insight-
ful. However, it is worth noting that, similar to the topological
Josephson junction at φ = 0, LAR and CAR are zero at φ = π

for conventional Josephson junctions due to the symmetric
choice of the couplings to the superconductors.
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