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Topological superconductivity with mixed singlet-triplet pairing in moiré transition metal
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We investigate strong coupling topological superconductivity in twisted moiré bilayer WSe2. Our approach
is based on an effective t-J model with displacement-field-dependent complex hoppings, which is treated with
the variational Gutzwiller projection method. The calculated phase diagram contains domes of topologically
nontrivial superconducting phases, with Chern numbers C = ±2, ±4. The order parameter is characterized by
a mixed (d + id)-wave (singlet) and (p-ip)-wave (triplet) gap symmetry. We also report on the appearance of
an additional topologically trivial extended s-wave and f -wave paired phases. As we show, by changing the
electron density and displacement field, one can tune the singlet and triplet contributions to the pairing, as well
as induce topological phase transitions between superconducting states characterized by different values of the
Chern number. We analyze the physical origin of the reported effects and discuss it briefly in the view of new
possibilities for designing unconventional superconductivity in moiré systems.
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I. INTRODUCTION

In recent years, more and more two-dimensional systems
realizing a moiré pattern of atoms have been investigated,
as they provide a fertile ground for novel electronic states.
The characteristic moiré structure emerges after twisting two
or more monolayers with respect to each other, like in the
well-known twisted bilayer graphene [1–3]. A similar effect
can also be obtained as a result of lattice mismatch in het-
erostructures without the necessity of rotational misalignment
[4,5].

The common feature of moiré systems is the appearance of
flat electronic bands, which implies a significant role of elec-
tronic interactions. For graphene-based multilayers, the flat
bands can be realized only for specific twist angles (so-called
magic angles), for which the system exhibits an unusually
rich phase diagram [1–3]. For transition metal dichalcogenide
(TMD) moiré structures, the appearance of flat bands is more
robust with respect to the twist-angle deviations [5–10]. Evi-
dence of strongly correlated phenomena in the moiré TMDs
has been reported in recent years: amongst them metal-
insulator transitions [6,7], different forms of charge ordering
[11,12], as well as signatures of superconductivity [6,13].
We write “signatures” because the supposed superconducting
state has not been unambiguously detected experimentally
in Ref. [6]. Nevertheless, what distinguishes TMDs from
graphene-based moiré systems is that the former have a rel-
atively strong spin-orbit coupling. This would naturally imply
that the superconducting state in the TMDs can have some
nontrivial pairing symmetry.

*Contact author: michal.zegrodnik@agh.edu.pl

The main focus of this paper is a theoretical exploration
of the possible superconducting phases in a twisted WSe2

homobilayer (tWSe2), for which “signatures” of superconduc-
tivity were observed [6]. The low-energy physics of tWSe2

is believed to be described by a single-band Hamiltonian on
a triangular lattice with both spin- and direction-dependent
complex hoppings [6,14]. The Hubbard U resulting from such
an approach is approximately U � W (W is the bare band-
width), which suggests that tWSe2 is in a relatively strongly
correlated regime [6,14,15]. Indeed, the experimental phase
diagram suggests an insulating state at half-filling with ad-
jacent superconducting domes [6]. Even though the pairing
mechanism and the symmetry of the superconducting gap
are still unknown, the dome structure implies that supercon-
ductivity might arise purely from strong electron repulsion
through Hubbard or t-J models [16,17]. The Hubbard model
as applied to the description of homobilayer and heterobi-
layer moiré TMDs has been analyzed in the view of spin
and charge ordering, as well as the appearance of uncon-
ventional superconducting state [15,16,18–21]. For the case
of the paired phase these approaches resemble those that
have been applied earlier to the single-band models of the
well-known cuprates [22]. However, other proposals related to
TMD superconductivity, based on the spin-valley fluctuations
or interlayer excitonic physics, have also been put forward
[23,24].

In this paper we study the t-J model relevant for tWSe2

using the Gutzwiller approximation, and analyze in de-
tail the topological features of the obtained unconventional
paired states. The interesting peculiarity about TMD sys-
tems is that the moiré pattern generates a triangular lattice
system, which allows for quite nontrivial and possible topo-
logical order-parameter symmetries. In fact, we predict a
two-dome structure of mixed singlet-triplet superconductivity
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(with d + id and p − ip gap symmetry mixing), separated
by a correlation-induced insulating state at half-filling. This
is consistent with our previous work on the t-J-U model as
applied to the description of tWSe2 [25]. Additionally, here
we show that the obtained mixed state is topologically nontriv-
ial with Chern number values C = ±2, ±4. Furthermore, we
focus on the effect of the displacement field by explicitly tak-
ing into account the appropriate complex hopping parameters.
By tuning the displacement field one can induce topolog-
ical phase transitions between phases with different Chern
numbers, as well as control the balance between the singlet
and triplet contributions to the pairing. Additionally, for low-
and high-electron concentration regimes we have obtained
a topologically trivial extended s-wave and f -wave paired
state. Our results show the TMD homobilayers as promising
candidates for topological superconductors characterized by a
high degree of tunability.

It should be noted that during the process of submission
of the current theoretical analysis, two experimental papers
have appeared, showing strong evidence of the supercon-
ducting state in the same system [26,27]. There are some
differences between the two very recent experimental papers
and the original one by Wang et al. [6], to which we are
mainly referring here. Namely, the measurements presented
in Ref. [6] suggest two superconducting domes residing on
both sides of the half-filled case, where the insulating state is
located. Such situation is consistent with the physical picture
stemming from our theoretical analysis carried out here within
the t-J model, which corresponds to a relatively large-U limit.
On the other hand, in the recent experimental reports [26,27]
only one superconducting (SC) dome is shown in particular
range of displacement field. Moreover, in Ref. [26], the SC
state is stable at half-filling, indicating that the system is in
relatively weaker U limit (U � W ). In general, for tWSe2 the
value of U is tuned both by the twist angle and the dielectric
constant. Therefore, it might be the case that both situations
are valid and can be reached in tWSe2 (U > W and U < W ),
depending on the particular parameters of the sample and the
experimental setup itself. In order to analyze theoretically the
U � W situation one would have to apply the Hubbard or
t-J-U models, which allow for nonzero number of double
occupancies unlike the current t-J Hamiltonian. The t-J-U
model has already been considered by us in the context of the
paired state in tWSe2 recently [25]. In fact, it has been shown
by us there that a single SC dome residing at half-filling (as in
Ref. [26]) can be reproduced for 50 meV � U � 90 meV (see
Fig. 5 in Ref. [25]).

The remainder of this paper is organized as follows. In
Sec. II we introduce the t-J model relevant for tWSe2 and
we describe our method of the Gutzwiller projected varia-
tional wave function. In Sec. III A we provide our results
on the structure of the mixed singlet-triplet superconduct-
ing domes, while in Sec. III B we discuss the topological
classification of the phases. Additionally, in Appendix A
we briefly discuss the influence of nonzero double occu-
pancies within the t-J-U model and relate the obtained
results with the recently reported experimental results [26,27].
Finally, in Sec. IV we provide an outlook on the experimen-
tal detection of topologically nontrivial superconductivity in
tWSe2.

FIG. 1. Phase of the complex hoppings to the nearest neighbors
for spin-up (a) and spin-down (b) electrons.

II. MODEL AND METHOD

In this work we apply a moiré band t-J Hamiltonian on a
triangular lattice, i.e.,

Ĥ =
∑
〈i j〉σ

ti jσ ĉ†
iσ ĉ jσ + J

∑
〈i j〉

′
(

Ŝz
i Ŝz

j + cos (2φi j↑)
∑
α=x,y

Ŝα
i Ŝα

j

+ sin (2φi j↑)(Ŝi × Ŝ j ) · ẑ

)
, (1)

where ĉ†
iσ (ĉiσ ) are the creation (anihilation) operators for

electrons at site i with spin σ = {1,−1}, and Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i )

is the spin- 1
2 operator. The summation over 〈i j〉 in both terms

is restricted to nearest neighbors only since the longer-ranged
contributions are expected to be about one order of magnitude
smaller [6]. The primed summation in the interaction part
means that each bond appears only once. The complex hop-
ping parameters ti jσ fulfill the Hermiticity requirement (ti jσ =
t∗

jiσ ), time-reversal symmetry condition (ti jσ = t∗
i jσ̄ ), threefold

rotational symmetry (C3), and can be explicitly expressed in
the form

ti jσ = |t |eiφi jσ = |t |eiσνi jφ, (2)

with νi j = ±1, depending on the direction of the bond. The
resulting complex phases of the hoppings for all the six near-
est neighbors are shown schematically in Fig. 1. As one can
see from Eq. (1) the exchange interaction ∼J is supplemented
with the Dzyaloshinskii-Moriya term which results from the
fact that the phase of the hoppings is spin dependent.

This form of the t-J model can be derived from the Hub-
bard model as applied to the description of the tWSe2 in the
large-U limit. As shown in Refs. [6,14], within such approach,
both the absolute values of the hoppings (|t |) as well as their
complex phase (φ) depend on the bias voltage across the
bilayer (the so-called displacement field D). This provides
an experimentally controllable parameter which can be used
to tune in situ the magnitude of the valley-dependent spin
splitting as well as the position of the Van Hove singularity
(cf. Fig. 2). The complex hopping parameters for the range of
displacement fields D ∈ [0, 0.9] V/nm, that are used for the
analysis provided in Sec. II, have been taken from Ref. [6]
and are provided for the sake of clarity in Appendix B.

The t-J model is one of the canonical models used for the
description of strongly correlated electron systems. In order
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FIG. 2. The spin-dependent Fermi surfaces at half-filling (a),
(b) and the density of states (c), (d) for two selected values of the
displacement field D = 0.2 (φ ≈ 7π/8) and D = 0.4 (φ ≈ 3π/4).
The data have been obtained based on the single-particle part of
Hamiltonian given by Eq. (1). Note that by changing the displace-
ment field one can tune the valley-dependent spin splitting as well
as the position of the Van Hove singularity. The Fermi surfaces in
(a) and (b) are of electronlike and holelike character, respectively.

to take into account electron-electron correlations, we apply
the variational wave function of the Gutzwiller type which is
defined in the following manner:

|�G〉 = P̂|�0〉, (3)

where |�0〉 is the noncorrelated (mean-field) state and P̂ is the
correlation operator

P̂ =
∏

i

∑
�

λi,�|�〉i i〈�|, (4)

where i runs over all the lattice sites, |�〉 ∈ {|∅〉, | ↑〉, | ↓
〉, | ↑↓〉}, and λi,� are the corresponding variational param-
eters. It has been shown that for such a form of the correlation
operator it is convenient to impose an additional condition on
the P̂i operator [28], i.e.,

P̂2
i = 1 + xd̂HF

i , (5)

where d̂HF
i = n̂HF

i↑ n̂HF
i↓ , n̂HF

iσ = n̂iσ − niσ , with niσ =
〈�0|n̂iσ |�0〉, and x is yet another variational parameter.
It is straightforward to show that

λ2
↑↓ = 1 + x(1 − ns)2,

λ2
s = 1 − xns(1 − ns),

λ2
∅ = 1 + xn2

s ,

(6)

where for simplicity we have assumed a homogeneous system
with no magnetic or charge ordering. Hence, λi,� ≡ λ� and
λ↑ = λ↓ = λs, ni↑ = ni↓ ≡ ns. As a result, we are left with
only one variational parameter, x. Now, in order to project out
the double occupancies, what is required for the t-J model,

one has to set

for ns < 0.5 : λ↑↓ = 0 ⇒ x = − 1

(1 − ns)2
,

for ns > 0.5 : λ∅ = 0 ⇒ x = − 1

n2
s

,

(7)

meaning that for electron concentrations below half-filling the
double occupancies of electrons are prohibited, and above
half-filling the holons are prohibited.

In order to obtain the formula for the expectation value of
our Hamiltonian per lattice site,

EG = 〈�G|Ĥ |�G〉
N〈�G|�G〉 = 1

N
〈Ĥ〉G, (8)

we apply the diagrammatic expansion of the Gutzwiller wave
function (DE-GWF) [22] in the zeroth order which is equiv-
alent to the statistically consistent Gutzwiller approximation
(SGA) [29]. As a result one obtains

〈Ĥ〉G =
∑

i j

q2ti jσ 〈ĉ†
iσ ĉ jσ 〉0

+ λ4
s J

∑
〈i j〉

′
(

1

2

∑
σ

eiσ2φi j 〈ĉ†
iσ ĉiσ̄ ĉ†

jσ̄ ĉ jσ 〉0

+ 1

4

∑
σσ ′

σσ ′〈n̂HF
iσ n̂HF

jσ ′
〉
0

)
, (9)

where q = λs[λd ns + λ∅(1 − ns)] and 〈ô〉0 stands for the ex-
pectation value of the ô operator in the state |ψ〉0. By applying
the Wick’s theorem one can decompose all the four-operator
expectation values which appear on the right-hand side of the
above equation. Hence, the obtained EG becomes a function
of x, ns as well as the electron hopping and Cooper pairing
mean field parameters

Pi jσ = 〈ĉ†
iσ ĉ jσ 〉0, Sσσ ′

i j = 〈ĉiσ ĉ jσ ′ 〉0, (10)

respectively. It should be noted that the expectation values in
the noncorrelated state together with the variational param-
eters determine the corresponding expectation values in the
correlated state. Namely,

�σσ ′
i j = 〈ĉiσ ĉ jσ ′ 〉G = q2〈ĉiσ ĉ jσ ′ 〉0,

�i jσ = 〈ĉ†
iσ ĉ jσ 〉G = q2〈ĉ†

iσ ĉ jσ 〉0. (11)

Since we are using the zeroth-order expansion of the
Gutzwiller wave function and do not consider the standard
onsite s-wave pairing scenario, the number of particles does
not change by the projection procedure (〈n̂iσ 〉G = 〈n̂iσ 〉0).

Within our analysis, we treat S↑↓
i j and S↓↑

i j separately

allowing for both pure spin-singlet pairing (S↑↓
i j = −S↓↑

i j ),

pure spin-triplet pairing (S↑↓
i j = S↓↑

i j ) as well as their mixture

(|S↑↓
i j | �= |S↓↑

i j |). At the same time, we neglect the possibility
of ↑↑ and ↓↓ pairing due to the fact that here the pairing
mechanism is based on the kinetic exchange term which is
of antiferromagnetic type. Additionally, the Sz = ±1 pairing
channels would lead to a Fermi wave vector mismatch, which
is detrimental when it comes to the formation of the supercon-
ducting state.
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In order to determine the values of the mean fields we apply
the effective Hamiltonian scheme [30]. Within such approach
the minimization condition of the ground-state energy (8)
leads to an effective Hamiltonian, which for our case has the
form

Ĥeff =
∑
i jσ

t̃i jσ ĉ†
iσ ĉ jσ − μ̃

∑
iσ

n̂iσ

+
∑
〈i j〉σ

′[
(�̃i jσ σ̄ )∗ĉ jσ ĉiσ̄ + H.c.], (12)

where the effective hopping, effective chemical potential,
and the effective superconducting gap parameters are defined
through the corresponding relations

t̃i jσ ≡ ∂F
∂Pi jσ

, (�̃i jσ σ̄ )∗ ≡ ∂F
∂Sσ σ̄

ji

, μ̃ ≡ −∂F
∂ns

, (13)

where F = EG − 2μGns with μG being the chemical potential
determined in the correlated state. For the sake of complete-
ness we show explicitly the form of the effective model
parameters below:

t̃i jσ = q2 ti jσ − J
λ4

s

2
[2(Pi jσ̄ )∗ ei2φσ

i j + (Pi jσ )∗], (14)

(
�̃σ σ̄

i j

)∗ = −J
λ4

s

2

[
2
(
Sσ σ̄

i j

)∗
ei2φσ

i j − (
Sσ̄ σ

i j

)∗]
, (15)

μ̃ = μG − Uλ2
d ns. (16)

After the transformation to the reciprocal space we write
the effective Hamiltonian in the matrix form

Ĥeff =
∑
kσ

(ĉ†
kσ

ĉ−kσ̄ )
(

ε̃kσ − μ̃ �̃kσ̄ σ

(�̃kσ̄ σ )∗ −ε̃kσ + μ̃

)(
ĉkσ

ĉ†
−kσ̄

)

+
∑
kσ

(ε̃kσ − μ̃),

(17)

where σ̄ = −σ and we have used the relation ε̃kσ = ε̃−kσ̄

(time-reversal symmetry condition). The effective dispersion
relations as well as the superconducting gaps in k space are
related with their real-space counterparts in the following
manner:

ε̃kσ =
∑
i( j)

t̃i je
ik(Ri−R j ),

�̃kσ̄ σ =
∑
i( j)

�̃ jiσ σ̄ eik(R j−Ri ),
(18)

where i index runs over the nearest-neighbor lattice sites of
site j. The Ri and R j vectors point to the i and j lattice sites,
respectively. The left-hand sites of the equations above do not
depend on j since we assume spaciously homogeneous state.

The eigenvalues of the Hamiltonian matrix in Eq. (17) are

λkσ = ±
√

(ε̃kσ − μ̃)2 + |�̃kσ̄ σ |2. (19)

From the above equation, one can see that in the SC state
the gap �̃k↓↑ (�̃k↑↓) opens up at the spin-up (spin-down)
Fermi surface. Moreover, the �̃k↓↑ and �̃k↑↓ SC gaps can be

TABLE I. The six possible values of the symmetry factor M and
the corresponding values of the parity factor p (second column),
appearing in Eq. (22). The corresponding six symmetries of the
superconducting gap together with their parities are provided in the
third and fourth columns. The Cooper-pair spin state compatible with
a given symmetry is provided in the fifth column.

M p Gap symmetry Parity Spin state

0 0 Extended s Even Singlet
1 1 px + i py Odd Triplet
2 0 dx2−y2 + i dxy Even Singlet
3 1 f Odd Triplet
4 0 dx2−y2 − i dxy Even Singlet
5 1 px − i py Odd Triplet

transformed into the singlet and triplet components

�̃s
k = 1√

2
(�̃k↑↓ − �̃k↓↑),

�̃t
k = 1√

2
(�̃k↑↓ + �̃k↓↑),

(20)

which we can use to rewrite the expressions for the eigenval-
ues

λkσ = ±
√

(ε̃kσ − μ̃)2 + 1

2

∣∣�̃t
k − σ�̃s

k

∣∣2
. (21)

The paired state with �s
k �= 0 and �t

k �= 0 is referred to here
as the mixed singlet-triplet paired state.

The self-consistent equations for the mean field param-
eters [Eq. (10)] can be derived in a standard manner by
applying the Bogoliubov–de Gennes approach to the effective
Hamiltonian given by Eq. (17). By solving the set of self-
consistent equations numerically we determine the hopping
and pairing amplitudes to all the six nearest neighbors. Then,
in order to obtain their correlated state counterparts, we use
Eqs. (11). Similarly as in our previous study [25], to identify
the symmetry of the resultant paired state, we transform the
six real-space nearest-neighbor pairing amplitudes into six
symmetry-resolved pairing amplitudes of the following form:

�σσ̄
M,p = ip

6

∑
i( j)

e−iMθ ji�σσ̄
ji , (22)

where the summation runs over the six nearest-neighbor
lattice sites j surrounding site i, and θ ji are the angles
{0, π/3, 2π/3, π, 4π/3, 5π/3} between the positive half-
x axis and the R ji = R j − Ri vector. M is the symmetry
factor, which takes integer values and corresponds to six
possible pairing symmetries (cf. Table I). The p parameter
corresponds to the parity of the particular symmetry: for even
parity symmetries we have p = 0, and for odd parities we have
p = 1.

Finally, similarly as for the case of the momentum space
[Eqs. (20)] one can write the expressions for the real-space
singlet and triplet gap amplitudes in the correlated state, which
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FIG. 3. Superconducting gap amplitudes for the spin-singlet d +
id (a) and spin-triplet p − ip (b) symmetries as a function of band
filling n and exchange interaction energy J for the selected value of
the displacement field D = 0.4 V/nm.

will play the central role in our subsequent analysis:

�s
M,p = (�↑↓

M,p − �
↓↑
M,p)/

√
2,

�t
M,p = (�↑↓

M,p + �
↓↑
M,p)/

√
2.

(23)

For the sake of clarity, in the following sections, we use the
symmetry names (p ± ip, d ± id , f , etc.) in the subscripts of
the symmetry-resolved superconducting gaps instead of the
values of the M and p factors.

III. RESULTS

A. General features of the paired state

We now characterize the unconventional superconducting
state within the t-J model description of the WSe2 homobi-
layer at twist angle θ = 5.08◦. This is the twist angle where, in
Ref. [6], “signatures of superconductivity” have been experi-
mentally observed. In particular, they observe an insulating
state at half-filling (n = 1 in our notation), with possible su-
perconducting domes around n ≈ 0.86 and n ≈ 1.16. Note,
that in Ref. [6] the band filling is expressed as hole density per
spin, in contrast to our paper where we use the total number
of electrons per lattice site (n = 2ns).

First, we set the hopping parameters to those corresponding
to the displacement field D = 0.4 V/nm and determine the
stability range and the symmetry of the obtained supercon-
ducting state. We scan the whole (n, J ) plane. As one can see
from Fig. 3 a two-dome structure (similar to the experimental
results in Ref. [6]) of an unconventional paired state appears,
which is characterized by nonzero d + id spin-singlet as well
as p − ip spin-triplet amplitudes. Both gap amplitudes show
very similar behavior, though the triplet component is slightly
smaller. It should be noted that these are not two separate
solutions with different gap symmetries, but a single solution
for which both amplitudes are nonzero (a mixed singlet-triplet
state) meaning that |�̃k↑↓| �= |�̃k↓↑| [compare to Eqs. (19)
and (20)]. The appearance of a mixed paired state is a

0

0.01

0.02

0.03

|Δ
|

|Δ       |

|Δ       |

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.03

0.06

0.09

|Λ
|

(a)

(b)

n

s
d+id

p-ip
t

FIG. 4. (a) Superconducting gap amplitudes for the spin-singlet
d + id and spin-triplet p − ip symmetries as a function of band
filling n for selected values of exchange interaction energy J =
2.62 meV and displacement field D = 0.4 V/nm. (b) The expec-
tation value of the nearest-neighbor electron hopping for the same
model parameters as in (a).

consequence of the valley-dependent spin splitting. Indeed,
we verified that if one would have purely real hoppings with-
out spin-orbit coupling, there would be a doubly degenerate
Fermi surface with a pure spin-singlet d + id solution. Fi-
nally, since the exchange interaction term ∼J is responsible
for the appearance of the pairing, the band-filling range for
which the SC state is stable is wider for larger values of J .

In order to determine the range of realistic values of J
we use the formula J = 4|t |2/U , where U is the Coulomb
repulsion integral originating from the Hubbard model, which
serves as a starting point for the t-J model derivation. For
the case of tWSe2, it has been estimated that U is compara-
ble to the bare bandwidth W ≈ 90 meV [6,14] what would
give us J ≈ 3 meV. In practice by changing the twist angle
one can change the value of U , tuning the strength of the
correlations. Also, the dielectric constant which is modified
by the three-dimensional dielectric environment also signifi-
cantly influences U and is not precisely known. Nevertheless,
the calculations provided in Ref. [14] for the typical value of
dielectric constant ε = 10 show that, for the twist angle close
to 5◦, the onsite Coulomb repulsion should be U ≈ 120 meV
which is larger than the bare bandwidth. Other estimates [6]
show that the crossover between the U < W and U > W
situations should appear close to the twist angle of 5◦ for the
dielectric constant ε ≈ 6.

In Fig. 4 we show the band-filling dependence of the SC
gap amplitudes for a selected typical value of J = 2.62 meV,
which corresponds to U � W (close to the moderately corre-
lated regime). As can be explicitly seen at half-filling (n = 1)
both the pairing and the expectation value of the nearest-
neighbor electron hopping (|�|) are suppressed, which is a
manifestation of the insulating state at half-filling.

Apart from the (d + id)- and (p − ip)-wave solution visi-
ble in Figs. 3 and 4 we have also obtained an extended s- and
f -wave solution which, however, is much weaker and requires
relatively larger values of the J parameter to become stable.
In Fig. 5 we provide the results for J = 10 meV, where in the
low- and high-electron concentration regimes the mentioned

064516-5



AKBAR, BIBORSKI, RADEMAKER, AND ZEGRODNIK PHYSICAL REVIEW B 110, 064516 (2024)

0 0.5 1 1.5 2

0

0.02

0.04

0.06
|Δ      |

|Δ      |

1.4 1.6 1.8 2

|Δ      |

|Δ  |

0 0.2 0.4 0.6
0

0.002

0.004

|Δ
|

(a)

)c()b(

d+id

s

t
p-ip

s

t

ex-s

f

n

n

FIG. 5. (a) Superconducting gap amplitudes for the spin-singlet
d + id and spin-triplet p − ip symmetries as a function of band
filling n for selected values of exchange interaction energy J =
10 meV and displacement field D = 0.4. In (b) and (c) we show the
low- and high-electron concentration regimes where a mixed singlet
extended s- and triplet f -wave solution becomes stable.

extended s- and f -wave paired state is shown to create two
additional SC domes as a function of band filling. As one can
see, the gap amplitudes �s

ex-s and �t
f are approximately one

order of magnitude smaller than the p- and d-wave solutions
�s

d+id , �t
p−ip. This situation resembles the one obtained ear-

lier for a much simpler model with intersite real-space pairing
on a square lattice, in which a d-wave superconducting state
becomes stable around half-filling and an extended s-wave
paired state resides in the low- and high-electron concentra-
tion regimes (see Fig. 2 in Ref. [31]). In this study, due to the
triangular lattice and the complex hoppings, the gap symmetry
is more exotic being of mixed singlet-triplet type.

Next, we turn to the analysis of the effect of the displace-
ment field on the paired state. For that, we set the typical
value of the exchange interaction J = 2.62 meV, and solve the
set of self-consistent equations for different complex hopping
parameters, which correspond to different displacement fields.
In order to make the obtained phase diagram more smooth
we have applied interpolation to the data provided Ref. [6]
where the complex hopping parameters for 14 values of the
displacement field in the range D ∈ [0, 0.9] V/nm have been
provided. As one can see in Fig. 6, for low values of D,
the spin-singlet component to the pairing is dominant while
for large D the situation changes in favor of the spin-triplet
component. It should be noted that for D ≈ 0 the imaginary
part of the complex hoppings is close to zero, meaning that the
valley-dependent spin spitting is very small. This will promote
the spin-singlet state. On the other hand, for purely imaginary
hoppings one would obtain a pure spin-triplet state (similar to
our previous result in Ref. [25]). However, this situation is not
reached in the considered range of D values. Nevertheless, the
result provided in Fig. 6 shows that by adjusting the displace-
ment field one should be able to tune the balance between the
singlet and triplet contributions to the pairing.

Another effect which is visible in the (n, D) diagram is that
the stability regime of the SC state moves towards lower con-

FIG. 6. Superconducting gap amplitudes for the spin-singlet d +
id (a) and spin-triplet p − ip (b) symmetries as a function of band
filling n and displacement field D for J = 2.62 meV. In (c) we show
the electron hopping expectation value in the correlated state as a
function of n and D. The position of the Van Hove singularity which
influences the behavior of the superconducting gap is provided in (d).

centrations with increasing D. This is caused by the fact that
the Van Hove singularity changes its position while increasing
the displacement field [see Figs. 6(d), 2(c) and 2(d)]. The
superconducting state is stabilized by the high density of states
at the Van Hove singularity. Consequently, the behavior of the
superconducting gap amplitudes reflects the evolution of the
Van Hove singularity with increasing D. Of course, at half-
filling (n = 1) there is still an insulating state with suppressed
pairing amplitudes, regardless of the Van Hove singularity.
The same applies to the expectation values of the electron
hopping which is provided in Fig. 6(c) for completeness. This
last result reflects the experimental situation in which also
the appearance of the insulating behavior corresponds to the
half-filled case in wide range of D values [6].

It should be noted that instabilities toward mixed singlet-
triplet pairing of d + id and p − ip as well as extended
s- and f -type has been recently reported in the Hubbard
model as applied to the description of tWSe2 in the regime
of relatively weak correlations (U � 0.7 W ) within func-
tional renormalization group (FRG) method [32]. Also, for
very weak Coulomb interactions (U � 0.3W ) p + ip, d + id ,
and g + ig pairing symmetries have been identified and their
interplay with spin-polarized pair density waves has been
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FIG. 7. Superconducting gap as a function of momentum for the pure (d + id )-wave (a), (p − ip)-wave (b), extended-s-wave (e), and
f -wave (f) gap symmetries together with the mixed gap symmetries |�s(k) ± �t (k)| (c), (d), (g), (h). Note that in the mixed states, the
|�s(k) − �t (k)| and |�s(k) + �t (k)| gaps open at the spin-up and spin-down Fermi surfaces, respectively [cf. Eq. (21)]. The nodal points (if
they appear) are marked by the black dots together with the topological charge (Chern charge) next to it. The Chern charges provided here
have been calculated for the case of electronlike normal-state Fermi surface (counterclockwise superconducting gap’s phase winding). For the
case of holelike Fermi surfaces the sign of the Chern charges changes to opposite.

analyzed, however, without the singlet-triplet mixing appear-
ance [20].

To understand the role of symmetry in the mixed paired
state, we provide in Fig. 7 the momentum dependence of
the pure d + id-, p − ip-, extended-s-, and f -wave gap sym-
metries, together with the mixed gap symmetries that have
been obtained by us here in proper parameter ranges. As
one can see all the pure gap symmetries fulfill the sixfold
rotational symmetry, while for the mixed states the symmetry
is reduced to C3, which is the one obeyed by our Hamiltonian
with valley-dependent spin splitting. Hence, the reduction of
symmetry due to the spin splitting incorporated in the minimal
model naturally leads to singlet-triplet mixing in the super-
conducting state. Also, it should be noted that for the mixed
states, |�s(k) − �t (k)| and |�s(k) + �t (k)|, gaps open at
the spin-up and spin-down Fermi surfaces, respectively [cf.
Eq. (21)].

As can be seen from Fig. 7 the d + id and p − ip gap
symmetries as well as their mixtures all have nodal points in
the Brillouin zone for which the gap is exactly zero (marked
by black dots). This is not the case for the extended-s-,
and f -wave gaps, as well as their mixtures, for which only
nodal lines appear. Each nodal point comes with a topological
charge (Chern charge) which is also provided in the figure and
can lead to a nonzero Chern number of a given paired state.
A detailed analysis of the topological features of the mixed
d + id and p − ip superconducting state is presented in the
next subsection.

B. Topological properties of the paired state

We now analyze in detail the topological properties of the
mixed singlet-triplet superconducting state. Since the paired
states studied here spontaneously break time-reversal symme-
try, their classification is given by the Chern number [33].
We calculate the Chern number with the use of the Brillouin
zone triangulation method [34]. As mentioned in the previous
section, the extended-s- and f -wave paired state does not have
any nodal points in the Brillouin zone, and is therefore topo-
logically trivial with C = 0. On the other hand, the calculated
Chern number for the d + id and p − ip symmetry takes the
values of C = ±2, ±4, depending on both band filling and
displacement field. In Fig. 8 we show the topological phase
diagram of the mixed d + id and p − ip paired state in the
(n, D) plane. As can be seen according to our calculations, by
changing the experimentally controllable parameters one can
induce topological phase transitions between regimes charac-
terized by different values of the Chern number. It should be
noted that the bare band of the considered model is topologi-
cally trivial, therefore, the topological features are introduced
by the paired state itself.

While analyzing the data provided in Fig. 8 it is worth
emphasizing that the Chern number can be interpreted as the
winding number of the superconducting gap’s complex phase
while going around the normal-state Fermi surface (FS) [35]:

C = 1

2π

∮
FS

dl · ∇φ, (24)
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FIG. 8. The topological phase diagram of the mixed d + id (sin-
glet) and p − ip (triplet) superconducting states in the (n, D) plane.
The colored regions correspond to the stability of the mixed paired
state (cf. Fig. 6). Different colors correspond to different values of the
Chern number. The position of the Van Hove singularity in the dia-
gram is marked by the dashed line. By changing the experimentally
controllable parameters, like electron concentration (n) and displace-
ment field (D), one can induce topological phase transitions. The
black dots correspond to n and D values which have been selected
for detailed analysis provided in Fig. 9. Additionally, the red squares
mark the two selected situations of relatively high- and low-n values
which are analyzed in detail in Fig. 10.

where for the case of electronlike (holelike) FS the integration
is carried out counterclockwise (clockwise). Therefore, the
shape and size of the FS, which can be tuned by both n and D,
may affect the resulting topological features of the SC state. In
fact, Eq. (24) can be further simplified, as the Chern number
simply counts the Chern charge of the nodal points which are
contained within the FS,

C =
∑

i∈�FS

(−1)wCi, (25)

where Ci is the Chern charge of a given nodal point which can
be determined by calculating the winding number of the order
parameter around it. The sign of the Chern charge depends on
whether it is enclosed by an electronlike (w = 0) or holelike
(w = 1) Fermi surface. The i index runs only over the nodal
points that are contained inside the Fermi surface. In Fig. 7
we provide the Chern charges Ci of all the nodal points for
the considered gap symmetries. Once we know the Chern
charge of every nodal point, as well as the shape of the FS, we
can determine the Chern number (winding number) by simply
using Eq. (25). With this procedure one can easily interpret the
obtained topological phase diagram by looking at the relative
position of the Fermi surface and the Chern charges of the
nodal points.

It should be noted that the nodal points of the d + id
and p − ip paired state fall into two categories. The first
one corresponds to the nodes located at the high-symmetry
points (�, K , and K ′) which are fixed and result from the
symmetry of the triangular lattice itself. The second category
are the points which position in the Brillouin zone depends on
the balance between the singlet and triplet components to the
pairing. There are three such points per each of the two mixed
gaps [|�s(k) − �t (k)| and |�s(k) + �t (k)|] and they lie at
the �-K and �-K ′ connecting lines. The movement of the
mentioned nodal points inside the Brillouin zone, induced by
tuning n and D, can affect the topological features as we show
in some more detail further on.

In Fig. 9 we show the normal-state Fermi surfaces as well
as the momentum-dependent SC gap for four representative
points that are marked by black dots in the phase diagram
(Fig. 8) and are characterized by different values of the Chern
number. The spin-up and -down Fermi surfaces together with
the corresponding SC gaps [cf. Eq. (21)] are provided in
separate figures in the panel. As one can see, the topological
transitions that appear across the phase diagram provided in
Fig. 8 are not induced by a change in order-parameter sym-
metry. But rather, they result from the fact that with changing
n and D one influences the normal-state Fermi surface as
well as one moves the nodal points that lie in-between the
�-K and �-K ′ points. This in turn influences the total Chern
charge contained inside the Fermi surfaces. In particular, the
transitions from C = 4 (a) to C = −2 (d) as well as from
C = −4 (b) to C = 2 (c), both correspond to moving the
three Chern charges laying at the �-K and �-K ′ connecting
lines outside the interior of the Fermi surfaces. What is also
important is that with changing n and D one can induce
transitions from electronlike [Figs. 9(a) and 9(d)] to holelike
Fermi surface [Figs. 9(b) and 9(c)]. This changes the position
of the Fermi surface as well as the signs of the Chern charges
what influences the overall Chern number. That is why the
transition line between C = 4 and 2 as well as C = −4 and
−2 coincides with the Van Hove singularity line in the regime
of moderate displacement fields (D ∼ 0.3–0.5 V/nm).

However, outside the region of moderate displacement
fields the transition between electronlike and holelike Fermi
surface no longer induces a topological phase transition. This
is caused by the fact that now at the Van Hove singularity a
transition between one FS per spin to two FS per spin appears.
This prevents from changing the value of the Chern number.
In Fig. 10 we show two such situations with two normal-state
Fermi surfaces per spin. For example, in the low-D regime,
crossing the Van Hove singularity leads to transition from a
single electronlike FS centered at the � [Fig. 9(a)] to two hole-
like FS centered at the K and K ′ [Fig. 10(b)]. Nevertheless, as
one can see it does not lead to a change of the total Chern
charge contained inside the Fermi surfaces. As a consequence
of this effect, the topological transition line in Fig. 8 does not
coincide with the Van Hove singularity line at its full extent.

IV. CONCLUSIONS

We have applied the t-J model to the description of the su-
perconducting state in tWSe2 within the Gutzwiller approach.
As we show, such an approach reproduces the experimental
situation with two superconducting domes as a function of
band filling, and a correlation-induced insulating state at half-
filling shown in Ref. [6]. Consistent with the experimental
data, the insulating state is not affected by the displacement
field in wide range of D. According to our calculations the
superconducting domes have a mixed d + id (singlet) and
p − ip (triplet) symmetry, which is a direct consequence of
the valley-dependent spin splitting. If such an exotic paired
state is indeed realized in this system, it would possible to
tune the balance between the singlet and triplet contributions
to the pairing with the use of the displacement field (cf. Fig. 6).
Namely, for low values of D, the singlet pairing dominates
and for high values of D the triplet pairing takes over. Ad-
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FIG. 9. The normal-state Fermi surfaces for spin-up and -down electrons as well as the k-dependent SC gaps for four selected values of
n and D, which are marked by black dots in Fig. 8 and correspond to following values of the Chern number: C = 4 (a), C = −4 (b), C = 2
(c), and C = −2 (d). Note, that the value of the Chern number is simply the sum of the Chern charges contained inside the spin-up and -down
Fermi surfaces (marked by the colored dots). The arrows at the Fermi surfaces represent the winding direction which is counterclockwise
(clockwise) for the electronlike (holelike) Fermi surfaces. Note that the signs of the Chern charges depend on the winding direction.

ditionally, due to the evolution of the density of states, with
increasing D, the paired state stability regime moves towards
lower electron concentrations. Furthermore, our model reveals
a weak extended s-wave and f -wave mixed paired state for
relatively large values of the J , at low- and high-electron
concentrations.

According to our analysis the mixed d + id (singlet) and
p − ip (triplet) paired state is topologically nontrivial with

Chern numbers C = ±2, ±4, depending on the value of band
filling and displacement field (see Fig. 8). The changes of the
Chern number are caused by (i) changes of the normal-state
Fermi surfaces, either due to a change in size or due to a
Lifshitz transition from an electronlike to a holelike Fermi
surface (cf. Fig. 7); (ii) the movement of the nodal points
located at the �-K and �-K ′ connecting lines. By tuning the
displacement field and electron density one could, according

FIG. 10. The same as in Fig. 9 but for n and D values which are represented by the red squares marked in Fig. 8 and correspond to following
values of the Chern number: C = −4 (a) and C = 4 (b). In contrast to Fig. 9, now we have two Fermi surfaces per spin. Note that in the low-
and high-D regimes crossing the Van Hove singularity line and the resulting transition from electronlike to holelike Fermi surface no longer
leads to topological phase transition.
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to our results, induce topological phase transitions between
pairing states characterized by different values of the Chern
number.

Our methods find the zero-temperature ground state of a
relevant t-J model for twisted WSe2. We can estimate the crit-
ical temperature by looking at the maximum magnitude of the
gap, |�̃|max ≈ 0.06J . This suggests a critical temperature of
the order of Tc ≈ 1 K, which is at a temperature slightly below
the lowest temperature of the transport experiments provided
in Ref. [6]. This might explain why so far only “signatures”
of superconductivity have been observed in the mentioned
experimental report. To experimentally detect the nontrivial
nature of the pairing state, we suggest Knight shift measure-
ments to detect the nonsinglet component. A detection of the
Kerr effect can reveal the spontaneous broken time-reversal
symmetry. Finally, our prediction for topological supercon-
ductivity in tWSe2 suggests this system is ideal for observing
nontrivial chiral edge states and possible Majorana particles
[33].

It should be noted that, in the considered system also mag-
netically or charge ordered states may appear. In particular,
for the half-filled case, it has been shown by various calcula-
tion methods that the 120◦ antiferromagnetic or ferromagnetic
states become stable [18,21,36], depending on the complex
phase of the hopping parameters. Thus, in some range of
parameters the paired phase analyzed here may compete or
coexist with other symmetry-broken states. Such study would
require much more involved calculations and is beyond the
scope of this work. We should see progress along this line
soon.

The code which was written to carry out the numerical
calculations as well as the data behind the figures are available
in the open repository [37].
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APPENDIX A: INFLUENCE OF NONZERO DOUBLE
OCCUPANCIES WITHIN THE t-J-U MODEL

Both formation and evolution of the paired state with grad-
ual increase of the U value within the t-J-U model, as applied
to tWSe2, has been explicitly analyzed by us previously in
Ref. [25]. Here, we revisit the results presented in Fig. 5 of
that paper and discuss them in the view of the newest exper-
imental findings [26,27], which have appeared at the stage of
resubmitting this work. Namely, we select two U values which
are of particular interest in this context (U � W and U > W )
and discuss the band-filling dependencies of the SC gaps.

For the case of the t-J-U model, the double occupan-
cies are not completely projected out while carrying out the
Gutzwiller approximation, and the Hamiltonian given by (1)

FIG. 11. Superconducting gap amplitudes for the spin-singlet
d + id and spin-triplet p − ip symmetries as a function of band
filling n for the case of the t-J-U model for two selected values of
the Coulomb repulsion strength U = 120 meV (a) and U = 85 meV
(b). The remaining model parameters are J = 2.54 meV, D = 0.45
V/nm, W = 90 meV.

is supplemented by the onsite Coulomb interaction term

ĤU = U
∑

i

n̂i↑n̂i↓, (A1)

where n̂i↑ (n̂i↓) are the number of particle operators on given
lattice site with spin up (down), while U corresponds to the
Coulomb interaction strength. Since now the double occupan-
cies can be nonzero, one does not impose the conditions given
by Eq. (7). Instead, an additional energy minimization over
the x variational parameter is carried out during the procedure
of solving the self-consistent equations.

As one can see in Fig. 11, within such an approach
both one- and two-dome structures of the superconducting
order parameter can be obtained as a function of band fill-
ing. When U � W a single SC dome appears as shown in
Fig. 11(b), while for U > W a two-dome behavior is reported
in Fig. 11(a). The latter case is due to the fact that for relatively
large U an insulating state is created which separates the
original single dome into two. For the case of the t-J model
which is mainly considered in this paper, only the two-dome
situation can appear since such approach corresponds to a
large-U limit.

As we already mentioned in the Introduction the mea-
surements presented in Ref. [6] suggest two superconducting

FIG. 12. Absolute value and the phase of the complex hopping
parameters as a function of displacement field for the spin-up elec-
trons to the right-hand-side nearest neighbor. In order to reproduce
the complex hoppings to the remaining nearest neighbors as well as
the spin-down corespondents one needs to use Eq. (2). The data used
for this figure have been taken from Ref. [6].
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domes residing on both sides of the half-filled case, where the
insulating state is located. However, in the recent experiments
[26,27] only one SC dome is shown in particular range of dis-
placement field. Moreover, in Ref. [26], the SC state is stable
at half-filling. In general, for tWSe2 the value of U is tuned
both by the twist angle and the dielectric constant. Therefore,
it might be the case that both situations (two SC domes for
U � W and single SC dome for U > W ) can be valid and
reached in tWSe2, depending on the particular parameters of
the sample and the experimental setup itself which influence
the actual value of U .

APPENDIX B: HOPPING PARAMETERS AS A FUNCTION
OF DISPLACEMENT FIELD

Here we show how the displacement field influences the
absolute value and the phase of the complex hopping pa-
rameters. As one can see for D = 0 the hoppings approach
purely real and negative (φ ≈ −π ) values. With increasing D
the values of the hoppings acquire an imaginary component
leading to the valley-dependent spin spitting and C6 symmetry
breaking (cf. Fig. 2). If the trend shown in Fig. 12(b) would
not change even for larger D values, it would be theoretically
possible to reach a purely imaginary hopping scenario.
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