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We investigate the pairing tendencies in the hole-doped Haldane spin-1 chain. To allow for doping, we
extend the original spin chain Hamiltonian into a fermionic model involving a two-orbital Hubbard chain at
intermediate or strong repulsive interaction strengths U and for degenerate orbitals. At half filling and large U ,
the ferromagnetic Hund’s coupling, JH, generates effective spin-1 moments, with antiferromagnetic correlations
between sites. Using large-scale density matrix renormalization group calculations, we accurately study the
system’s behavior under light hole-doping. For U = 1.6 in units of the noninteracting bandwidth and for
JH/U � 0.275, we find that singlet pairing dominates the long-distance physics, establishing this system as a
promising platform for repulsively mediated superconductivity. We provide concrete examples of materials that
could realize the physics described here. We also provide evidence that the system approaches a Luther-Emery
liquid state at large system sizes, reminiscent of the behavior of doped one-orbital two-leg ladders at weak
coupling, which also have superconducting tendencies. The numerically calculated central charge approaches
one in the thermodynamic limit, indicating a single gapless mode as is expected for the Luther-Emery state.
Exponents characterizing the power-law decays of singlet pair-pair and charge density-density correlations are
determined, and found to approximately satisfy the Luther-Emery identity.
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I. INTRODUCTION

Doped spin-1/2 Mott insulators have received considerable
attention as a route to high-Tc superconductivity in, e.g., the
cuprate superconductors [1,2]. The two-dimensional t-J and
one-band Hubbard models [3] are often proposed as minimal
models in this context. Their solutions have proven a long-
standing challenge but have seen significant recent progress
due to advances in numerical techniques and computing
power [4,5]. A more tractable version of this problem occurs
in quasi-one-dimensional geometries—including chains and
ladders—which are well suited to research by numerically
exact approaches such as the density matrix renormalization
group (DMRG) [6,7]. Remarkably, these geometries are also
experimentally relevant [8–17] to, e.g., cuprate and iron-based
ladder materials—several of which exhibit pressure-induced
superconductivity [18–21]—as well as supramolecular crys-
tals [22] and quantum simulation using ultracold atoms [23].

Another enticing approach is to dope spin-1 Mott insu-
lators [24–26] and, in particular, the much-studied Haldane
spin-1 chain [27–29], which has symmetry-protected topo-
logical states [30–32] and nonlocal order parameters [33,34].
Haldane spin chain physics emerges naturally at strong
coupling in systems where the low-energy physics can be
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captured by a two-orbital Hubbard model with repulsive
electron-electron interactions, and where the ferromagnetic
Hund’s coupling JH is strong enough to favor locally aligned
spins. Most work in this context has focused on simplified
models such as two-leg spin-1/2 t-J [35–39] and Hubbard
ladders [40–42] with ferromagnetic rung couplings to gener-
ate effective S = 1 moments on each rung. Both bosonization
[43–45] and numerical studies [36,37] indicate that such
models have finite spin gaps and pairing tendencies (hole
pair formation), which is robust to perturbations affecting
the two orbitals equally. More recently, orbitally degenerate
two-orbital Hubbard-Kanamori chains with full inter- and
intraorbital electron-electron interactions have been found to
display qualitative tendencies towards spin-singlet hole pair
formation at intermediate Hubbard repulsion [46,47]. In the
following, we will refer to this system, illustrated in Fig. 1,
as the two-orbital Hubbard chain (TOHC). It is a remarkable
system, with obvious deep connections with the paradigmatic
Haldane spin chain. At half filling, its entanglement spectrum
[48] and string order parameter suggest a transition from
a topologically trivial state at U = 0 to the Haldane phase
at relatively weak U [46,49]. The presence of edge states
was also demonstrated [49], highlighting that our system is
a rare example of a correlated topological state. In addi-
tion, an orbital resonating valence-bond (ORVB) state was
introduced to explain the precursors of singlet superconduc-
tivity in the system [46]. This state is a linear superposition
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FIG. 1. Overview. (a) The two-orbital Hubbard chain considered
in this paper. Each site hosts two orbitals, labeled a and b (green
text). (b) Alternative representation as a two-leg ladder, where each
site hosts a single orbital. Interorbital interactions such as Hund’s
coupling are represented as rung couplings in orange. (c) A represen-
tative component of the doped orbital resonating valence bond state,
which at half filling was shown to provide a good representation of
the Haldane spin-1 chain ground state for the AKLT model [46].
Here spin-1/2 singlets (blue lines) are of range longer than nearest
neighbors to adapt to the Haldane state, with a spin correlation length
longer than in the AKLT model. Upon introduction of several holes
(red circles), hole pairs are formed as indicated by the shaded orange
regions. The remaining electrons are in a superposition of states with
singlets over various distances, in all possible combinations with
equal weight. (d) Spin correlation in the chain. The ferromagnetic
Hund’s coupling favors a net spin at each site, which becomes a ro-
bust spin 1 at large U , while antiferromagnetic correlations between
sites are generated by electron-electron interactions. The exponential
decay is due to the spin gap in the system.

of the Affleck-Kennedy-Lieb-Tasaki (AKLT) valence-bond
states familiar from the generalized spin-1 chain problem
including biquadratic terms [28] and provides a liquid back-
ground of preformed singlets, as compared to the more rigid
background of rung singlets in the two-leg ladders. Upon hole
doping, effective singlet hole pairing is expected; see Fig. 1(c).
Intuitively, this occurs because, upon hole doping, the system
tries to minimize the number of preformed spin-1/2 singlets
which are broken by doping, thus effectively inducing the
binding of pairs of holes. Extending the analogy to Haldane
chain physics even further, it was found that an easy-plane
anisotropy term can drive the system into a topologically triv-
ial triplet pairing regime [38,46]. These prior results strongly
suggest, but do not prove, that superconductivity indeed dom-
inates.

In this paper, we study the TOHC in detail, reporting results
for significantly larger system sizes than previously studied.
In Patel et al. [46], superconductivity precursors such as pair
formation were identified. Here, via large-scale DMRG cal-
culations we show that these pairs form a quantum coherent
state. Specifically, we find that the singlet pair-pair corre-
lation becomes dominant for JH/U � 0.275, indicating that
the TOHC is a promising platform for repulsively mediated
superconductivity. Notably, this occurs in a system that com-

bines electronic correlation effects with nontrivial topology,
since a nonzero Hubbard repulsion is required to generate
the superconductivity and the Haldane chain has protected
spin-1/2 edge states. Moreover, we show that the system ap-
proaches a Luther-Emery-like state [50] in the thermodynamic
limit, with one gapless charge mode and a spin gap. This is
reflected in the central charge, which tends to one for large
systems. We also confirm that the Luther-Emery identity for
the power law decays of the singlet pair-pair and density-
density correlations is approximately satisfied. In addition,
we propose concrete materials that may realize the physics
discussed here upon doping. We encourage the experimental
study of the specific materials proposed herein to test our
predictions.

II. MODEL

We consider the Hamiltonian H = H0 + HI , where the
noninteracting term is given by

H0 =
∑

j,σ,γ ,γ ′
tγ γ ′

(c†
j,γ ,σ c j+1,γ ′,σ + H.c.), (1)

and c jγ σ annihilates an electron with orbital index γ and spin
projection σ at site j of the chain. H.c. denotes the Hermitian
conjugate. The hopping matrix tγ γ ′ = tδγ γ ′

is spin conserving
and, for simplicity, diagonal in orbital space, resulting in a
noninteracting bandwidth W = 4|t |. We use |t | = 1 as the
energy unit throughout this paper.

The interaction part is of the standard Hubbard-Kanamori
type,

HI = U
∑
i,γ

niγ↑niγ↓ +
(

U ′ − JH

2

) ∑
i,γ<γ ′

niγ niγ ′

− 2JH

∑
i,γ<γ ′

Siγ · Siγ ′ + JH

∑
i,γ<γ ′

(P†
iγ Piγ ′ + H.c.), (2)

where niγ σ = c†
iγ σ ciγ σ is the number operator, U > 0 is the

intraorbital Hubbard repulsion, and the second term describes
interorbital density-density interactions. JH represents the
Hund’s coupling strength. We assume the standard relation
U ′ = U − 2JH , which arises due to spin-rotational invariance.
Physically, it is expected that U ′ > JH [51,52], which holds
for JH/U < 1/3. In this paper, we report results for 0.2 �
JH/U � 0.35, where the value 0.35 is included to show that
the results do not change drastically at the boundary value
1/3. The third term is the Hund’s coupling term, and the
fourth is the on-site interorbital electron-pair hopping with
Piγ ′ = ciγ ′↑ciγ ′↓. The spin-1/2 operators in Eq. (2) are de-
fined as Sα

iγ = 1
2

∑
σσ ′ c†

iγ σ τ α
σσ ′ciγ σ ′ , where α ∈ {x, y, z} and

�τ = (σ x, σ y, σ z ) is the vector of Pauli matrices.

III. METHODS

A. Numerical technique

We study ground-state properties of our model with zero-
temperature DMRG [6,7], using the DMRG++ software [53].
We work with finite systems and open boundary conditions.
The system can either be represented as a length-L chain
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FIG. 2. Comparison of correlation functions. The decays of the normalized singlet pair-pair Psinglet (R), density-density N (R), and spin-spin
correlations S(R) with distance R are contrasted for (a) JH = 0.200U and (b) JH = 0.275U . Both panels are for U/W = 1.6 and L = 96 at
x = 1/12 hole doping. The dotted lines indicate a power law decay with exponent α = 1. The two panels showcase the trend where the singlet
pair-pair correlations become dominant and long range (i.e., decaying slower than R−1) at high JH/U values. An expanded version of this
figure showing the evolution for additional values of JH/U is provided in Appendix A.

with a two-orbital basis on each site, or as a length-L two-leg
ladder with one orbital on each site and a total of 2L sites;
see Figs. 1(a) and 1(b). Although the two representations
are mathematically equivalent, the ladder representation was
found to perform better, and was thus used throughout this
paper.

Care was taken to achieve the best convergence possible
within the memory available to us (up to 1000 GiB). Using up
to m = 11 000 DMRG states, we obtained truncation errors
below 10−7 for the majority of sizes (L � 192) and JH values,
and below 10−6 for the rest (only affecting JH/U � 0.25). In
general, convergence was easier at higher JH/U , while full
entanglement scaling at the lowest JH/U was not always pos-
sible. Explicit reorthogonalization was used to avoid Lanczos
ghost states. Further details on how to reproduce the numerical
results are provided in the Supplemental Material [54].

B. Correlation functions

We define the general singlet pair creation operator as in
Ref. [46],

�
γγ ′†
(i, j)− = 1√

2
[c†

iγ↑c†
jγ ′↓ − c†

iγ↓c†
jγ ′↑], (3)

from which pair-pair correlation functions are constructed.
We focus on nearest-neighbor singlet pairs odd under orbital
exchange, which has previously been established as the dom-
inant pairing channel for the parameters we study [46,47]. We
also consider on-site interorbital triplet pairs in Appendix A.
The singlet pair creation operator is given by

�
†
S,nn(i) = �

ab†
(i,i+1)− − �

ba†
(i,i+1)−, (4)

from which the singlet pair-pair correlations are defined as

Psinglet (R) = 1

NR

∑
i

〈�†
S,nn(i)�S,nn(i + R)〉, (5)

where NR denotes the number of total neighbors at distance R
from site i, summed over all sites. We also define the spin-spin

and density-density correlation functions

S(R) = 1

NR

[∑
i

〈
Sz

i Sz
i+R

〉 − 〈
Sz

i

〉〈
Sz

i+R

〉]
(6)

= 1

3NR

[∑
i

〈Si · Si+R〉 − 〈Si〉 · 〈Si+R〉
]
, (7)

N (R) = 1

NR

[∑
i

〈nini+R〉 − 〈ni〉〈ni+R〉
]
. (8)

In calculating these correlation functions, we neglect one-
quarter of the chain at each end to avoid edge effects. The
correlation functions are then normalized to their values at
distance R = 2 to enable comparing the relative decay rates.

IV. RESULTS

A. Dominant singlet superconductivity

Previous studies of correlation functions in the TOHC
were limited to chains of length L = 48 [46,47], primarily
due to memory constraints. Here we report results for chain
lengths up to L = 96, allowing for cleaner analysis of the
long-distance behavior and, more importantly, for the precise
determination of exponents characterizing the decay of cor-
relation functions with distance. This information is crucial
to determine the universality class of the ground state. See
the Methods section for details about the numerical method.
We focus on the case of weak hole doping, with hole density
x = n

2L = 1/12, where n is the number of holes, and choose
U/W = 1.6. (Half filling corresponds to x = 0.) According
to the previously studied phase diagram for JH/U = 0.25 [46]
using smaller systems, these parameters correspond to a phase
where singlet superconductivity is qualitatively expected to
dominate.

Figure 2 compares normalized pair-pair, spin-spin, and
density-density correlations for JH/U = 0.2 and JH/U =
0.275. The definitions of these correlation functions are pro-
vided in the Methods section. It is clear that, for JH/U =
0.275 [Fig. 2(b)], the singlet pair-pair correlations decay
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FIG. 3. The singlet pair-pair correlations at different JH/U ratios
are compared. The correlations become long range, i.e., decay slower
than R−1 (indicated by the cyan line), for JH/U � 0.275.

slower than R−1 and thus dominate at long distance. In
contrast, at JH/U = 0.2 [Fig. 2(a)] the singlet pair-pair cor-
relations decay more rapidly, and the density-density and
spin-spin correlations become more important. This de-
pendence of the singlet pair-pair correlations on JH/U is
illustrated more directly in Fig. 3, where we see a crossover
between JH/U = 0.25 and JH/U = 0.275. The trend of in-
creasingly fast decay as JH/U is decreased is expected to
continue if JH/U is lowered further, compatible with the bind-
ing energy results of Refs. [46,47] that suggest pairing will
no longer occur at small JH/U . At JH/U = 0.25, the singlet
pair-pair correlations decay as R−α , with α ≈ 1.04 determined
by a power-law fit. The same exponent for JH/U = 0.275
is α ≈ 0.92. As we will discuss later, if the system is in
a Luther-Emery liquid state, an exponent α > 1 indicates
a phase dominated by charge density-density correlations,
whereas α < 1 indicates a superconducting phase.

We note that the singlet pair-pair correlation remains posi-
tive at all R, whereas the density-density correlations oscillate
across zero, leading to spikes in |N (R)| in Fig. 2, cf. Ref. [55].
The spin-spin correlations S(R) also oscillate across zero,
stemming from the parent antiferromagnetic state at half-
filling. These short-range oscillations are invisible in Fig. 2
as |S(R)| is plotted. The visible longer-range oscillations are
caused by finite-size effects that, fortunately, do not affect the
pair-pair correlations of our main focus. In fact, these pair-pair
correlations behave very smoothly with increasing R.

B. Energy gaps and entanglement

We next consider the energy gaps in the system. The bind-
ing energy �Eb at half filling is shown as a function of JH/U
in Fig. 4(a). It is defined as [1,46,47]

�Eb = E (2) − E (0) − 2[E (1) − E (0)] = e2 − 2e1, (9)

where E (n) is the ground-state energy for n holes (relative
to half filling) and en = E (n) − E (0) denotes the energy of
the n-hole state, measured relative to the undoped case. The
subscript b denotes binding. When negative, �Eb signals the
presence of a two-hole bound state; a necessary condition for

FIG. 4. Finite-size-scaled energy gaps. In both panels, gaps are
given in units of the hopping energy |t |. (a) The binding energy
at U/W = 1.6 and half filling depends strongly on the value of
JH/U . For the dependence on U/W , see Ref. [46]. (b) Spin gaps
at U/W = 1.6 and half filling (solid lines), and at a hole doping
concentration of x = 1/12 (dashed lines). The conventional spin gap
�Es(1, x) is zero throughout the JH/U range as expected for the
half-filled TOHC with open boundary conditions [49]. Physically,
this arises because of the connection with the Haldane spin chain
at U � W , which features a ground-state degeneracy linked to the
formation of S = 1/2 edge states [56,57]. As seen here, the effect is
present also in the doped TOHC. Thus, the physical spin excitation
gap is instead given by �Es(2, x), representing �S = 2 excitations.
The latter gap is found to remain open. It is remarkably flat at half
filling within the range of JH/U considered here, but is known to vary
substantially for lower JH/U and for lower U/W values [49]. At finite
doping, it decreases as JH/U is lowered in the studied range, unlike in
the half-filled case. This effect may be understood as a promotion of
the kinetic energy by the dopants, which for weak doping is expected
to modify the spin gap similarly to how it is modified at half-filling by
reducing U/W . Due to the challenging convergence at finite doping
and magnetization, we have not obtained spin gaps for the doped
system JH/U = 0.2.

pairing to occur similar to Cooper pair formation. The results
indicate that the bound-state potential well becomes deeper
as JH/U increases, in agreement with the increasingly strong
pair-pair correlations. We also consider the spin gaps

�Es(�Sz, x) = E (�Sz, x) − E (0, x), (10)

where E (�Sz, x) denotes the energy in the �Sz magnetization
sector for hole density x. The subscript s is used to denote
spin gap. Due to the similarities to the Haldane spin chain,
we expect that �Es(1, x) vanishes due to the presence of
spin-1/2 edge states, and that the physical spin gap is instead
given by �Es(2, x) [49,56,57]. The spin gaps at half filling
and finite doping are shown in Fig. 4(b). The physical spin
gap, corresponding to �S = 2 excitations, is finite at all JH/U
values considered. The system-size dependence is shown in
the Supplemental Material [54].
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FIG. 5. Central charge. The fitted central charge c as a function
of 1/L and JH/U . The dotted lines are linear interpolations of the
plotted data. The results are consistent with each cJH → 1 in the ther-
modynamic limit, with deviations caused by numerical errors. The
behavior is overall consistent with a C1S0 state and Luther-Emery
physics.

Three signs point towards the possibility of a Luther-
Emery liquid state in the hole-doped TOHC: (i) there is a
finite spin gap �Es(2, x), (ii) long-range singlet pair-pair cor-
relations are observed at large Hund’s coupling, and (iii) the
TOHC is formally similar to the two-leg one-band Hubbard
ladder at weak coupling, which is considered an archetypal
Luther-Emery system. Indeed, the two orbitals can be repre-
sented as fictious legs in a two-leg ladder [Fig. 1(b)].

An additional criterion for the Luther-Emery liquid state
is that there is a single gapless charge mode, producing a so-
called C1S0 state (in this notation, a CmSn state has m gapless
charge modes and n gapless spin modes.) To investigate this
mode, we study the entanglement entropy. Although strong
finite-size effects are noted at low L, the trends stabilize for
L � 96; see Appendix B for details. Here we extracted the
central charge at fixed system size by fitting the entropy to the
conformal field theory prediction [58]

S( j) = c

6
ln

[
L

π
sin

(
π j

L

)]
+ C, (11)

where C is a nonuniversal constant, and j is the position along
the chain. The results are shown in Fig. 5. By inspection, it
is clear that the central charge for each JH/U is approaching
1. Interpreting the central charge as the number of gapless
modes and recalling the presence of a spin gap, the results
point towards a C1S0 state.

We noticed that the fitted central charge depends strongly
on the system size, producing unusually high entanglement
for low system sizes. This has the curious consequence that
the DMRG truncation error at fixed bond dimension can be
smaller for chain lengths L � 96 than for short and inter-
mediate system sizes. A similarly strongly size-dependent
behavior of the central charge was observed in the one-orbital
Hubbard two-leg ladder at weak U [59]. That system features
an initial renormalization group flow towards a perturba-
tively unstable C2S1 fixed line, before eventually tending to
a C1S0 Luther-Emery state. It is unclear whether a similar
picture holds for the TOHC, however a related renormaliza-
tion group analysis at weak coupling finds a C1S0 state [60].
For symmetry-breaking hopping matrices, namely, includ-
ing nonzero off-diagonal components and different diagonal
hoppings for each orbital, the phase diagram may be more
complex, with a number of gapless modes that depends on
JH/U [61]. Studies of the range of stability of the Luther-
Emery liquid state in the two-orbital model when using
generic hopping matrices and crystal fields will be computer-
time demanding and it is postponed for future work.

C. Luttinger exponents

In one-dimensional systems, the long-distance decays of
the singlet pair-pair and charge density-density correlations
are generally expected to follow power laws

Psinglet (R) ∝ R−Ksc , (12)

|N (R)| ∝ R−Kρ , (13)

up to modulations periodic in R and higher-order corrections.
In the Luther-Emery state, the exponents satisfy the identity
Ksc · Kρ = 1 [55,62]. In practice, numerical results on ladders
at weak and intermediate coupling often deviate from this
identity due to the challenging convergence properties of cor-
relation functions [55,63–65].

In our case, Figs. 2 and 3 show that Psinglet exhibits clear
power-law behavior with minimal oscillations, and we extract
Ksc by direct fitting. In contrast, N (R) features pronounced
oscillations. To avoid modeling the modulation, Kρ was in-
stead obtained by fitting Friedel oscillations in the local charge
density (induced by the open boundaries) [55,66] to

〈n j〉 = δn
cos (πNh j/Leff + φ1)

[Leff sin (π j/Leff + φ2)]Kρ/2 + n0, (14)

where n j = ∑
γ n j,γ is the density operator on site j (summed

over orbitals γ ), δn is a nonuniversal amplitude, n0 is the
background density, φ1 and φ2 are phase shifts, Nh is the
number of holes in the system, and Leff � Lx is an effective
length that is shorter than L due to the finite extent of the
hole pairs. We treat all six variables (i.e. δn, n0, φ1, φ2, Kρ and
Leff ) as fitting parameters, obtaining L − 4 � Leff � L − 3. An
example fit is shown in Figs. 6(b) and 6(c).

The Luttinger exponents Ksc (extracted from the singlet
pair-pair correlations shown in Figs. 2 and 3 by fitting to
power laws) and Kρ (extracted from density oscillations)
are shown in Fig. 6(a) along with their product. The prod-
uct is close to 1 for all studied values of JH/U , consistent
with Luther-Emery liquidity. There is a clear crossover from
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FIG. 6. Luttinger exponents. (a) Test of the Luther-Emery identity. The product Ksc · Kρ (green circles) remains close to 1 throughout the
studied range of JH/U , consistent with a Luther-Emery state. The shaded region represents a band of ±10%. Also shown are the scaling
exponents Ksc from singlet pair-pair correlations and Kρ extracted from the charge densities. The shown data is for L = 96,U/W = 1.6, x =
1/12 hole doping, and open boundary conditions. (b) Example fit of the local charge density profile at JH = 0.275U, L = 96 and x = 1/12
hole doping. To avoid the divergent boundary effects, the fit is performed only for data in the shaded region. The inset (c) provides a zoomed-in
view of the shaded region, emphasizing the Friedel oscillations induced by the open boundaries. The dashed red line indicates the fitted density
offset n0, and the dotted green line indicates the average filling 〈n〉 for reference.

dominant density-density correlations (Kρ < 1, Ksc > 1) at
low JH/U to dominant singlet pair-pair correlations (Ksc <

1, Kρ > 1) at high JH/U .

V. CONCLUSION

In this paper, we show that upon hole doping an electronic
generalization of Haldane’s spin-1 model, the system becomes
a superconductor. While previous work suggested this con-
clusion via the convincing proof of Cooper pair formation,
the large-scale density matrix renormalization group study
reported here allows us to finally computationally conclude
that the model is indeed dominated by singlet pairing in a
range of couplings and after hole doping. At large system
sizes, we find that the TOHC behaves as a Luther-Emery liq-
uid, clarifying the nature of the system in the thermodynamic
limit. This finding highlights the role of universality classes
in determining the long-distance physics even for realistic
multiorbital models with many competing energy scales. We
have also demonstrated that the TOHC features dominant
singlet superconductivity for JH/U � 0.275, with a crossover
into the long-range superconducting phase likely occurring
in the range 0.25 < JH/U < 0.275. Although slightly higher
than the value JH/U = 0.25 often used for iron-based su-
perconductors [51,52], such Hund’s coupling strengths are
physical and may be found in other multiorbital compounds.
It should be noted that phase transitions in Hund-correlated
quantum matter often depend on the interplay between the
Hund’s coupling and the Hubbard interactions. Whether
the long-range superconducting phase can be stabilized at
lower JH/U by tuning U/W , or by introducing further-range

hopping processes, or by using a nearest-neighbor hopping
matrix different from the unit matrix is left for future work.

To realize this physics in materials, two nearly degenerate
orbitals are required [67]. This rules out many compounds
already known to realize Haldane spin chain physics, such
as nickel-based Y2BaNiO5 [68], which has significant level
splitting and may be in an entirely different regime [26]. Nev-
ertheless, quasi-one-dimensional materials with two highly
degenerate orbitals are certainly possible, as evidenced by
materials such as OsCl4 [69]. However, its U/W ratio may
be too high to be relevant for our superconducting mech-
anism at intermediate coupling, instead justifying a spin-1
chain description [70,71]. The currently leading candidates
are compounds like RuOCl2 and OsOCl2 [72,73], which have
U ≈ W and JH/U = 0.2. These strongly anisotropic van der
Waals materials also feature subleading interchain hoppings
within the plane and very weak interplane hoppings [72].
When the purely one-dimensional superconducting state dis-
cussed in this paper is dominant, such interchain couplings
may stabilize it into a true long-range order. Further research
into candidate materials and experimental realizations of the
ideas presented in this publication should be pursued.

Access to the computational results reported in this paper
will be made available from Ref. [74].

ACKNOWLEDGMENTS

We thank N. Kaushal, L.-F. Lin, B. Pandey and Y. Zhang
for helpful discussions. The work of P.L. and E.D. was sup-
ported by the U.S. Department of Energy (DOE), Office of
Science, Basic Energy Sciences (BES), Materials Sciences

064515-6



LUTHER-EMERY LIQUID AND DOMINANT SINGLET … PHYSICAL REVIEW B 110, 064515 (2024)
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contrasted for (a) JH = 0.200U , (b) JH = 0.225U , (c) JH = 0.250U , (d) JH = 0.275U , (e) JH = 0.300U , and (f) JH = 0.325U . All panels are
for U/W = 1.6 and L = 96 at x = 1/12 hole doping. The dotted lines indicate a power-law decay with exponent α = 1. There is a clear trend
towards the singlet pair-pair correlations becoming dominant and long range (i.e., decaying slower than R−1) at high JH/U values.
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APPENDIX A: ADDITIONAL CORRELATION
FUNCTION RESULTS

Figure 7 shows the comparison of normalized singlet pair-
pair, charge density-density, and spin-spin correlations for a
range of JH values. By comparing the singlet pair-pair corre-
lations (orange) to the dotted line indicating R−1 decay, it is
clear that there is a crossover from the region JH/U � 0.275,
where Psinglet decays slower than R−1, to the low JH/U region,
where the decay is faster than R−1.

In the main text, we only discussed the Psinglet correlations
(defined in the Methods section). Following Refs. [46,47], we
also considered on-site interorbital triplet pairs, for which the
correlation function is defined

Ptriplet (R) = 1

NR

∑
i

〈T †
on(i)Ton(i + R)〉, (A1)

where

T †
on(i) = �

ab†
(i,i)+ = 1√

2
[c†

ia↑c†
ib↓ + c†

ia↓c†
ib↑], (A2)

and the general intersite triplet pair creation operator is
given by

�
γγ ′†
(i, j)+ = 1√

2
[c†

iγ↑c†
jγ ′↓ + c†

iγ↓c†
jγ ′↑]. (A3)

Although the triplet pair-pair correlations can be stabilized
by an easy axis anisotropy [46], they are exponentially sup-
pressed for the case considered here, with vanishing easy axis
anisotropy. This is exemplified in Fig. 8 for JH/U = 0.275.

APPENDIX B: ADDITIONAL ENTANGLEMENT
PROPERTIES

The half-chain entanglement entropy is shown in Fig. 9.
Conformal field theory predicts that the half-chain entan-
glement entropy of a critical system with open boundary
conditions scales logarithmically with system size, according
to SvN ∝ c

6 ln L, where c is the central charge [58]. By fitting
the numerical data to this relation, we find c ≈ 1.15–1.21 for
JH/U � 0.25, consistent with c → 1 in the thermodynamic
limit. The numerical data for JH/U = 0.2 and JH/U = 0.225
are associated with higher truncation errors, and are thus less
reliable. The fit for JH/U = 0.225 gives c ≈ 0.79, which is
also consistent with c → 1. However, the fit for JH/U = 0.2
gives c ≈ 0.52. We believe this value is a result of insufficient
convergence.
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FIG. 8. Triplet pair-pair correlations at JH/U = 0.275. The
triplet pair-pair and the singlet pair-pair correlations are contrasted
for U/W = 1.6, JH/U = 0.275, and x = 1/12 for a system of length
L = 96. The dotted line indicates R−1.

A striking consequence of the high entanglement entropy
at small system sizes is that the required bond dimension to
reach a given truncation error can be higher than it would be
at large sizes. This highlights that the system-size dependence
of certain quantities, such as central charges and exponents

FIG. 9. Half-chain entanglement entropy. At small system sizes,
the half-chain von Neumann entanglement entropy varies wildly with
the system size. Above L = 96, it scales approximately logarithmi-
cally for all JH/U considered. The shown data is for U/W = 1.6 and
x = 1/12.

related to universality classes, can be highly nontrivial in elec-
tronic systems at intermediate coupling when using DMRG.
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