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Microscopic solutions for vortex clustering in two-band type-1.5 superconductors
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Two-band superconductors exhibit a distinct phase characterized by two correlation lengths, one smaller and
the other larger than the magnetic field penetration length. This regime was coined type-1.5 superconductivity,
with several unconventional properties, such as vortex clustering. However, a fully microscopic solution for
vortex clusters has remained challenging due to computational complexities beyond quasiclassical models. This
work presents numerical solutions obtained in a fully self-consistent two-band Bogoliubov–de Gennes model.
We show the presence of discrepant correlation lengths leading to vortex clustering in two-band superconductors.
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The original work by Ginzburg and Landau introduced
the concept of coherence length ξGL [1] and classified su-
perconductors by a single Ginzburg-Landau parameter: the
ratio κGL = λ/ξGL of two fundamental length scales—the
magnetic field penetration length λ and the coherence length
ξGL. The latter is a fundamental length scale that governs the
asymptotic behavior of the modulus of superconducting gap
|�|eiθ or, equivalently, up to a different prefactor [2]—the
Ginzburg-Landau order parameter field |�|eiθ . The existence
of this order parameter and, hence, the fundamental length
ξGL is guaranteed by the fact that a superconductor breaks
local U (1) symmetry [1]. Within Ginzburg-Landau’s (GL)
theory, the superconductor allows repulsively interacting vor-
tices for κGL > 1/

√
2, called type-2 superconductivity [3].

The vortices form lattices when the magnetic field is larger
than the first critical magnetic field Hc1 and smaller than the
second critical magnetic field Hc2 [3]. These critical magnetic
fields were introduced in the series of experimental works by
Shubnikov et al. [4,5], so the state forming Hc1 < H < Hc2 is
also referred to as Shubnikov’s phase. In what follows, we will
absorb the factor

√
2 into the definition of coherence length

ξ ≡ √
2ξGL. Thus the GL criterion for type-2 superconduc-

tivity in these notations is κ ≡ √
2κGL > 1. Each vortex has a

current-carrying area of radius λ around its core. At the vortex
core, the modulus of the order parameter is suppressed. The
exact definition of ξ is the characteristic exponent of the gap
decay far away from the center of the vortex core. At low
temperatures, the overall size of the vortex core is smaller
than ξ in the simplest models [6]. Note also that, in strongly
type-2 superconductors, the long-range asymptotic of a vortex
is affected by nonlinearities [7]. When κ < 1, in an ordinary
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Ginzburg-Landau theory, the vortex is too energetically ex-
pensive and thermodynamically unstable. At κ = 1 vortices
do not interact [8–11].

Ginzburg and Landau’s work [1] classified single-
component superconductors. Today, many superconducting
states of interest break multiple symmetries, for example,
featuring a breakdown of time-reversal symmetry translation
symmetry or nematicity. Therefore, they require description in
terms of multiple order parameter fields |�i|eiθi and must be
characterized by multiple coherence lengths. It was pointed
out in [12] that, in multicomponent systems, a new regime is
possible where some coherence lengths are shorter than the
magnetic field penetration length and some are larger: ξ1 <

ξ2 < . . . λ < ξn < ξn+1 . . .. This regime was termed type-1.5
in [13]. The vortex excitations there can be viewed as com-
posite objects. Namely, they are bound states of elementary
vortices with phase winding only in one of the compo-
nents

∮
dl∇θn = ±2π . Such elementary constituents carry

a fraction of flux quantum and are much more energetically
expensive than integer-flux vortices [14]. Then, in an external
field, the system is expected to form composite vortices where
all components have phase winding around the common core,
which can also be viewed as bound states of fractional vortices
where fractions add up to one flux quantum. The fractional
vortices with phase winding only in the single band have
been recently experimentally observed [15]. When some co-
herence lengths are larger than the magnetic field penetration
length, the density-density interaction results in long-range
attractive intervortex forces. Meanwhile, the magnetic and
current interaction gives short-range repulsion [12,16,17].
Consequently, in a low magnetic field, such a system exhibits
vortex clustering and phase separation in vortex droplets and
the Meissner domains [12,16–19]. The concept of type-1.5
superconductivity was also generalized to other systems be-
yond superconductivity, such as the typology of quantum Hall
systems [20] and neutron stars [21].

In the above, we emphasized the case of multiple bro-
ken symmetries. The more nontrivial case for typology is
represented by the commonly occurring superconducting
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materials with multiband electronic structures. Such systems
have multiple superconducting gaps forming on different
bands |�α|eiθα but where interband Josephson interaction
breaks symmetry down to single U (1). In that case, sym-
metry does not guarantee multiple correlation lengths, even
with multiple bands. Nonetheless, in the simplest Landau
theories, explicit symmetry breaking does not prohibit the
existence of extra coherence length. It was discussed at the
level of two-band Ginzburg-Landau theory in [16–18,22] that,
in multiband U (1) systems, multiple coherence lengths arise
and are associated with different linear combinations of the
gaps’ fields [23]. However, the justification of multiple co-
herence lengths is nontrivial: the two-band Ginzburg-Landau
model is an expansion in multiple small parameters associ-
ated with multiple small gaps and corresponding gradients.
Such an expansion is not always justified as it is based not
on a small parameter guaranteed by symmetry but depends
on the structure of the intercomponent interaction [24], such
as strength and presence or absence of frustration. The con-
ditions and parameter range where two coherence lengths
occur in two-band U (1) systems were studied in microscopic
quasiclassical Eilenberger formalism in [24,25], confirming,
at the level of quasiclassical theory, the existence of length
scale hierarchy ξ1 < λ < ξ2 in two-band systems that break
only a single symmetry. The simplest two-band models re-
quire weak interband coupling to realize this regime [24,25].
These works also calculated asymptotic intervortex forces in
two-band Eilenberger formalism. Solutions for vortex clusters
in the type-1.5 regime were obtained in several microscopi-
cally derived Ginzburg-Landau models [24,26,27]. However,
to date, no solutions for vortex clusters in the type-1.5 regime
were obtained in microscopic models. Vortex clusters were
observed experimentally in several multiband systems and
attributed to type-1.5 physics in [13,28–34].

A microscopic approach that retains even the shortest-
length-scale physics is the Bogoliubov–de Gennes (BdG)
formalism [35]. Within this formalism, fully microscopic so-
lutions, including self-consistent calculation of magnetic field,
were obtained for an isolated Abrikosov vortex in [6,36,37].
However, obtaining the solutions for vortex clusters is sig-
nificantly more challenging as one cannot rely on an axially
symmetric ansatz. Here, we report solutions of vortex clus-
ters in the fully self-consistent numerical treatment of the
multiband Bogoliubov–de Gennes model, including a self-
consistent solution for the magnetic field.

The two-band BdG model that we consider is defined on
a two-dimensional square lattice, described by the mean-field
Hamiltonian

H = −
∑
σα

∑
〈i j〉

eiqAi j c†
iσαc jσα

+
∑

iα

(�iαc†
↑iαc†

↓iα + H.c.) + 1

2
Fm. (1)

Here 〈i j〉 denotes all nearest neighbor pairs, ciσα is the
fermionic annihilation operator at position i, with spin σ (σ ∈
{↑,↓}) and band index α (α ∈ {1, 2}), and H.c. denotes Her-
mitian conjugation. The phase factor exp(iqAi j ) accounts for
the interaction with the magnetic vector potential A through
Peierls substitution [38,39], 1

2 Fm is the magnetic field energy

density

Ai j =
∫ i

j
A · d�, (2)

the gap fields are defined as

�iα =
∑

β

Vαβ〈c↑iβc↓iβ〉, (3)

where Vαβ = V ∗
βα stands for the quadratic interaction term, and

the fermionic current is

Ji j = −2q
∑
ασ

Im(〈c†
iασ c jασ 〉eiqAi j ) (4)

and discrete version of Maxwell’s equation ∇ × ∇ × A = J
determines the connection between Ai j and Ji j .

The free energy associated with the tight-binding Hamilto-
nian Eq. (1) may be expressed as

FH =
∑

i

�†
i V

−1�i − kBT Tr ln(e−βH + 1) + 1

2

∑
plaquettes

B2,

(5)

where the magnetic field B = ∇ × A is defined on plaquettes.
The self-consistency Eqs. (3) and (4), along with the

Maxwell equation, are solved numerically using an iterative
scheme, described in [40]. Two independent codes were used
to validate the solutions. New values are obtained for the
vector potential and the gaps during each iteration, using
Eq. (3). They can be calculated by obtaining the eigenvectors
cσ iα by directly diagonalizing the Hamiltonian or using the
Chebyshev spectral expansion scheme. The key results of the
paper are obtained by graphic processing units (GPU)-based
exact matrix diagonalization, used for free energy calculation
Eq. (5). In addition, we report approximate solutions for a
larger vortex cluster obtained using the approximate Cheby-
shev spectral expansion method for larger vortex clusters.
The iteration procedure stops when the convergence criteria
|δp/(p + ε)| < ε is achieved for each of the parameters �1,
�2, and A simultaneously. Note that we do not calculate stray
fields outside the sample, the model may be interpreted as a
part of a stack of two-dimensional lattices.

Below, we report microscopic solutions for vortex clusters
in the BdG model. We demonstrate (i) the existence of mul-
tiple correlation lengths in the microscopic solution, (ii) that
these length scales form the required hierarchy: ξ1 < λ < ξ2,
(iii) the intervortex interaction potential has a minimum at a
finite distance, and (iv) a multiquanta vortex separates into a
bound state of single-quanta vortices, forming a cluster.

We study a square sample with linear size L and open
boundary conditions. The crucial aspect is to avoid meso-
scopic effects on vortex physics. For that reason, the vortices
are initiated with an initial guess far away from sample bound-
aries and the sample is chosen to be significantly large to
avoid vortex escape due to boundary attraction. For the same
reason, only the regime with moderate disparity of the length
scales could be studied to have all the characteristic length
scales much smaller than the grid size and, simultaneously,
significantly larger than lattice spacing. Hence our choice of
parameters is motivated by computational constraints rather
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FIG. 1. Absolute values for superconducting gap and magnetic
field for single vortex, showing three distinct length scales. Left:
asymptotic of single-vortex solution. Dots represent numerical data
for the gap amplitudes �1,2 and magnetic field B; lines show the fit
for the function Eq. (6). Right: heat maps for |�1|, |�2|, and |B|. Dot
lines show the cross section line, represented on the left figure.

than the physics of the concrete compound. The calcula-
tions based on the Chebyshev approximation method were
performed on a grid with L = 64. We used the exact di-
agonalization method with double precision for free energy
calculations, so the system size is decreased to L = 48 sites.
Since the quasiclassical analysis [25] suggests that interband
coupling should be very weak to have well-defined multiple
correlation lengths, we analyze the Hamiltonian Eq. (1) with
the following numerical parameters q = 0.6, V11 = 2.8, V22 =
2.2, V12 = 0.01, and T = 0.264 in units of the bandwidth. We
use the convergence criteria ε = 10−8 and ε = 10−6.

First, we analyze the structure of a single vortex. Single-
vortex states were calculated using the Chebyshev spectral
expansion approximation. From these solutions, the asymp-
totics for magnetic field and order parameter correlation
length were obtained Fig. 1.

In the presence of even a tiny interband Josephson coupling
V12, coherence lengths are affected quantitatively and quali-
tatively. Calculations in two-band Ginzburg-Landau [16,17]
and Eilenberger [24,25] formalisms predict that, away from a
vortex, each gap field approaches its asymptotic value |�u

1,2|
with two length scales. In these models, the gap asymptotic is
given by a combination of two modified Bessel functions:

|�1(r)| = |�u
1| − q1 cos �K0(r/ξ1) + q2 sin �K0(r/ξ2),

|�2(r)| = |�u
2| − q1 sin �K0(r/ξ1) − q2 cos �K0(r/ξ2). (6)

This implies that, due to interband coupling, the coherence
lengths ξ1,2 are associated with the linear combination of the
gap fields rather than individual bands.

The cross section on Fig. 1 shows two length scales in
the gap function. The solution shows that even a weak in-
terband coupling forces the same long-range asymptotic on
both gap functions despite very different behavior of �1 near
the origin. The solutions can be fitted with Eq. (6), which
gives us ξ1 ≈ 1.27, ξ2 ≈ 4.53, q1 ≈ 0.043, q2 ≈ −0.48, and
� ≈ 0.495π ; meanwhile, the fit for B = qbe−x/λ√λ/x gives
λ ≈ 2.25 and qb = 0.14. Therefore, it shows that ξ1 < λ < ξ2,

FIG. 2. Left: vortex pair interaction energy Eq. (7), expressed
in single-vortex energy units Ev = Fv − Fu vs relative distance r/L
between the vortex cores. The convergence at blue points on the
left panel is achieved due to numerical grid pinning. The leftmost
data point corresponds to the calculated minimum of the interaction
energy. The dashed line is the analytic fit based on Eq. (8). Right:
|�1|, |�2|, and |B| for the minimal energy solution. There is a
noticeable core overlap in �2.

verifying that the system is in the type-1.5 regime for these
coupling constants.

Upon establishing the type-1.5 hierarchy of the length
scales, we demonstrate that the system forms vortex clus-
ters due to the competition of long-range attractive core-core
interaction set by coherence length ξ2 and shorter-range
current-current and magnetic interaction set by the magnetic
field penetration length λ. In the next step, we analyze the
interaction energy between two vortices. To ensure that the
existence of nonmonotonic intervortex forces are not artifacts
of numerical grid pinning the calculations are performed for
a variety of initial conditions. The total free energy of the
system Eq. (5) is orders of magnitude higher than the inter-
vortex interaction energy, so the exact diagonalization method
and double precision were used to ensure the accuracy of the
energy calculations.

If the distance between the vortices in the initial guess is
large enough, the interaction force will not move the vortex
from its initial position due to the exponential falloff of in-
teraction and the presence of an underlying lattice pinning.
This allows us to calculate the energy of vortex interaction
directly on different distances away from the minimum of
the potential Fig. 2. The interaction energy of vortex pair
Eint (r) is calculated as follows. We calculate the energy of
a vortex pair with the positions r1 and r2: Fp(L, r1, r2); from
this we subtract (i) the energy of the system in the absence
of vortices Fu(L) and (ii) the energies of the solutions for
single vortices, which are calculated at the same positions as
vortices in the pair r1,2, in order to diminish the finite-size and
discretization effects and to offset the energies of the vortex
pinning by numerical grid. However, the grid pinning means
that we slightly overestimate the interaction energy, compared
to the analytic expression (8), due to nonlinear corrections,

Eint (r) = Fp(L, r1, r2) + Fu(L) − Fv(L, r1) − Fv(L, r2), (7)

where r = |r1 − r2|.
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FIG. 3. Cluster made of three vortices. The panels show the
absolute values |�1,2| and phases ϕ1,2 for gap distributions, magnetic
field B, and current |J| from Eq. (4) in the system and tunneling
conductance below σ0 and above σ1 the gap. The initial state of the
system was a single vortex with charge 3. There is a visible overlap of
the vortex cores in the second component. The distance between the
cores for each pair of vortices is the same as for the minimal energy
solution on Fig. 2.

The long-range asymptotic form for the vortex-vortex in-
teraction energy in a type-1.5 superconductor calculated in
continuum two-band Ginzburg-Landau [16,24] and Eilen-
berger [25] formalisms has the form

V (r) = α
(
q2

bK0(r/λ) − q2
2K0(r/ξ2) − q2

3K0(r/ξ1)
)
, (8)

where α is a positive constant [41]. This is different from
the monotonic interaction potential in a standard single-
component Ginzburg-Landau model [8].

The two dominant terms with λ and ξ2 in this expression
give a minimum interaction potential at a certain intervor-
tex distance that depends on the competing coherence and
magnetic field penetration length scales. We can compare
this approximate expression with the results of our BdG-
based calculations. First, since we are interested only in
long-range forces, we omit the part with the shortest length
scale K0(r/ξ1) from Eq. (6). We extracted the coherence and
magnetic field penetration lengths from our solutions in the
above. Using these lengths, we fit the results from Eq. (7) us-
ing Eq. (8) and obtain α. Although strictly speaking, the form

Eq. (8) is derived using different continuum models, that equa-
tion approximately fits the calculated intervortex potential.
It also shows that the long-range attraction is dominated by
density-density interaction between the extended vortex cores
and short-range repulsion is dominated by current-current and
magnetic interactions.

Finally, an approximate solution for a larger vortex cluster
is obtained. The exact diagonalization methods are compu-
tationally expensive and larger system sizes are necessary to
study multivortex clusters, so the Chebyshev spectral expan-
sion method was used. The system Eq. (1) is evaluated for a
single multiquanta vortex solution as an initial condition. The
giant vortex is not a stable configuration and it decays into a
vortex cluster. On Fig. 3 is shown the solution for an initial
guess of the giant vortex with charge 3.

In conclusion, in a fully microscopic formalism, we
demonstrated superconductivity beyond the type-1/type-2 di-
chotomy in two-band superconductors. Such superconductors
break only a single symmetry due to interband coupling.
Nonetheless, when the interband coupling is weak, the ob-
tained vortex solutions clearly show the effects of multiple
correlation lengths. The numerical solutions show that these
correlation lengths are hybridized, i.e., associated with differ-
ent linear combinations of the gap fields. For weak interband
coupling, we find hierarchy of the length scales ξ1 < λ < ξ2

that leads to attractive intervortex interaction at large sep-
aration due to core-core overlap. It does not exclude large
disparity of coherence lengths at stronger interband coupling,
for example, in the cases of frustrated interband coupling or
proximity to a phase transition into a superconducting state
with different symmetry [22,26]. The Bogoliubov–de Gennes
formalism also allows us to calculate signatures of the vortex
clusters in scanning tunneling microscopy. In such a probe,
a vortex cluster in the considered microscopic model can
appear as a group of vortices with individual small cores yet
having a significant attractive interaction. The computational
complexity of BdG models limits system sizes and, therefore,
coupling constants that we can consider now. An interesting
further direction could be solutions and STM signatures for
material-specific small coupling constants and larger numeri-
cal grids.
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