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Determination of the magnetic penetration depth with
measurements of the vortex-penetration field for type-II superconductors
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Using a known distribution of the Meissner currents over the surface of an infinitely long superconducting
slab with a rectangular cross section, we find an applied magnetic field at which vortices begin to penetrate into
the superconductor. This vortex-penetration field is determined by an interplay of the geometrical and Bean-
Livingston barriers. The obtained results enable one to find the lower critical field and the London penetration
depth from measurements of the magnetic induction on the surface of the superconducting slab, using, e.g., the
micro-Hall probes.
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I. INTRODUCTION

A temperature dependence of the magnetic penetration
depth λ can shed light on the pairing state of electrons in
superconductors [1,2]. In particular, using the measured de-
pendence of λ on the temperature T , important information
on this state were obtained for high-Tc YBa2Cu3O6.95 [1,3] as
well as for the Fe-based [4–6] and heavy-fermion [7–10] su-
perconductors. Below we will discuss one of the methods used
for the determination of λ (or of the lower critical field Hc1 ∝
λ−2), viz., the measurements of the magnetic field Hp at which
the vortices begin to penetrate into a type-II superconductor
[5–8,11–16]. In this method, it is important to correctly take
into account the shape of the superconducting sample, which
in most experiments is a rectangular parallelepiped. Strictly
speaking, the well-known concept of the demagnetization fac-
tor is not applicable to such platelet-shaped superconductors
since the geometrical barrier [17] appears in samples different
from ellipsoids, and the uniform penetration of the vortices
into the superconductor no longer occurs. Although the so-
called effective demagnetization factor N of a superconductor
in the Meissner state is frequently discussed in the literature
[18–22], it does not determine the penetration field. This N is
defined by the condition that −V Ha/(1 − N ) is equal to the
total magnetic moment of a sample of the volume V in the
applied magnetic field Ha < Hp.

The vortex-penetration field Hp for a thin strip was es-
timated in Ref. [17], and it was shown that due to the
geometrical barrier, this Hp essentially exceeds the field
(1 − N )Hc1, at which the vortex penetration into an ellipsoid-
shaped sample occurs. Based on numerical calculations of the
electrodynamics of vortices in infinite slabs with rectangular
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cross sections, Brandt [18] found a formula for Hp that
approximately describes this field for an isotropic supercon-
ductor in a wide interval of the aspect ratios of the slabs. On
the other hand, using the method of conformal mappings in
the magnetostatics [23], a distribution of currents over the
surface of the infinitely long slab with a rectangular cross
section was derived in the case when the slab is in the Meiss-
ner state [24]. This strict result was obtained under the only
assumption that λ is much less than the width 2w and the
thickness d of the sample. Using this result, a formula for the
penetration field Hp was derived in the case of thin strips with
d � 2w, and an interplay between the Bean-Livingston and
geometrical barriers was also analyzed [25]. Since the result
for the currents [24] is valid for any d/2w, in this paper, we
present formulas for Hp in the case of an arbitrary aspect ratio
d/2w of the sample, taking into account an anisotropy of the
superconductor as well. The vortex pinning is assumed to be
negligible (otherwise, the penetration field depends also on
the pinning, and λ cannot be accurately found).

The paper is structured as follows. In Sec. II we present
the distribution of the currents in the infinitely long slab of
the rectangular cross section when the slab is in the Meissner
state. Using this distribution, in Sec. III the Bean-Livingston
and geometrical barrier are analyzed for anisotropic slab of the
arbitrary thickness, and a simple algorithm for the calculation
of Hp is proposed. Within this approach, the dependences of
penetration field on the aspect ratio of the slab and on the
anisotropy of the superconductor are considered in Sec. IV. In
Sec. V, we discuss how λ or Hc1 can be extracted from various
experimental data on the vortex penetration into the supercon-
ducting slab. The obtained results are briefly summarized in
Sec. VI, whereas the Appendixes contain some mathematical
details of the calculations.

II. SLAB IN THE MEISSNER STATE

Consider a superconducting slab of a rectangular
cross section of width 2w (−w � x � w) and thickness
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FIG. 1. Two scenarios of the vortex penetration into the infinitely
long superconducting slab of the rectangular cross section. The
thickness of the slab is d , and its width is 2w. Top: p > pc, the
Bean-Livingston barrier prevails over the geometrical one. Bottom:
p < pc, the penetration of vortices is mainly determined by the
geometrical barrier. The parameter p is defined by Eq. (22), its
critical value pc depends on the aspect ratio d/2w of the slab and
the anisotropy of the superconductor ε, Eq. (23). The dashed lines
schematically show mobile vortices in the slab, whereas the solid
lines inside the slab designate the immobile vortices that are in the
equilibrium. These inclined vortices form the flux-line domes on the
upper (lower) plane of the slab and on its right (left) lateral surface.

d (−d/2 � y � d/2), which infinitely extends in the z direc-
tion (Fig. 1). The slab is subjected to a perpendicular applied
magnetic field Ha = (0, Ha, 0). It is always assumed below
that d,w � λ.

When a superconductor is in the Meissner state, the total
magnetic field H at its surface is tangential to this surface.
This H(x, y) outside the sample, and hence the Meissner sheet
currents JM = Jz flowing in the surface layer of the thickness
∼λ, can be found by a conformal mapping [23]. For the slab,
the Meissner currents were obtained in Ref. [24] (the appro-
priate mapping was detailed in the Supplemental Material to
Ref. [26]). We now present the results of Ref. [24] that will be
necessary in subsequent calculations.

Due to the symmetry of the slab, it is sufficient to deal
with a quarter of its surface (x � 0, y � 0) and to parametrize
the surface with the single variable u changing from 0 to
1/

√
1 − m [26]. Here m is a constant parameter, 0 � m � 1,

the value of which is determined by the aspect ratio of the slab,
d/2w. In particular, the upper surface of the slab (0 � x � w,
y = d/2) is parametrized as follows (0 � u � 1):

x

w
= f (u, 1 − m)

f (1, 1 − m)
, (1)

where

f (u, m) ≡ m
∫ u

0

√
1 − v2

√
1 − mv2

dv. (2)

The points u = 1 correspond to the upper corner of the
slab, (w, d/2). The constant parameter m is found from the
equation:

d

2w
= f (1, m)

f (1, 1 − m)
. (3)

At d � w, relation (3) gives

m ≈ 2d

πw
. (4)

The upper part of the lateral surface, (x = w, 0 � y �
d/2), has the following parametric representation (1 � u �
1/

√
1 − m):

2y

d
= f (s(u), m)

f (1, m)
, (5)

where

s(u) =
√

1 − (1 − m)u2

m
.

The value u = 1/
√

1 − m corresponds to the equatorial point
(w, 0) of the slab.

The Meissner sheet currents on the upper and lateral
surfaces of the slab (i.e., in the whole interval 0 � u �
1/

√
1 − m) are described by the unified formula:

JM (u) = uHa√
|1 − u2|

. (6)

Formulas (1)–(6) provide the quantitative description (in the
parametric form) of the surface Meissner currents in the
slab, including its edge regions. Note that the above formulas
describe both the case of a thin strip in the perpendicular mag-
netic field (d � 2w, or equivalently, m � 1) and the case of a
plate in the magnetic field parallel to its surface (d � 2w, or
1 − m � 1).

In the limit |1 − u2| � m, i.e., at l ≡ w − x � d,w, or at
l ≡ (d/2) − y � d,w, the surface current diverges like l−1/3

near the corners of the slab [24,25]. In this limiting case
formulas (1)–(3) and (6) lead to the expression

JM ≈ Ha

(
(1 − m)d

6
√

m f (1, m) l

)1/3

, (7)

which is valid for the slab of an arbitrary thickness. For the
thin strips, expression (7) is further simplified since f (1, m) ≈
πm/4 at m � 1. The divergence of the current in Eq. (7)
should be cut off at l � λ, and the current density j throughout
the corner region [w − λ � x � w, (d/2) − λ � y � d/2] is
approximately constant, jcrn(x, y) ∼ JM (x = w − λ)/λ,

jcrn ∼ Ha

λ

(
(1 − m)d

6
√

m f (1, m) λ

)1/3

. (8)

In the case of the thin strip, formula (8) reduces to the appro-
priate expression of Ref. [25].

III. BEAN-LIVINGSTON AND GEOMETRICAL
BARRIERS IN THE SLAB

A. Bean-Livingston barrier

Since the Meissner currents are maximum at the corners
of the sample, it is favorable for a vortex to penetrate into
the strip through these points. A small circular vortex arc ap-
pearing in one of the corners overcomes the Bean-Livingston
barrier and begins to expand when the current density in the
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corners reaches the value j0 [25],

j0 ≈ 0.92Hc1κ

λ ln κ
, (9)

where Hc1 = �0 ln κ/(4πμ0λ
2) is the lower critical field, �0

is the flux quantum, and κ is the Ginzburg-Landau parameter.
This j0 is of the order of the depairing current density jdp [27],
whereas j0λ, the local surface field near the corner, reaches the
value of the thermodynamic critical field Hc in the agreement
with the results of Refs. [28–31]. Equating this j0 with the
current density jcrn defined by Eqs. (8), we find the order of
magnitude of the applied field at which the Bean-Livingston
barrier disappears for a vortex penetrating through the corner
of the sample,

HBL
p = 0.92κHc1

ln κ

(
6
√

m f (1, m)λ

(1 − m)d

)1/3

= 0.92κHc1

ln κ

(
3
√

m f (1, 1 − m)λ

(1 − m)w

)1/3

. (10)

At d � w, formula (10) reduces to the appropriate expression
of Ref. [25].

If the superconductor is anisotropic, we will assume that
the axis of the anisotropy coincides with the y axis. This
means that λy differs from the London penetration depth λx =
λz ≡ λ characteristic of the currents in the plane perpendicular
to the axis. The anisotropy parameter ε is defined as follows:
ε ≡ λ/λy [27]. (We imply below that ε < 1.) Since the field
HBL

p is determined by the current density j0 ∼ jdp ∼ Hc/λ

flowing along the z axis, this field is expected to be practically
independent of ε.

B. Geometrical barrier

Consider now the vortex-entry condition caused by the ge-
ometric barrier in the slab, assuming that a vortex has already
overcome the Bean-Livingston barrier in the corner of the
slab. In this case a penetrating vortex can move towards the
center of the sample only when its two inclined rectilinear
segments meet at the right equatorial point (x = w, y = 0),
see Fig. 1. Consider the vortex segment, which ends at the
point x0 of the upper plane of the slab and at the point y0 of
its lateral surface. The balance between the line tension of the
vortex and the forces generated by the surface currents leads
to the following equations in x0, y0 [25]:

�0J (x0, d/2) = δEl

δx0
, (11)

�0J (w, y0) = δEl

δy0
, (12)

where �0 is the flux quantum, the sheet currents J (x, y) are
determined by formulas (1)–(6), El = Lel is the line energy
of a vortex segment of the length L. In an anisotropic super-
conductor, one has [27]:

el = �2
0ε(θ )

4πμ0λ2
ln

(
κ

ε(θ )

)
, (13)

where ε(θ ) =
√

cos2 θ + ε2 sin2 θ , ε is the parameter of the
anisotropy (ε � 1), and θ < π/2 is the tilt angle of the vortex
relative to the y axis, the axis of the anisotropy. There is also

a geometrical relationship between x0, y0, and θ , which is
evident from Fig. 1:

w − x0 =
(

d

2
− y0

)
tan θ. (14)

Equations (11)–(14) completely determine the three quantities
x0, y0, and θ , and these equations in the explicit form are
presented in Appendix A. If we set y0 = 0, the equations give
x0, the appropriate angle θ0, and the penetration field HGB

p
caused by the geometrical barrier.

Below we will neglect the angular dependence of the log-
arithmic factor in formula (13) for el [i.e., we set ε(θ ) = 1 in
the logarithmic factor]. Under this assumption and at y0 = 0,
the explicit form of Eqs. (11) and (12) looks as follows:

ε2 sin θ0

ε(θ0)
= Ha

Hc1

u0√
1 − u2

0

, (15)

cos θ0

ε(θ0)
= Ha

Hc1
√

m
, (16)

where the parameter u0 corresponds to the point x0 according
to Eq. (1), and Hc1 = el (θ = 0)/�0 is the lower critical field
of the superconducting material for the magnetic field parallel
to the y axis. With the use of formula (1), the geometrical
relationship (14) at y0 = 0 takes on the form:

d

2w
tan θ0 = f (1, 1 − m) − f (u0, 1 − m)

f (1, 1 − m)
. (17)

To solve Eqs. (15)–(17), we note that the ratio of formulas
(15) and (16) enables us to express tan θ0 in terms of u0.
Inserting this expression into formula (17) and using relation
(3), we arrive at the equation determining u0 as a function of
the parameters m and ε,

√
mu0

ε2
√

1 − u2
0

= f (1, 1 − m) − f (u0, 1 − m)

f (1, m)
. (18)

This simple equation [see formula (2)] has a unique solution
since its left-hand side increases with increasing u0, while
the right-hand side decreases. Knowing u0, we find θ0 from
formula (17), whereas Eq. (16) gives the penetration field
caused by the geometrical barrier,

HGB
p = Hc1

√
m

cos θ0

ε(θ0)
= Hc1

√
m√

1 + ε2 tan2 θ0

. (19)

Consider the two special cases. In the case of a thick
anisotropic slab, for which d/2w � 1 (i.e., m ∼ 1/2) and
ε2 � 1, we assume that the parameter u0 � 1. Then, we find
tan θ0 ≈ 2w/d from Eq. (17), whereas the ratio of Eqs. (15),
(16) gives u0 ≈ ε2 tan θ0/

√
m. Thus, our assumption, u0 � 1,

is really fulfilled if ε2 � 1. In this case, formula (19) is prac-
tically independent of ε and reduces to

HGB
p ≈ Hc1

√
m. (20)

In the case of a thin isotropic strip when ε = 1 and
m � 1, the appropriate angle θ0 is almost independent of
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FIG. 2. Dependence of the critical value pc, Eq. (23), of the
parameter p defined by Eq. (22) on the aspect ratio d/2w of the
superconducting slab of the thickness d and of the width 2w for
various values of the anisotropy parameter ε: ε = 1 (red solid line),
ε = 0.5 (green dot-dash line), ε = 0.15 (blue dotted line), and ε =
0.05 (black dashed line).

m (θ0 ≈ 36.5◦, cos θ0 ≈ 0.8) [25], and

HGB
p ≈ 0.8

√
mHc1 ≈ 0.9

√
d

2w
Hc1, (21)

where we have used formula (4).

C. Interplay of the barriers: Two scenarios
of the vortex penetration

A comparison of formulas (10) and (19) shows that the
ratio of these penetration fields can be written as p/pc where
the parameter p is defined as follows:

p ≡ κ

ln κ

(
λ

d

)1/3

, (22)

and pc is its critical value which generally depends on ε

and m,

pc ≡ cos θ0

0.92ε(θ0)

(
m(1 − m)

6 f (1, m)

)1/3

. (23)

Although HBL
p , Eq. (10), and hence pc are determined up to

a numerical factor of the order of unity, formula (23) reveals
the dependences of pc on d/2w and ε. For thin isotropic strips
(m � 1, ε = 1), this pc is practically independent of m (pc ≈
0.52) [25]. For anisotropic slabs with d/2w � 1, pc depends
on the aspect ratio d/2w and ε, but these dependences are
relatively weak, and the parameter pc remains of order of 0.5,
Fig. 2. At d/2w � 1, pc decreases and is described by the
universal function pc(d/2w) independent of ε,

pc(d/2w) ≈ 1

0.92

(
16w

3π2d

)1/3

≈ 0.7

(
2w

d

)1/3

.

Since the parameter p can be greater or less than its critical
value pc, two scenarios of the vortex penetration into the
sample are possible [25]. If p > pc, one has HBL

p > HGB
p , and

the true penetration field Hp coincides with HBL
p , Eq. (10).

In this case, small vortex segments appearing at the corners
of the strip at Ha = HBL

p immediately expand, merge at the
equatorial point (x = w, y = 0), and the created vortex moves

towards the center of the sample, Fig. 1. If the parameter p
is less than the critical value pc, one has HBL

p < HGB
p , and

the vortex penetration is a two-stage process. The current
density in the vicinity of the corners reaches the depairing
value at Ha = HBL

p . At this field a penetrating vortex enters the
sample through the corner, but it cannot reach the equatorial
point, and so this vortex line will hang between the corner
and the equatorial point (x = w, y = 0). With increasing Ha,
two domes filled by these inclined vortex lines will expand
in the lateral surface of the strip. The penetration field Hp

is determined by the condition that the boundaries of these
domes meet at the equatorial point, and this field Hp can be
estimated by Eq. (19). However, formula (19) has been de-
rived, considering a single inclined vortex. Since the vortices
ending on the lateral surface of the slab modify the current
distribution in the sample, the Hp has to be calculated self-
consistently, taking into account the currents generated by the
domes of the inclined vortices. Nevertheless, as was shown
in Ref. [25], for the thin isotropic strip, the maximal decrease
of Hp associated with these domes does not exceed 20% as
compared to Hp given by Eq. (21) [at p � pc, the numerical
coefficients 0.8 and 0.9 in Eq. (21) are replaced by 0.63
and 0.71, respectively]. Below, we will neglect the currents
generated by the domes since on the one hand, this neglect
essentially simplifies the problem, and on the other hand, this
approach provides a sufficiently accurate calculation of Hp.

IV. PENETRATION FIELD

Using the equations of the preceding section, consider de-
pendences of the vortex penetration field on the aspect ratio of
the slab and on the anisotropy parameter ε. If the parameter p
exceeds its critical value pc, the penetration field is estimated
by formula (10), which is independent of ε. To understand the
dependence of this field on the aspect ratio of the slab, let us
assume that its width 2w is constant, whereas the thickness d
increases. Then, formula (10) shows that HBL

p is proportional
to d1/6 at small d/2w and reaches its maximal value

HBL
p,max = 0.92

κHc1

ln κ

(
3πλ

4w

)1/3

(24)

in the limit d → ∞. Note that this limiting value is notice-
ably less than the Bean-Livingston penetration field Hc =√

2Hc1κ/ ln κ characteristic of flat surfaces [28], since the
vortices now penetrate into the samples through its cor-
ners. However, if this maximal value is less than Hc1, the
curve HBL

p (d/2w) necessarily crosses the curve HGB
p (d/2w)

at some dcr (see figures below), and one has p = pc at the
crossing point. When d > dcr, HGB

p (d/2w) becomes larger
than HBL

p (d/2w), and the penetration field is determined by
the geometrical barrier.

Consider now the situation when p < pc, and the penetra-
tion field is determined by the geometrical barrier, described
by Eqs. (17)–(19). In Figs. 3 and 4, we show the depen-
dences of θ0 and (w − x0)/w on the aspect ratio d/2w of the
slab for various values of the anisotropy parameter ε. Note
that the angle θ0 remains practically constant for the strips
with d/2w � 0.1. In the isotropic case, ε = 1, the quantity
(w − x0)/w, defining the position of the inclined vortex on the
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FIG. 3. Dependence of the angle θ0 of the inclined vortex on the
aspect ratio d/2w of the superconducting slab for various values of
the anisotropy parameters ε = 1, 0.5, 0.15, 0.05. The correspondence
of ε to the color and style of the appropriate line is the same as in
Fig. 2. The curves are calculated, solving Eqs. (15)–(19) in the ne-
glect of the angular dependence of the logarithmic factor in Eq. (13).

upper plane of the slab, becomes comparable with unity only
at d/2w > 1. However, the less ε, the greater (w − x0)/w,
and (w − x0)/w ∼ 1 even for thin strips if ε is small.

The dependence HGB
p /Hc1 on the aspect ratio d/2w of the

isotropic slab (ε = 1) is presented in Fig. 5. For comparison,
in Fig. 5 we also show this dependence obtained from numer-
ical calculations of the electrodynamics of vortices [18],

HGB
p

Hc1
≈ tanh

(√
0.36

d

2w

)
. (25)

The dashed line in this figure corresponds to formula (21)
obtained for thin strips (d � w) [25]. It is seen that this for-
mula well describes the function HGB

p (d/2w) at d/2w � 0.1.
Interestingly, Brandt’s formula (25) in the case of the thin

FIG. 4. The position x0 of the inclined vortex on the upper plane
of the slab versus the aspect ratio d/2w of the superconducting slab
for various values of the anisotropy parameter ε = 1, 0.5, 0.15, 0.05.
The correspondence between the values of ε and the lines is the same
as in Figs. 2 and 3. The curves are calculated, solving Eqs. (15)–(19)
in the neglect of the angular dependence of the logarithmic factor in
Eq. (13).

FIG. 5. Dependence of the penetration field HGB
p , caused by

the geometrical barrier, on the aspect ratio d/2w of the isotropic
superconducting slab (ε = 1). The red curve is obtained, solving
Eqs. (15)–(19) in the neglect of the angular dependence of the loga-
rithmic factor in Eq. (13). The black dot-and-dash line corresponds
to formula (25), whereas the red dashed line is described by Eq. (21).

strips gives the expression,

HGB
p

Hc1
≈ 0.6

√
d

2w
,

which differs from Eq. (21) only by the numerical factor of the
order of unity. The difference between these thin-strip results
is further reduced if we take into account that the vortex domes
of the inclined vortices lead to the decrease of the coefficient
before

√
d/2w in Eq. (21) (see the end of Sec. III C). Thus,

our approach based on the solution of simple equation (18)
and Brandt’s formula (25) leads to close values of Hp in
the isotropic case. However, our approach also describes the
anisotropic case; in addition, it permits one to analyze the
situations when the complete penetration of vortices does not
occur (see the next section).

In Fig. 6, we show the dependences of HGB
p on d/2w for

various values of the anisotropy parameter ε. For thick slabs

FIG. 6. Dependences of the penetration field HGB
p , caused by

the geometrical barrier, on the aspect ratio d/2w of the anisotropic
superconducting slab for different values of the anisotropy parameter
ε = 1, 0.5, 0.15, and 0.05. The notations of the lines are the same
as in Figs. 2–4. Inset shows HGB

p /(
√

mHc1) versus d/2w. This ratio
HGB

p /(
√

mHc1) tends to constant values both at d/2w → 0 and at
d/2w → ∞; see Eqs. (19), (20), and Fig. 3.
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d � 2w, this dependence is well described by formula (20).
However, it is important that even for d/2w � 1, the depen-
dences HGB

p (d/2w) calculated for different ε are close to each
other. In other words, the anisotropy of a superconducting
material has a relatively small effect on HGB

p for not-too-
thin samples. Probably, this result explains the successful
applications of formula (25) found for isotropic superconduc-
tors to the anisotropic materials [12–14].

V. DISCUSSION

Using the micro-Hall probes, the magnetic-induction com-
ponent By is usually measured on the upper (lower) surface
of the slab to detect the penetration of vortices into a type-II
superconductor, and therefore, to find the penetration field Hp.
Apart from the Hall-probe magnetometry, such measurements
can be also carried out using ensembles of nitrogen-vacancy
centers [32], magneto-optical imaging [33], and the nanoscale
SQUID-on-tip [34]. The formulas of this paper permit one to
obtain information on λ (or Hc1) from the Hp thus measured.
For definiteness, we imply below that By is measured by the
micro-Hall probes.

Consider By(x) on the upper plane of the slab when the
first scenario of the vortex penetration into the sample occurs
(i.e., when HBL

p > HGB
p ), Sec. III C. In this case, a penetrating

vortex arrive at the center of the slab at Ha = HBL
p , and the

nonzero By can be detected only by the sensor placed at this
point. At Ha > HBL

p , the vortices accumulate in the center of
the slab, and the vortex dome on its upper plane gradually
extends. This dome is described by the formula [26]:

By(u) = μ0Ha

√
u2

d − u2

√
1 − u2

, (26)

where u2 � u2
d , and the boundary of the vortex dome ud is

determined by the condition [26] that the current density at
x = w is equal to j0 defined by Eq. (9). This condition yields

u2
d = 1 −

(
HBL

p

Ha

)2

. (27)

When ud � 1 and m � 1, formula (1) gives u ≈ x/w, and
expressions (26), (27) reduces to the well-known result for
a thin strip [17]. However, Eqs. (26) and (27) are applicable
to the slab with an arbitrary aspect ratio d/2w, and one can
easily find the field Ha(xs) at which the boundary of the dome
arrives at a point xs, i.e., the field at which a Hall sensor placed
at this point begins to show a nonzero signal. Note that the
signal sharply grows at Ha � Ha(xs). For example, Eqs. (26)

and (27) at u = 0 give, d (By/μ0)/dHa = Ha/
√

H2
a − (HBL

p )2.

This derivative is large at Ha ≈ HBL
p . Thus, in the case of

the first scenario, the measurement of the penetration field
permits one to find HBL

p determined by formula (10), i.e., to
estimate the combination of parameters, κ/λ5/3. However, it
is necessary to keep in mind that local defects of the corners
of the slab are favorable for the vortex penetration through
these defects [35], and the measured Hp can be noticeably
suppressed as compared to the theoretical value.

FIG. 7. Dependences of the dimensionless magnetic field
h(xs/w) = Ha/Hc1, at which the inclined vortex arrives at the point
xs = 0.1w, on the aspect ratio d/2w of the anisotropic supercon-
ducting slab for the two values of the anisotropy parameter ε = 0.5
(green thick dot-and-dash line) and ε = 0.15 (blue thick dotted line).
The similar thin lines show HGB

p /Hc1 versus d/2w, cf. Fig. 6. The
dependence HBL

p (d/2w)/Hc1, Eq. (10), is shown by the black solid
line for the case HBL

p,max = 0.424Hc1, Eq. (24). Inset: The slab and the
inclined vortices shown schematically at Ha = Hc1h(xs/w). At this
field, the vortices reach the Hall sensor (red small rectangle) that
covers the lower plane of the slab from x = −xs to x = xs.

If the second scenario of the vortex penetration occurs (i.e.,
if HBL

p < HGB
p ), a vortex arrives at the center of the slab at

Ha = HGB
p , and for Ha > HGB

p the physical picture is qualita-
tively the same as for the first scenario. However, formulas
(26) and (27), strictly speaking, should be modified. This
modification is due to the currents generated by the inclined
vortices that hang near the corners. Within our simplified
approach, which neglects these currents, the penetration field
HGB

p is determined by formula (19). Thus, the measurement
of this field gives Hc1 if the anisotropy parameter ε is known.
It is important to emphasize that, in contrast to HBL

p , the
penetration field HGB

p is insensitive to small defects of the
surface of the slab, since the geometric barrier is determined
by the length of the order of the thickness d of the sample.

However, it is clear that the inclined vortices can generate a
nonzero By on the surface of the sample if HBL

p < Ha < HGB
p ,

i.e., when the second end of the inclined vortex has not yet
reached the equatorial point of the slab (Fig. 7, inset). Tak-
ing into account the data of Fig. 4, we conclude that this
nonzero By can be detected on the upper plane of the slab at
a sufficiently far distance (∼w) from the corners if d � w or
ε2 � 1. Thus, in principle, it is possible to find Hc1 not only
from the field HGB

p of the complete vortex penetration into the
sample but also from a detection of nonzero By generated by
the inclined vortices.

The dome of the inclined vortices appears on the upper
plane at Ha = HBL

p , and it expands with increasing Ha, reach-
ing its maximal size at Ha = HGB

p . To calculate the size of
the dome correctly, it is necessary to take into account the
currents produced by the inclined vortices [25]. Within our
simplified approach, in which these currents are disregarded,
the boundaries of the dome can be estimated only approxi-
mately, calculating x0 with Eqs. (A1)–(A3) at Ha = HBL

p and
at given Ha < HGB

p . Note that the smaller (Ha − HBL
p )/HGB

p ,
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FIG. 8. Dependences of the dimensionless magnetic field
h(xs/w) = Ha/Hc1, at which the inclined vortex arrives at the point
xs = 0.9w, on the aspect ratio d/2w of the anisotropic superconduct-
ing slab for the two values of the anisotropy parameter ε = 0.5 (green
thick dot-and-dash line) and ε = 0.15 (blue thick dotted line). The
similar thin lines show HGB

p /Hc1 versus d/2w, cf. Fig. 6. The depen-
dence HBL

p (d/2w)/Hc1 is shown by the black solid line for the case
HBL

p,max = 0.197Hc1. Inset: The inclined vortices are schematically
depicted in the slab at Ha = HBL

p . For ε = 0.5, the vortices (green
solid lines) have not reached the micro-Hall sensor (red rectangle)
yet, whereas for ε = 0.15, the vortices (blue solid lines) have already
passed through the sensor.

the better accuracy of this estimate. Thus, if the Hall sensor
placed at a point xs contacts with a small dome of the inclined
vortices, Eqs. (A1)–(A3) with the fixed x0 = xs permit one to
calculate the value of Ha/Hc1 ≡ h(xs/w), at which this contact
occurs. Comparing the calculated h(xs/w) and the measured
Ha, for which a nonzero By is detected by the sensor, one can
estimate Hc1.

As an example, consider the case when the sensor is
placed at the center of the slab, and it covers the region
−xs � x � xs = 0.1w on the surface. In Fig. 7, for different
values of d/2w and ε, we show the dimensionless magnetic
fields h(xs/w), at which the end of the inclined vortex reaches
the point xs. The d/2w dependences of these fields start on
the lines HGB

p (d/2w)/Hc1 since at low values of the aspect
ratio, only the vertical vortex created at Ha = HGB

p can reach
this sensor. Thus, for ε = 0.15, Fig. 7 demonstrates that at
d < dc ≈ 0.4w, the vertical vortices begin to arrive at the sen-
sor when Ha = HBL

p (d/2w). In the interval dc < d � 0.8w,
such vortices reach the sensor at Ha = HGB

p (d/2w), and for
d > 0.8w, the end of the incline vortex come to the sensor
at the magnetic field Ha determined by the blue thick dotted
line. Note that due to the large tilt angle θ , the magnitude of
By produced by the inclined vortex at the sensor is expected to
be smaller than at Ha = HGB

p when the vertical vortices com-
pletely penetrate into the sample. Thus, the cases of the partial
(Ha < HGB

p ) and complete (Ha = HGB
p ) vortex penetration can

differ in the measured values of dBz/dHa.
Consider now the situation when the Hall sensor is near

the corner of the slab. In Fig. 8, we consider the case when a
very small sensor is at the point xs = 0.9w. In this situation,
for the end of the inclined vortex to be at the point xs, the field
HBL

p has to be sufficiently small, and Ha should only slightly
exceeds HBL

p . Otherwise, the vortex dome of such vortices

FIG. 9. Dependences of the penetration field HGB
p on the aspect

ratio d/2w of the anisotropic superconducting slab for two val-
ues of the anisotropy parameter ε = 0.5 (green dot-and-dash lines)
and 0.05 (black dashed lines). The thick lines are calculated with-
out taking into account the angular dependence of the logarithmic
factor in formula (13), cf. Fig. 6. The similar thin lines are calcu-
lated with Eqs. (B1), (B2), (17) and κ = 50. Inset shows the ratio
HGB

p /(
√

mHc1) versus d/2w.

can be between the sensor and the center of the slab. It is
this case that occurs for ε = 0.15 in Fig. 8. In this case, the
blue thick dotted line lies below HBL

p (d/2w), and the inclined
vortices cannot come to the sensor. On the other hand, for
ε = 0.5, the green thick dot-and-dash line shows the dimen-
sionless fields h(0.9) at which the inclined vortex reaches the
sensor.

In deriving Eqs. (17)–(19), we neglected the angular
dependence of logarithmic factor in the vortex energy el ,
Eq. (13). In general, this factor depends on the vortex core.
To clarify how the core can manifest itself in the depen-
dence HGB

p (d/2w), we derive the appropriate equations in
Appendix B, using formula (13) without any simplifications.
In Fig. 9, the functions HGB

p (d/2w) obtained with and without
taking into account the angular dependence of the logarithmic
factor are compared. It is seen that this angular dependence
clearly manifests itself only at d/2w � 0.3 for supercon-
ductors with strong anisotropy. However, we do not find
qualitative changes in the functions HGB

p (d/2w). For thick
samples or for ε � 1/2, the changes are small.

Throughout this paper, we have considered the infinite slab
along the z axis. In Appendix C, we discuss how one can
approximately take into account the finite length L of real
platelet-shaped samples.

VI. CONCLUSIONS

We analyze the process of the vortex penetration into an
anisotropic superconducting slab of a rectangular cross sec-
tion, with the width 2w and the thickness d of the sample
being much larger than the London penetration depth λ. The
aspect ratio of the slab, d/2w, may have an arbitrary value.
The axis of the anisotropy of the superconductor and the
applied magnetic field Ha are assumed to be directed along the
thickness of the sample, and the flux-line pinning is neglected.
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It is shown that the vortex-penetration field Hp coincides
with the largest field from HBL

p and HGB
p determined by the

Bean-Livingston and geometrical barriers, respectively, and
the formulas for these HGB

p and HBL
p are derived. The samples,

for which the geometrical barrier dominates over the Bean-
Livingston one (i.e., when HGB

p > HBL
p ), are most suitable for

determining Hc1 and λ, since the Bean-Livingston barrier is
sensitive to the defects in the corners of the slab. In the case
HGB

p > HBL
p , the vortex penetration is a two-stage process. In

the interval HBL
p < Ha < Hp, the inclined vortices enter the

edge regions of the slab through its corners, and domes of
such vortices appear on the upper (lower) planes of the slab.
For this case, we describe the simple approach for calculating
the field Ha at which the inclined vortex comes to a given point
on the upper (lower) plane of the slab.

The obtained results permit one to estimate the values of
Hc1 and λ from measurements of the penetration field or of the
field at which the inclined vortices reach a micro-Hall probe
placed on upper (lower) plane of the slab.
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APPENDIX A: EQUATIONS FOR AN INCLINED VORTEX

Consider a vortex, the ends of which are at the point x0 of
the upper plane of the slab and at the point y0 of its lateral
surface. Then, Eqs. (11)–(14) takes on the form [we still set
ε(θ ) = 1 in the logarithmic factor of formula (13)]:

ε2 sin θ

ε(θ )
= Ha

Hc1

u0√
1 − u2

0

, (A1)

cos θ

ε(θ )
= Ha

Hc1
√

m

√
1 − ms2

0√
1 − s2

0

, (A2)

where the parameter u0 corresponds to the point x0, Eq. (1),
whereas s0 corresponds to the point y0, Eq. (5). With the use
of formula (1) and the ratio of Eqs. (A1) and (A2), which gives
an expression for tan θ in terms of u0 and s0, the geometrical
relationship (14) reduces to

[ f (1, 1 − m) − f (u0, 1 − m)]

√
1 − u2

0ε
2

√
mu0

=
√

1 − s2
0√

1 − ms2
0

[ f (1, m) − f (s0, m)]. (A3)

At s0 = 0, Eqs. (A1)–(A3) reduce to Eqs. (15), (16), (18).
Formulas (A1)–(A3) permit one to find any three of the four

quantities: u0 (i.e., x0), s0 (i.e., y0), the angle θ , and Ha. For
example, at given u0, the relation (A3) is equation in s0.
Knowing s0, we find the angle θ and the appropriate Ha from
Eqs. (A1) and (A2).

APPENDIX B: PENETRATION FIELD HGB
p FOR

SUPERCONDUCTOR WITH ANISOTROPIC
VORTEX CORE

With the angular dependence of the logarithmic factor in
formula (13), Eqs. (15), (16) take on the form:

sin θ0

ε(θ0)

[ε2 ln(κ/eε(θ0)) + [ε(θ0)]2]

ln κ
= Hau0

Hc1

√
1 − u2

0

, (B1)

cos θ0

ε(θ0)

[ln(κ/eε(θ0)) + [ε(θ0)]2]

ln κ
= Ha

Hc1
√

m
, (B2)

where κ is the Ginzburg-Landau parameter. Solving the set of
equations (B1), (B2), and (17), we can find θ0, u0, HGB

p .

APPENDIX C: SLAB OF THE FINITE LENGTH

In Ref. [22], the effective demagnetization factor N for a
platelet-shaped superconductor with dimensions d × 2w × L
was considered, and the following formula was proposed:

N (r, R) ≈ 4

4 + 3r(1 + R)
, (C1)

where r ≡ d/2w and R ≡ 2w/L are the aspect ratios of the
cross sections of this platelet. In the limiting case of the
infinitely long slab (L → ∞), Eq. (C1) yields

N (r, 0) ≈ 4

4 + 3r
. (C2)

Since the currents in the Meissner state of the platelet-shaped
superconductor of the volume V and its magnetic moment
−HaV/(1 − N ) are proportional to each other, we can ex-
press the Meissner currents in a slab of a finite length L via
the currents in the infinitely long slab with the same aspect
ratio r,

JM (r, R)

JM (r, 0)
= 1 − N (r, 0)

1 − N (r, R)
≡ 1

F (r, R)
. (C3)

On the other hand, the smaller the Meissner currents, the
larger the HBL

p and HGB
p determined by these currents. There-

fore, to estimate effect of the finite length of the slab on
the penetration fields, one can introduce the additional factor
F (r, R),

F (r, R) = 1 + 4R

4 + 3r(1 + R)
, (C4)

into formulas (10) and (19) for HBL
p and HGB

p , respectively.
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Klein, P. Rodière, F. Levy-Bertrand, B. Michon, C. Marcenat, P.
Husaníková, V. Cambel, J. Šoltýs, G. Karapetrov, S. Borisenko,
D. Evtushinsky, H. Berger, and P. Samuely, Magnetic and ther-
modynamic properties of CuxTiSe2 single crystals, Phys. Rev.
B 95, 174512 (2017).

[16] J. Juraszek, R. Wawryk, Z. Henkie, M. Konczykowski, and
T. Cichorek, Symmetry of order parameters in multiband
superconductors LaRu4As12 and PrOs4Sb12 probed by local
magnetization measurements, Phys. Rev. Lett. 124, 027001
(2020).

[17] E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczykowski,
D. Majer, B. Khaykovich, V. M. Vinokur, and H. Shtrikman,
Geometrical barriers in high-temperature superconductors,
Phys. Rev. Lett. 73, 1428 (1994).

[18] E. H. Brandt, Irreversible magnetization of pin-free type-II su-
perconductors, Phys. Rev. B 60, 11939 (1999).

[19] E. H. Brandt, Geometric edge barrier in the Shubnikov phase of
type II superconductors, Low Temp. Phys. 27, 723 (2001).

[20] R. Prozorov, R. W. Giannetta, A. Carrington, F. M. Araujo-
Moreira, Meissner-London state in superconductors of rectan-
gular cross section in a perpendicular magnetic field, Phys. Rev.
B 62, 115 (2000).

[21] E. Pardo, D.-X. Chen, and A. Sanchez, Demagnetizing factors
for completely shielded rectangular prisms, J. App. Phys. 96,
5365 (2004).

[22] R. Prozorov and V. G. Kogan, Effective demagnetizing factors
of diamagnetic samples of various shapes, Phys. Rev. Appl. 10,
014030 (2018).

[23] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media, Course in Theoretical Physics (Pergamon, London,
1959), Vol. 8.

[24] E. H. Brandt and G. P. Mikitik, Meissner-London currents in
superconductors with rectangular cross section, Phys. Rev. Lett.
85, 4164 (2000).

[25] E. H. Brandt, G. P. Mikitik, and E. Zeldov, Two regimes of
vortex penetration into platelet-shaped type-II superconductors,
J. Exp. Theor. Phys. 117, 439 (2013).

[26] G. P. Mikitik, Critical current in thin flat superconductors with
Bean-Livingston and geometrical barriers, Phys. Rev. B 104,
094526 (2021).

[27] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Vortices in high-temperature superconduc-
tors, Rev. Mod. Phys. 66, 1125 (1994).

[28] P. G. de Gennes, Superconductivity of metals and alloys (W. A.
Benjamin, New York, 1966).

[29] A. V. Samokhvalov, A surface barrier for a vortex loop in type-ll
superconductors, JETP 81, 601 (1995).

[30] V. P. Galaiko, Formation of vortex nuclei in superconductors of
the second kind, Sov. Phys. JETP 23, 878 (1966).

[31] Y. A. Genenko, Magnetic self-field entry into a current-carrying
type-II superconductor, Phys. Rev. B 49, 6950 (1994).

[32] K. R. Joshi, N. M. Nusran, M. A. Tanatar, Kyuil Cho, W. R.
Meier, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Measuring
the lower critical field of superconductors using nitrogen-
vacancy centers in diamond optical magnetometry, Phys. Rev.
Appl. 11, 014035 (2019).

064507-9

https://doi.org/10.1088/0953-2048/19/8/R01
https://doi.org/10.1103/PhysRevB.59.R14173
https://doi.org/10.1088/0034-4885/74/12/124505
https://doi.org/10.1038/ncomms6679
https://doi.org/10.1103/PhysRevB.91.174512
https://doi.org/10.1126/sciadv.1601667
https://doi.org/10.1103/PhysRevLett.119.077001
https://doi.org/10.1073/pnas.1720291115
https://doi.org/10.1038/s41467-023-38688-y
https://doi.org/10.1103/PhysRevB.70.180504
https://doi.org/10.1103/PhysRevB.79.020508
https://doi.org/10.1103/PhysRevB.79.064520
https://doi.org/10.1103/PhysRevB.82.184506
https://doi.org/10.1103/PhysRevB.95.174512
https://doi.org/10.1103/PhysRevLett.124.027001
https://doi.org/10.1103/PhysRevLett.73.1428
https://doi.org/10.1103/PhysRevB.60.11939
https://doi.org/10.1063/1.1401181
https://doi.org/10.1103/PhysRevB.62.115
https://doi.org/10.1063/1.1787134
https://doi.org/10.1103/PhysRevApplied.10.014030
https://doi.org/10.1103/PhysRevLett.85.4164
https://doi.org/10.1134/S1063776113110010
https://doi.org/10.1103/PhysRevB.104.094526
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/PhysRevB.49.6950
https://doi.org/10.1103/PhysRevApplied.11.014035


G. P. MIKITIK AND YU. V. SHARLAI PHYSICAL REVIEW B 110, 064507 (2024)

[33] Ch. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H.
Kronmüller, Magneto-optical studies of current distribu-
tions in high-Tc superconductors, Rep. Prog. Phys. 65, 651
(2002).

[34] L. Embon, Y. Anahory, Ž. L. Jelić, E. O. Lachman, Y.
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