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Giant microwave absorption in the vortex lattice in s-wave superconductors
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In this article we study microwave absorption in superconductors in the presence of a vortex lattice. We show
that in addition to the conventional absorption mechanism associated with the vortex core motion, there is another
mechanism of microwave absorption, which is caused by the time dependence of the quasiparticle density of
states outside the vortex cores. This mechanism exists even in the absence of vortex motion. It provides the
dominant contribution to microwave absorption at sufficiently small magnetic fields. At low frequencies, the
dissipative part of the microwave conductivity σ (ω) is proportional to the inelastic relaxation time τin, which
is typically much larger than the elastic relaxation time τel. At high frequencies σ (ω) is proportional to the
quasiparticle diffusion time across the intervortex distance τD, which is still larger than τel.
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I. INTRODUCTION

Type-II superconductors placed in a magnetic field normal
to the plane, which is weaker than the upper critical field Hc2,
host Abrikosov vortices whose density is set by the condition
that the average flux of the magnetic field per vortex is equal to
the flux quantum �0 = π h̄c

e [1]. In the absence of pinning, the
Magnus force on the vortices induced by the transport current
through the sample causes vortex motion and dissipation. The
corresponding dissipative conductivity has been extensively
studied since the work of Bardeen and Stephen [2–6] and is
described by the formula

σBS ∼σn
Hc2

H
, (1)

where σn is the normal-state conductivity and Hc2 is the
upper critical field. In the Bardeen-Stephen theory, dissipa-
tion arises from the friction force caused by vortex motion.
Equation (1) may be obtained by expressing the friction
force-per-unit line length of the vortex as F = −ηBSvv , where
ηBS = �0Hc2σn/c2 is the vortex viscosity, and vv is the vortex
velocity. In the flux flow regime the latter is given by

vv = c
E × H

H2
. (2)

Equating the rate of viscous energy dissipation to Joule heat
H
�0

ηBSv
2
v = σBSE2, one obtains Eq. (1).

In the presence of disorder the vortex lattice is pinned,
and is capable of supporting a dissipationless current density
which is smaller than the critical current Jc. Therefore, Eq. (1)
is relevant only in the nonlinear (flux flow) regime where
the transport current significantly exceeds Jc. On the other
hand, ac electric fields E = E0 cos(ωt ) induce dissipation in
superconductors even in the linear regime. In this case, the mi-
crowave absorption coefficient is controlled by the dissipative
ac conductivity σ (ω). The latter can be evaluated using the
relation

T Ṡ = 1
2σ (ω)E2

0, (3)

where T is the temperature, Ṡ is the entropy production rate
per unit volume, and the overline (...) indicates averaging over
time. In most articles on microwave absorption, the dissipative
conductivity in the linear regime is evaluated phenomenolog-
ically using the Bardeen-Stephen expression for the vortex
viscosity ηBS and the vortex velocity v′

v (t ), which is modified
by the pinning forces (see, for example, Refs. [7–9]). The cor-
responding result, denoted by σ ′

BS (ω) below, is proportional to
the elastic momentum relaxation time τel in the normal state.

In this article we describe a new mechanism of microwave
absorption in superconductors in the mixed state. This mecha-
nism is caused by the spectral flow of the quasiparticle energy
levels in the presence of an ac electric field, and exists even in
the absence of vortex motion. We show that in a broad range
of physical parameters the dissipative part of the conductivity
caused by this mechanism can be parametrically larger than
σ ′

BS (ω).
The origin of this mechanism can be traced to a fun-

damental difference between the quasiparticle kinetics in
superconductors and electron kinetics in normal metals. In
superconductors, the density of quasiparticle states ν(ε, t )
may depend on time, which means that energies of individual
single-particle states change in time. In the adiabatic approx-
imation, the quasiparticles occupying these levels also travel
in energy space. As a result, a nonequilibrium quasiparticle
distribution is created, whose relaxation generates entropy and
provides a mechanism for microwave absorption.

The time dependence of ν(ε, t ) arises because the mi-
crowave electric field induces oscillations of the superfluid
momentum

ps(r, t ) = h̄

2

[
∇χ (r, t ) − 2e

h̄c
A(r, t )

]
. (4)

Here χ (r, t ) is the phase of the order parameter A(r, t )—
the vector potential, and e, h̄, and c are, respectively, the
electron charge, Planck’s constant, and the speed of light.
The microwave field induces acceleration of the condensate
ṗs(r, t ) ∝ eE(t ). Since the density of states ν(ε, t ) is a scalar,
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FIG. 1. The black line denotes the dependence of the modulus
of the order parameter �(r) on the distance from the vortex core r.
The blue line shows the r dependence of the edge of the quasiparticle
spectrum.

its time derivative can have a linear dependence on ṗs(r) only
in the presence of a dc superfluid momentum p̄s(r); ν̇(r) ∝
ṗs(r) · p̄s(r). In the case of a flux lattice, the dc superfluid
momentum is the equilibrium superfluid momentum about the
vortex cores.

The nonequilibrium quasiparticle distribution created by
the spectral flow can relax via two channels: inelastic scat-
tering and quasiparticle diffusion. The relative importance of
these two channels depends on frequency of the microwave
field ω. In typical superconductors the inelastic relaxation
time τin significantly exceeds the diffusion time across the
vortex plaquette τD. Therefore, inelastic relaxation is caused
by those quasiparticles for which diffusion cannot lead to
full equilibration. These quasiparticles have energies below
the threshold of percolation between different vortex pla-
quettes. The percolation threshold ε∗ arises because in the
presence of a superfluid momentum p̄s(r) the energy gap of
the quasiparticle states is shifted down from the value of the
order parameter � by δε( p̄s(r)), as illustrated in Fig. 1.
The nonequilibrium quasiparticles with energies below ε∗ are
trapped inside the vortex plaquettes. Because of pinning the
vortex lattice is distorted, and the spatial distribution of the
superfluid momentum p̄s(r) is not symmetric about the vortex
core. Therefore, the nonequilibrium part of the distribution
function cannot relax completely by diffusion across the pla-
quettes, and ultimately its relaxation is achieved by inelastic
scattering processes. Thus, the low-frequency conductivity
σ ∼ Kτin is proportional to the inelastic relaxation time and
a parameter K characterizing the degree of lattice distortion.
Since τin may exceed the elastic relaxation time τel by many
orders of magnitude, this contribution typically is much larger
than σ ′

BS . 1

At higher frequencies the value of the conductivity is con-
trolled by the quasiparticle diffusion time across a vortex

1The mentioned above mechanism of absorption has been dis-
cussed in the context of microwave absorption in superconductors
in the presence of spatially uniform supercurrent [10,11] and the
resistance of superconductors in flux-flow regime [12].

lattice plaquette τD, which is assumed to be much smaller
that the inelastic relaxation time but larger than the elastic
relaxation time τel � τD � τin. In this case the value of the
conductivity σ is still larger than σ ′

BS .
For simplicity, we focus on the case where the thickness

d of the superconducting film is smaller than the skin length,
and the microwave electric field E(t ) is spatially uniform in
the film. We also assume that the distance between vortices,
which is of order of the magnetic length lH = h̄c/|e|H , is
smaller than the Pearl length [13], so that the magnetic field is
also uniform in the film.

The consideration below is organized as follows. In Sec. II
we present a general kinetic theory of quasiparticle dynamics
in superconductors with time-dependent density of states. In
Sec. III we discuss the spatial distribution of the condensate
acceleration ṗs(r) and show that it has a significant component
outside the vortex cores, which exists even in the absence
of vortex motion. In Sec. IV we use our formalism to eval-
uate microwave conductivity arising from this component,
and show that in Sec. IV we use our formalism to evaluate
the microwave conductivity arising from this component, and
show that it becomes dominant at sufficiently small magnetic
fields. We discuss the results in Sec. V.

II. QUASIPARTICLE KINETICS IN THE PRESENCE
OF SPECTRAL FLOW

In this section we present a general description of diffusive
quasiparticle kinetics in superconductors in the presence of
spectral flow and inelastic relaxation.

In the diffusive regime, where the characteristic spatial
scales exceed the elastic mean-free path vF τel, the quasipar-
ticle distribution function n(ε, r, t ) depends only on energy ε,
coordinate r, and time t . In the presence of spectral flow, its
evolution equation has the form

∂t n(ε, r, t ) + vν (ε, r, t )∂εn(ε, r, t )

+ ∇i[Di j (ε, r, t )∇ jn(ε, r, t )] = Iin{n}. (5)

Here, Di j (ε, r, t ) is the diffusion tensor,2 and Iin{n} is the
collision integral, for which we will use the relaxation-time
approximation

Iin{n} = −n(ε) − nF (ε)

τin
, (6)

with nF (ε) being the Fermi distribution function.
The second term in Eq. (5) describes the motion of quasi-

particles in energy space caused by the spectral flow. For
sufficiently slow spatial variations of the superfluid momen-
tum ps and other system parameters, the “level velocity”
vν (ε, r, t ) can be expressed in terms of the time derivative of
the local density of states ν(ε, r, t ). This relation has the same

2Apart from the crystalline anisotropy, it acquires additional
anisotropy in the presence of a superfluid momentum. In isotropic
systems, it may be expressed in terms of the longitudinal
and transverse diffusion coefficients in the form Di j (ε, r, t ) =
nin jD‖(ε, r, t ) + (δi j − nin j )D⊥(ε, r, t ), where n is a unit vector
along ps. It can be shown that this anisotropy can be substantial only
in clean superconductors, whereas in the dirty regime it is small.
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form as that in uniform systems [10], and may be obtained
using conservation of the number of energy levels. From the
continuity equation for the spectral current in energy space,
∂tν(ε, r, t ) + ∂ε[vν (ε, r, t )ν(ε, r, t )] = 0, one gets

vν (ε, r, t ) = − 1

ν(ε, r, t )

∫ ε

0
d ε̃∂tν(ε̃, r, t ). (7)

Similarly, the diffusion coefficient D(ε, r, t ) in this approxi-
mation is assumed to have the same dependence on ps and ε

as in a uniform superconductor D(ε, p̄s(r)).
Entropy production in the system is caused by diffusion

of quasiparticles as well as their inelastic relaxation. The
dissipative part of the macroscopic microwave conductivity
σ (ω) can be obtained by equating the Joule heating losses to
the energy dissipation rate Eq. (3). Linearizing with respect
to small deviations from the equilibrium distribution function
n = nF (ε) + δn, the entropy production rate is given by

T Ṡ = T
∫

dεdrν(ε, r, t )

[
∇iδnDi j (ε, r, t )∇ jδn(ε, r, t )

+ δn2(ε, r, t )

τinnF (ε)(1 − nF (ε))

]
. (8)

Here nF (ε) is the Fermi distribution function.
The description of quasiparticle kinetics in the presence

of spectral flow given by Eqs. (5)–(8) has a broad range of
applicability. It describes both clean and dirty superconduc-
tors, and does not assume a particular pairing symmetry. On
the other hand, the criteria of their applicability, and specific
values of ν(ε, r, t ), vν (ε, r, t ), and Di j (ε, r, t ) depend on the
pairing symmetry and other parameters of the system. In the
clean regime �τel 
 1, Eqs. (5) and (7) have been derived
in Ref. [10] from the conventional Boltzmann kinetic equa-
tion for quasiparticle distribution function [14]. We note that
Eq. (5) has the same form as Eq. (A32) in Ref. [5], which
describes the time evolution of the quasiparticle distribution
function f in the “dirty limit” �τel � 1, 3 which was derived
by Larkin and Ovchinnikov [15]. However, the local relation
Eq. (7) between the level velocity vν (ε, r, t ) and the time
derivative of the density of states can be derived from the
Larkin-Ovchinnikov equations only when the characteristic
length scale of spatial inhomogeneity exceeds the supercon-
ducting coherence length ξ = √

Dn/�, where Dn = v2
F τel/3,

with vF being the Fermi velocity, is the normal metal diffusion
coefficient.

In situations where the spectral flow is caused by the pair-
breaking effect of the condensate momentum ps, the level
velocity in Eq. (7) may be expressed in the form

vν (ε, ps) = ṗs · V (ε, ps), (9)

3A more general formulation of the kinetic equation for quasiparti-
cles in dirty limit involves two distribution functions f and f1, where
the distribution function f1 is responsible for the charge imbalance.
We neglected the latter because electromagnetic field absorption in
uniform superconductors does not create a charge imbalance. In the
weakly inhomegeneous regime considered here the generation of
charge imbalance is small in the spatial gradients. At the same time,
in the presence of pair breaking, it relaxes relatively quickly by local
elastic scattering.

where V (ε, ps) denotes the level sensitivity to changes in ps,
and is given by

V (ε, ps) = − 1

ν(ε, ps )

∫ ε

0
dε

∂ν(ε, ps)

∂ ps
. (10)

For s-wave superconductors, the ps dependence of the density
of states and level sensitivity was determined in Refs. [10,11].

Below, we use Eqs. (5)–(10) to study microwave absorp-
tion in films of type-II s-wave superconductors in the presence
of a pinned vortex lattice. We show that in the London regime,
where the intervortex distance ∼lH exceeds the core radius
∼ξ , with the exception of small temperatures T � �, the
main contribution to the microwave absorption comes from
quasiparticles which reside at distances ∼lH from the vortex
cores.

III. SPATIAL DISTRIBUTION
OF THE CONDENSATE ACCELERATION

At low frequencies in the London regime, where the order
parameter outside the vortex cores �(T ), which we denote
as � in formulas below, is approximately uniform, the quasi-
particle density of states depends on the local instantaneous
condensate momentum ps(r, t ), and its rate of change is pro-
portional to the local condensate acceleration ṗs(r, t ). In thin
films, the Pearl length [13], which characterizes the screening
of the magnetic field, practically always exceeds the intervor-
tex distance ∼lH . Therefore, in this regime we can neglect the
small inhomogeneity of the magnetic field H (r) caused by the
diamagnetic currents.

In the presence of a microwave field E(t ) the vortex
positions ra(t ) become time dependent, and the condensate
acceleration is given by

ṗs(r, t ) = h̄ẑ ×
∑

a

[
2(r − ra(t ))(r − ra(t )) · ṙa(t )

|r − ra(t )|4

− ṙa(t )

|r − ra(t )|2
]

+ eE(t ). (11)

Thus, only in the absence of vortex displacement the con-
densate acceleration is given by the second term, eE(t ); the
modification caused by the motion of the vortices is described
by the first term.

Let us consider the spatial distribution of ṗs(r, t ) inside the
plaquette of a given vortex a, that is at |r − ra| � lH . The term
a in the sum in Eq. (11), which corresponds to the motion of
the native core ṙa, produces a near-field contribution which
decays rapidly with the distance from the core

ṗ(n)
s (ρa) = h̄ẑ

[
2ρa (ρa · ṙa) − |ρa|2ṙa

|ρa|4
]
. (12)

Here we introduce the notation ρa = r − ra. The remaining
contribution, which is produced by the motion of the other
vortices together with the second term, does not fall off
with distance and may be approximated by a constant for
|r − ra(t )| � lH . We refer to it as the far-field contribution
and denote it by ṗ( f )

s . By order of magnitude, ṗ( f )
s coincides

with the spatial average of the condensate acceleration in the
system, 〈ṗs(t )〉. In the linear approximation in the microwave
field and at sufficiently low frequencies, where the viscous
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forces are negligible in comparison to pinning, 〈ṗs(t )〉 is re-
lated to the electric field by the Campbell formula

ṗ( f )
s ∼ 〈ṗs(t )〉 = λ2

L

λ2
C (H )

eE(t ). (13)

Here, λL is the London length, and λC (H ) is the Campbell [16]
length. The latter depends on the pinning strength and char-
acterizes the macroscopic superfluid density of the system.4

Similarly, the typical vortex velocity ṙa, which determines the
magnitude of ṗ(n)

s (ua), may be estimated as

ṙa ∼ v′
v (t ) = c

E(t ) × H
H2

(
1 − λ2

L

λ2
C (H )

)
. (14)

The second term in the brackets on the right-hand side de-
scribes the pinning-induced reduction of the average vortex
velocity from the value in Eq. (2).

Using the expression for the typical vortex velocity v′
v (t ) in

Eq. (14), the Bardeen-Stephen contribution to the conductivity
for a pinned vortex lattice may be estimated as

σ ′
BS

σBS
∼

(
1 − λ2

L

λ2
C (H )

)2

. (15)

Assuming that the pinning strength is determined by the
vortex cores and is independent of the magnetic field, the ratio
of the Campbell and London length may be expressed in the
form [16,17]

λ2
C (H )

λ2
L

= 1 + �0Hd

8πλ2
Lk

. (16)

Here k is the average “spring constant,” which relates the av-
erage pinning force on the vortex Fpin = −kδr to the average
vortex displacement δr.

The difference λ2
C (H )/λ2

L − 1 characterizes the effec-
tiveness of pinning. At perfect pinning, k → ∞, we have
λ2

C (H )/λ2
L − 1 → 0 and 〈ṗs〉 → eE. At finite k, pinning

becomes more effective as the magnetic field is reduced;
λ2

C (H )/λ2
L − 1 decreases. In particular at strong pinning,

where the condensation energy of the vortex core changes by
a factor of the order unity when the vortex is displaced by a
distance ξ from the equilibrium position, we have k ∼ d�2νn.
In this case the pinning effectiveness from Eq. (16) may be
estimated as

λ2
C (H )

λ2
L

− 1 ∼ H

Hc2
. (17)

Here we used the fact that for dirty superconductors λ−2
L ∼

�σn/h̄c2 ∼ e2νnDn�/h̄c2.
In the next section, we evaluate the dissipation arising

from the two contributions to the condensate acceleration.
The dissipation caused by the near-field part of the con-
densate acceleration ṗ(n)

s (ρa) is localized to the vortex cores
and corresponds to the Bardeen-Stephen contribution to the
conductivity, Eq. (15). The dissipation due to the far-field

4Equation (13) reflects the fact that the time derivative of the su-
perfluid transport current can be expressed in two equivalent forms,
〈 j̇〉 = c2

4πeλ2
L
〈 ṗs(t )〉 = c2

4πeλ2
C (H )

eE(t ).

part ṗ( f )
s arises from quasiparticles outside the vortex cores.

We will show that these quasiparticles produce the dominant
contribution to the conductivity in a wide interval of physical
parameters.

IV. ESTIMATES OF MICROWAVE CONDUCTIVITY

We now apply Eqs. (5), (6), and (8) to evaluate the mi-
crowave conductivity σ (ω) in the London regime, where the
intervortex distance ∼lH significantly exceeds the vortex core
size ∼ξ . We focus on the contribution to σ (ω), which arises
from quasiparticles residing outside the vortex cores, where
the level velocity is described by Eqs. (9) and (10). For
simplicity we assume T � � and focus on the dirty limit
�τel � 1. In this case the dependence of the quasiparticle
density of states on the local superfluid momentum p̄s(r) is
characterized by the dimensionless parameter

η(ps) = Dn p2
s/�. (18)

The gap in the quasiparticle spectrum is lowered from � by
the amount

δε(ps) ∼ �η2/3(ps). (19)

For ε > � + δε(ps), the sensitivity V (ε, ps) and ν(ε, ps) are
rapidly decreasing functions of energy ε [10]. Therefore, the
dominant contribution to the microwave conductivity arises
from quasiparticles with energies |ε − �| � δε(ps). In this
energy interval the values of the level sensitivity V (ε, ps) and
the density of states ν(ε, ps) may be estimated as [10]

V (ε, ps) ∼ Dn psη
−1/3(ps), (20a)

ν(ε, ps) ∼ νnη
−1/3(ps), (20b)

where νn is the normal-state density of states at the Fermi
level.

Although in the presence of superfluid momentum the
diffusion tensor is anisotropic, for �τel � 1 the anisotropy
is negligible, and we set Di j = δi jD(ε, p̄s). The value of the
diffusion coefficient in the relevant energy interval may be
estimated as

D( p̄s) ∼ Dnη
1/3. (21)

This estimate can be obtained5 using the Larkin-Ovchinnikov
equations [15].

A. Low-frequency regime

At the lowest frequencies, the microwave conductivity is
dominated by inelastic relaxation processes. The reason is that
diffusion cannot lead to full relaxation of the nonequilibrium
quasiparticle density for quasiparticles with energies below
the percolation threshold ε∗. Such quasiparticles are trapped
inside a plaquette of a particular vortex. The size of the trap-
ping region r(ε) for energy ε may be estimated using Eqs. (18)

5In general the diffusion coefficient is expressed in terms of the
quasiclassical Green’s functions gR and gA (see the Appendix in
Ref. [5]), which must be calculated using Usadel’s equation [18].
Since the Usadel’s equation has already been solved in the relevant
regime [11], we will omit the details of this calculation.
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and (19) and the dependence of the superfluid momentum
p̄s(r) on the distance r to the vortex core. Since for r � lH

p̄s(r) ∼ h̄

r
, (22)

we get

r(ε) ∼ ξ

(
�

� − ε

)3/4

. (23)

The size of the trapping region increases with the quasiparticle
energy ε and becomes of the order of the inter-vortex distance
∼lH as ε approaches the percolation threshold ε∗ whose value
may be estimated as

� − ε∗ ∼ �

(
ξ

lH

)4/3

. (24)

At frequencies smaller than the inverse diffusion time across
the intervortex distance τ−1

D , the nonequilibrium distribu-
tion function of the trapped quasiparticles becomes spatially
uniform and depends only on the energy. This part of the dis-
tribution (zero mode of diffusion) can relax only via inelastic
processes.

To describe this slow time relaxation of the zero mode we
linearize Eq. (5) with respect to δn and average the result over
the area of spatial confinement at energy ε in the ath vortex.
This yields(

∂t + 1

τin

)
〈δn(ε, t )〉a = −〈ṗs(r) · V (ε, p̄s(r)) 〉a∂εnF (ε),

(25)
where 〈. . .〉a denotes averaging over the ε-dependent confine-
ment region of the ath vortex.

It is important to note that in the case of perfectly symmet-
ric lattice the right-hand side of Eq. (25) vanishes. However
in the presence of disorder, the superfluid momentum around
the vortices is asymmetric, and this term is nonzero. Thus,
δ〈n(ε)〉a and 〈ṗs(r) · V (ε, p̄s(r)) 〉a are random quantities
which fluctuate from plaquette to plaquette. Equations (20a)
and (22) show that these quantities are dominated by distances
from the core, which are of the order of the radius of the
trapping region in Eq. (23). In this region ṗs(r) may be ap-
proximated by ṗ( f )

s (r) in Eq. (13). Making this approximation,
substituting δ〈n(ε)〉a from Eq. (25) into Eq. (8), averaging
over plaquettes, and using Eq. (3), we obtain the following
result for the microwave conductivity σ (ω) at T � �:

σ (ω)

σ ′
BS

∼ τin

τel

1[
1 + (ωτin )2

] H

Hc2

λ4
L(H )(

λ2
C (H ) − λ2

L

)2

×
∫ ε∗

0
dε

〈〈ν(ε, p̄s(r)〉a〈n · V (ε, r)〉2
a

〉
T νnv

2
F

, (26)

where the outer brackets indicate averaging over plaquettes,
and we introduced the unit vector n in the direction of E. To
arrive at this expression we used Eqs. (1), (15), the Einstein
relation for the normal-state conductivity, σn = e2Dnνn, and
the approximation ∂εnF (ε) ≈ −1/4T for ε � ε∗. We note that
for the zero-mode limit only the second term in the brackets
in Eq. (8) contributes to the entropy production rate.

Substituting the estimates from Eqs. (20), (22), and (23)
into Eq. (26) we find that the dominant contribution to

microwave conductivity arises from trapped quasiparticles
with energies near the percolation threshold ε∗ given by
Eq. (24). Using Eq. (16), and the relation ξ 2/l2

H ∼ H/Hc2, we
can express the result in the form

σ (ω)

σ ′
BS

∼ K
�

T

τin�

[1 + (ωτin )2]

λ4
L(H )[

λ2
C (H ) − λ2

L

]2

(
H

Hc2

)5/3

, (27)

where the parameter

K =
〈〈n · V (ε∗, r)〉2

a

〉
〈〈V (ε∗, p̄s(r)〉2

a〉
(28)

characterizes the degree of spatial asymmetry of the conden-
sate momentum ps(r) inside the trapping areas in the pinned
vortex lattice. The value of K is nonuniversal and depends on
the details of the pinning potential. If the relative amplitude of
fluctuations of V (ε, r) is of order unity, and their correlation
radius is on the order of the plaquette size, then K ≈ 1. Using
the estimate Eq. (17), we obtain for strong pinning

σ (ω)

σ ′
BS

∼ �

T

τin�

[1 + (ωτin )2]

(
Hc2

H

)1/3

. (29)

Since in typical situations τin� 
 1, Eqs. (27) and (29) show
that the inelastic relaxation gives the main contribution to the
conductivity in the low-frequency regime.

B. High-frequency regime

At ωτin > 1 the contribution of inelastic relaxation to σ (ω)
in Eq. (27) decreases as 1/ω2, and at sufficiently high fre-
quencies the microwave conductivity is dominated by spatial
diffusion of nonequilibrium quasiparticles inside the trapping
regions.

The diffusive contribution to dissipation is present even in
a perfect vortex lattice. Therefore, to estimate it we neglect
the distortion of the vortex lattice. We assume the axially
symmetric distribution of the superfluid momentum p̄s inside
a given plaquette, Eq. (22), and write the diffusion equa-
tion Eq. (5) in polar coordinates r and θ . The dependence
of the level velocity vν (r, θ ) in Eq. (9) and nonequilibrium
quasiparticle density δn on the azimuth angle corresponds to
the first angular harmonic

δn(ε, r, θ ; t ) = n1(ε, r; t ) cos θ.

Substituting this form into the linearized Eq. (5) we get

∂t n1(ε, r; t ) + 1

r
∂r (rD(ε, p̄s(r))∂rn1(ε, r; t ))

− D(ε, p̄s(r))n1(ε, r; t )

r2
= −〈

ṗ( f )
s

〉
V (ε, p̄s(r))∂εnF .

(30)

Here we neglected the inelastic collision integral and focused
on the long-distance part of the condensate acceleration given
by Eq. (13).

For the relevant quasiparticle energies, the diffusion coef-
ficient D(ε, p̄s(r)) and the level sensitivity V (ε, p̄s(r)) have
a power-law dependence of r, which is given by Eqs. (18),
(20a), (21), and (22). For a microwave field of frequency ω,
the solution of this equation is characterized by the length
scale Lω corresponding to the diffusion distance of the relevant
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quasiparticles during the oscillation period, D( p̄s(Lω ))/L2
ω =

ω, and can be estimated using Eqs. (18), (21), and (22), giving

Lω ∼ ξ

(
�

ω

)3/8

. (31)

In the regions ξ � r � Lω and Lω � r, the solution to
Eq. (30), n1(r), has a power-law dependence on r. This can
be seen as follows. The diffusion coefficient decreases with
distance from the core as D( p̄s(r)) ∝ 1/r2/3, as follows from
Eqs. (18), (21), and (22). Therefore, in the spatial region
r � L(ω) one may neglect ∂t n1 = −iωn1. Because of the
power-law dependence of the diffusion coefficient and
the sensitivity on r, the resulting solution is a power of r.
In the complementary region r 
 L(ω), one can neglect the
diffusive terms in comparison to ∂t n1 = −iωn1. In this region
the solution n1 still has a power-law dependence on r because
of the power-law dependence of the sensitivity.

Expressing 〈ṗ( f )
s 〉 in terms of the microwave field us-

ing Eq. (13), approximating ∂rn1 ∼ n1/Lω, as well as using
Eqs. (18), (21), and (22), one finds from Eq. (30)

n1 ∼ eE
λ2

L

λ2
C (H )

∂εnF

{
r7/3

ξ 4/3 , r � Lω,

−i L8/3
ω

r1/3ξ 4/3 , r 
 Lω.
(32)

Substituting Eq. (32) into the first term of the right-hand side
of Eq. (8) we get

σ (ω)

σ ′
BS

∼ �

T

λ4
L(

λ2
C − λ2

L

)2

(
H

Hc2

)1/3
{

1, ω � τ−1
D ,

(ωτD)−5/4, ω 
 τ−1
D .

(33)

Here, the diffusion time of the relevant quasiparticles
across the plaquette, τD = l2

H/D( p̄s(lH )). It may be estimated
as

τD ∼ h̄

�

(
lH
ξ

)8/3

. (34)

Comparing Eq. (27) and Eq. (33) we conclude that, for ω <

τ−1
D , diffusive relaxation gives the dominant contribution to

the conductivity for ω � ω∗, where the crossover frequency
ω∗ may be estimated as

ω∗ ∼
√

K�

τin

(
H

Hc2

)2/3

∼ (τinτD)−1/2. (35)

At strong pinning, see Eq. (17), the expression for the
conductivity in Eq. (33) simplifies to

σ (ω)

σ ′
BS

∼ �

T

(
Hc2

H

)5/3{
1, ω � τ−1

D ,

(ωτD)−5/4, ω 
 τ−1
D .

(36)

In this case, in a broad frequency interval ω∗ < ω < τ−1
D , the

ac conductivity is dominated by diffusion of quasiparticles
outside the vortex cores for sufficiently weak magnetic fields
H � Hc2.

Finally, we note that replacing 〈ṗ( f )
s (r)〉 in Eq. (30) by

ṗ(n)
s (r) from Eq. (12) (which has the same angular depen-

dence) gives a contribution to dissipation, which is dominated
by short distances from the core, and reproduces the Bardeen-
Stephen result σ ′

BS .

V. DISCUSSION OF THE RESULTS

We developed a theory of microwave absorption of type-II
superconductors in the presence of a strongly pinned vortex
lattice. In this case, in addition to the Bardeen-Stephen contri-
bution to the dissipative conductivity σ ′

BS , which is caused by
the vortex motion and is described by Eqs. (1), (15), and (16),
there is another contribution. This new contribution is caused
by the quasiparticle spectral flow induced by the condensate
acceleration in the presence of a microwave field. This con-
tribution exists even in the absence of vortex displacements
and exceeds σ ′

BS in a wide interval of physical parameters. For
T � �, this contribution is dominated by the quasiparticles
residing outside the vortex cores.

At low frequencies the relaxation of the nonequilibrium
distribution quasiparticles induced by the spectral flow is
mediated by inelastic processes. As a result, the dissipa-
tive conductivity σ (ω) in this regime is controlled by the
inelastic relaxation time τin, see Eq. (27). At ω � τin the low-
est frequencies σ (ω) becomes proportional to τin. Therefore
it can be parametrically larger than σ ′

BS , which is propor-
tional to the elastic mean-free time τel. The mechanism
of absorption in this case is similar to the Debye mecha-
nism of electromagnetic wave absorption is molecules [19].
The difference, however, is that the Debye absorption co-
efficient in molecules is quadratic in frequency, while the
dissipative part of conductivity in superconductors σ (ω) is
nonzero at ω → 0. The low-frequency conductivity is pro-
portional to the degree of distortion of the spatial distribution
of the superfluid momentum in the lattice, which is caused
by the pinning and characterized by the parameter K in
Eq. (28).

At frequencies above ω∗ given by Eq. (35) the conductivity
is dominated by diffusion of quasiparticles across the vortex.
The characteristic time scale τD for this process is given by
Eq. (34), and is still much larger than τel. In this regime the
conductivity exhibits a nontrivial frequency dependence given
by Eq. (33). The distortion of the vortex lattice induced by the
pining becomes inessential in this regime.

At small temperatures T � �, the quasiparticles reside
only in the vortex cores. In this case the low-frequency con-
tribution to conductivity, which is proportional to τin, still
exists, but the coefficient K in Eq. (28) is determined by the
deformation of the core.

We note that in the case of weak pinning there is another
mechanism of low-frequency microwave absorption, which is
proportional to τin, Ref. [17]. It is related to vortex motion and
exists also in the flux-flow regime [12]. The main contribution
to σ in this case comes from quasiparticles in the vortex cores.

Although the estimates for the microwave conductivity
were obtained in the dirty regime �τel � 1, qualitatively, our
conclusions remain valid for arbitrary value of �τel, provided
lH 
 vF τel. In the clean case �τel 
 1, one would need to use
different estimates for the sensitivities and relevant intervals,
which can be found in Ref. [10].

ACKNOWLEDGMENTS

We would like to thank M. Feigel’man and V. Geshken-
bein for useful discussions. The work of T.L. and A.A. was

064504-6



GIANT MICROWAVE ABSORPTION IN THE VORTEX … PHYSICAL REVIEW B 110, 064504 (2024)

supported by the National Science Foundation through the
MRSEC Grant No. DMR-1719797, the Thouless Institute for

Quantum Matter (TIQM), and the College of Arts and Sci-
ences at the University of Washington.

[1] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Meth-
ods of Quantum Field Theory in Statistical Physics (Courier
Corporation, North Chelmsford, MA, 1975).

[2] J. Bardeen and M. J. Stephen, Theory of the motion of vortices
in superconductors, Phys. Rev. 140, A1197 (1965).

[3] P. Nozi‘eres and W. F. Vinen, The motion of flux lines in type
II superconductors, Phil. Mag. 14, 667 (1966).

[4] L. P. Gor’kov and N. B. Kopnin, Vortex motion and resistivity
of type-II superconductors in magnetic field, Sov. Phys. Usp.
18, 496 (1975).

[5] A. I. Larkin and Yu. N. Ovchinnikov, Vortex motion in su-
perconductors, in Nonequilibrium Superconductivity, edited by
D. N. Langerberg and A. I. Larkin (Elsevier Science Publishers
B. V., Amsterdam, New York, 1986).

[6] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Vortices in high-temperature superconduc-
tors, Rev. Mod. Phys. 66, 1125 (1994).

[7] J. I. Gittleman and B. Rosenblum, The pinning potential and
high-frequency studies of type-II superconductors, J. Appl.
Phys. 39, 2617 (1968).

[8] X.-Q. Zhou, C. J. S. Truncik, W. A. Huttema, N. C. Murphy,
P. J. Turner, A. J. Koenig, R.-X. Liang, D. A. Bonn, W. N.
Hardy, and D. M. Broun, Microwave spectroscopy of vortex
dynamics in ortho-II YBa2Cu3O6.52, Phys. Rev. B 87, 184512
(2013).

[9] M. W. Coffey and J. R. Clem, Unified theory of effects of vortex
pinning and flux creep upon the rf surface impedance of type-II
superconductors, Phys. Rev. Lett. 67, 386 (1991).

[10] M. Smith, A. V. Andreev, and B. Z. Spivak, Giant microwave
absorption in s- and d- wave superconductors, Ann. Phys. 417,
168105 (2020).

[11] M. Smith, A. V. Andreev, and B. Z. Spivak, Debye mechanism
of giant microwave absorption in superconductors, Phys. Rev.
B 101, 134508 (2020).

[12] M. Smith, A. V. Andreev, M. V. Feigel’man, and B. Z. Spivak,
Conductivity of superconductors in the flux flow regime, Phys.
Rev. B 102, 180507(R) (2020).

[13] J. Pearl, Current distribution in superconducting films
carrying quantized fluxoids, Appl. Phys. Lett. 5, 65
(1964).

[14] A. G. Aronov, Y. M. Gal’perin, V. L. Gurevich, and V. I. Kozub,
The Boltzmann-equation description of transport in supercon-
ductors, Adv. Phys. 30, 539 (1981)

[15] A. I. Larkin and Y. N. Ovchinnikov, Nonlinear effects dur-
ing the motion of vortices in superconductors, JETP 46, 155
(1977).

[16] A. M. Campbell, The response of pinned flux vortices to
low-frequency fields, J. Phys. C: Solid State Phys. 2, 1492
(1969).

[17] B. V. Pashinsky, M. V. Feigel’man, and A. V. Andreev, Mi-
crowave response of type-II superconductors at weak pinning,
SciPost Phys. 14, 096 (2023).

[18] K. D. Usadel, Generalized diffusion equation for superconduct-
ing alloys, Phys. Rev. Lett. 25, 507 (1970).

[19] P. Debye, Polar Molecules (Dover Publication, Mineola, New
York, 1970).

064504-7

https://doi.org/10.1103/PhysRev.140.A1197
https://doi.org/10.1080/14786436608211964
https://doi.org/10.1070/PU1975v018n07ABEH004891
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1063/1.1656632
https://doi.org/10.1103/PhysRevB.87.184512
https://doi.org/10.1103/PhysRevLett.67.386
https://doi.org/10.1016/j.aop.2020.168105
https://doi.org/10.1103/PhysRevB.101.134508
https://doi.org/10.1103/PhysRevB.102.180507
https://doi.org/10.1063/1.1754056
https://doi.org/10.1080/00018738100101407
https://doi.org/10.1088/0022-3719/2/8/318
https://doi.org/10.21468/SciPostPhys.14.5.096
https://doi.org/10.1103/PhysRevLett.25.507

