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3Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

(Received 23 April 2024; revised 12 July 2024; accepted 15 July 2024; published 1 August 2024)

We theoretically explore the possibility of realizing the symmetry-protected topological Haldane phase of
spin-1 chains in a tunable hybrid platform of superconducting islands (SIs) and quantum dots (QDs). Inspired
by recent findings suggesting that an appropriately tuned QD-SI-QD block may behave as a robust spin-1
unit, we study the behavior of many such units tunnel-coupled into linear chains. Our efficient and fully
microscopic modeling of long chains with several tens of units is enabled by the use of the surrogate model solver
[V. V. Baran et al., Phys. Rev. B 108, L220506 (2023); 109, 224501 (2024)]. Our numerical findings indicate
that the QD-SI-QD chains exhibit emblematic features of the Haldane phase, such as fractional spin-1/2 edge
states and nonvanishing string order parameters, and that these persist over a sizable region of parameter space.

DOI: 10.1103/PhysRevB.110.064503

I. INTRODUCTION

Fueled by open problems in both fundamental and applied
physics, the field of superconductor-semiconductor hybrids
has witnessed sustained advances over the past few decades.
Crucial to the understanding of these super-semi systems is
the hybridization between their various constituents, which
often leads to the presence of tunable subgap states [1–7].
Their properties directly influence the design of superconduct-
ing qubits and other complex gateable devices for quantum
technologies [8–10].

In particular, the ongoing efforts of realizing poor man’s
Majorana bound states in short Kitaev chains [11–18] rely
on the hybridization of two spatially separated quantum dots
(QDs) with an extended gateable super-semi subgap state. A
closely related configuration, where the two QDs are coupled
through a floating superconducting island (SI), was recently
considered for its interesting exchange properties [19,20]. Re-
markably, it turns out that the QD-SI-QD (DSD) exhibits a
robust spin-1 ground state when the QDs couple strongly and
coherently through (at least two subgap states in) the SI, in
the presence of a sizable SI Coulomb energy [20]. Inspired by
this finding, we explore here the possibility of realizing the
well-known Haldane phase of spin-1 chains in this super-semi
hybrid platform.

The Haldane phase is a celebrated symmetry-protected
topological phase of matter realized in the gapped ground state
of the spin-1 antiferromagnetic Heisenberg chain [21–25].
The hallmark of such phases is the existence of particular edge
modes which enjoy some degree of topological protection,
i.e., they are robust to symmetry-preserving local perturba-
tions. The Haldane phase of a long-enough spin-1 chain
with open boundary conditions features a fourfold-degenerate
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many-body ground state with the edge modes behaving as
two effective spin-1/2 degrees of freedom despite the fact
that the model’s elementary building blocks were spins-1.
This symmetry fractionalization phenomenon [26] is well-
illustrated by the analytical valence bond solid solution of the
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [27].

The existence of edge states in spin-1 chains has been
extensively investigated over the past decades, both theoret-
ically [28–30] and experimentally [31–36]. Various platforms
for realizing synthetic spin-1 chains have been proposed
over the years, e.g., by using gated triple quantum dots
[37], arrays of semiconductor QDs in a nanowire [38–40],
a chain of triangular graphene QDs [41,42], in addition to
molecular [43] and organometallic platforms [44–47]. Vari-
ous applications of the spin-1/2 edge states as qubits have
also been suggested [37,38,48]. Furthermore, they have direct
implications for measurement-based quantum computation
[49,50].

The purpose of this work is to show that the Haldane
phase may also be realized in a tunable DSD chain under
experimentally reasonable assumptions. The rest of the paper
is organized as follows. In Sec. II, we lay down the modeling
methodology based on the surrogate model solver [20,51].
Furthermore, we introduce the Heisenberg Hamiltonian and
its bilinear-biquadratic generalization as ideal spin-1 chains
to be used as benchmarks for the DSD results. In Sec. III, we
discuss the numerical results (energy spectra, spin-densities,
string order parameters) obtained for DSD chains of increas-
ing length: the individual unit (N = 1), the dimer (N = 2),
intermediate length chains (N = 3, . . . , 12), and finally long
chains (N = 21, 41), which are expected to visibly display
the main features of the Haldane phase. We draw conclu-
sions and discuss possible generalizations of our work in
Sec. IV.
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II. MODELING METHODOLOGY

A. DSD chains

The total Hamiltonian for a length-N DSD chain is given
by

Ĥ =
N∑

n=1

ĤDSD,n + td

N−1∑
n=1

∑
σ=↑↓

(d†
nRσ dn+1,L,σ + H.c.), (1)

where d†
nασ creates an electron with spin σ in the α = L,R

quantum dot of the nth DSD unit. We consider all units to be
identical and described by a Hamiltonian of the form

ĤDSD = ĤQD,L + ĤSI + ĤQD,R + Ĥtunn. (2)

For each quantum dot α = L,R we use the constant inter-
action Hamiltonian

ĤQD,α = εd (d†
α↑dα↑ + d†

α↓dα↓) + U d†
α↑dα↑d†

α↓dα↓, (3)

where U is the electron-electron repulsion strength and εd is
the dot energy level. Throughout this work, we assume all
QDs to be identical, with εd = −U/2. Departing from this
particle-hole symmetric point is known to reduce the excita-
tion gap above the spin-1 DSD ground state of interest here
[19]. Furthermore, we neglect any cross capacitances between
the different parts of the DSD units, the effects of which can
be accounted for by rescaling the various parameters.

For modeling the SI and its tunnel couplings, we employ
the surrogate model solver (SMS) methodology outlined in
Refs. [20,51]. For a vanishing SI charging energy Ec, the
full quasicontinuum of SI levels is replaced within the SMS
approach by a small number L̃ of BCS surrogate orbitals that
optimally reproduce the SI-QD hybridization function [51].
The SMS approach may be generalized to a nonvanishing Ec

provided that the finite-size effects of the SI can safely be
neglected [20]. In this case, the SMS prescription consists
of coupling the BCS surrogate orbitals (used as before to
model the hybridization part) with an auxiliary Cooper pair
counting site that enables the conservation of the total SI
particle number. This leads to an accurate description of the
SI’s charge fluctuations and thus ensures a proper treatment of
its Coulomb interaction term. Concretely, the SI Hamiltonian
is given by

ĤSI =
L̃∑

�=1

∑
σ=↑↓

ξ̃�c†
�σ c�σ −

L̃∑
�=1

(�c†
�↑c†

�↓e−iφ̂ + H.c.)

+ Ec

⎛
⎝ L̃∑

�=1

∑
σ=↑↓

c†
�σ c�σ + 2N̂p − n0

⎞
⎠

2

. (4)

Here c†
iσ creates an electron with spin σ and energy ξ̃i in the

SI with charging energy Ec and optimal occupation (in units
of electron charge) n0. As discussed above, we need to make
use of the canonically conjugate number and phase operators
N̂p and φ̂, [N̂p, eiφ̂] = eiφ̂ . Physically, N̂p counts the number of
Cooper pairs in the superconducting condensate, while e±iφ̂

adds/removes one pair from the condensate. The auxiliary

Hilbert space is spanned by states |p〉 with an integer number
of pairs p, obeying N̂p|p〉 = p|p〉 and e±iφ̂ |p〉 = |p ± 1〉.

Finally, the QD-SI coupling term appearing in Eq. (2) reads

Ĥtunn =
∑

α=L,R

L̃∑
�=1

∑
σ=↑↓

√
γ�
α (c†

�σ dασ + H.c.), (5)

where 
α denote the QDα-SI tunneling rates. The γ�

parameters define the surrogate model, together with the
energy levels ξ̃�.

As detailed in Ref. [20], the minimal prescription for re-
producing the spin-1 ground state of the DSD unit relies on
the L̃ = 2 surrogate. This is also in agreement with Ref. [19],
where a finite-bandwidth was found to be essential for this
purpose (see also Appendix A for a complementary discus-
sion). For the minimal L̃ = 2 surrogate employed throughout
this work, the numerical values of the above parameters are
γ1,2 = 1.246� and ξ̃1,2 = ±1.31� (obtained by the optimiza-
tion method detailed in Ref. [51] for a half-bandwidth D =
10�). For these values, the excitation energy of the BCS
quasiparticles becomes Eqp = (�2 + ξ̃ 2)1/2 � 1.65�. In the
best-case scenario considered here with the QDs symmetri-
cally coupled to the SI, the more complex surrogates with
L̃ � 3 effective levels in the SI are known to converge towards
a slightly larger spin-singlet-triplet gap for the DSD unit [20].
They are found, however, to cause only minor quantitative
differences for the DSD chains considered below. More gen-
eral surrogate models could be formulated in order to account
for the variability in the couplings of each QD to the SI due
to the mesoscopic randomness of the system [52], as will be
considered in future works.

B. Mapping to ideal spin-1 chains

When the interdot coupling td is small enough and the
picture of robust spin-1 DSD units holds, the low-energy
spectrum of Ĥ in Eq. (1) may be matched to that of the spin-1
antiferromagnetic Heisenberg chain (AFH) given by

ĤAFH = JAF

N−1∑
i=1

�Si · �Si+1, (6)

with the coupling JAF > 0 following the superexchange scal-
ing [53] JAF ∼ t2

d /U . The spin-1 character of each DSD unit
is gradually lost with increasing td as the correlations be-
tween QDs belonging to neighboring units build up [see also
Figs. 3(a) and 5(b) below].

The large-td limit corresponds to a dimerized configuration
where all double-dots are effectively locked into spin-singlet
configurations [see Fig. 1(b)], leaving two isolated (dangling)
spin-1/2 moments at the chain’s edges. Naively, this behavior
would appear reminiscent of the AKLT ansatz in which every
spin-1 is identified with the triplet subspace of two virtual
spins-1/2 each participating in a singlet bond with its other
neighboring spin [27]. The AKLT state is the ground state of
the bilinear-biquadratic (BLBQ) Hamiltonian

ĤBLBQ = JAF

N−1∑
i=1

[�Si · �Si+1 + β(�Si · �Si+1)2] (7)
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FIG. 1. (a) Modeling of the DSD unit in the SMS approach with
a minimal L̃ = 2 surrogate for the SI coupled to an auxiliary site
counting the number of Cooper pairs Np in the superconducting con-
densate. (b) Schematic of the N = 3 DSD chain in its Stot = Sz,tot = 1
ground state. The strength of the S = 0 valence bond is dictated by
the interdot tunnel matrix element td ; see Eq. (1).

for βAKLT = 1/3. For this particular value of β, ĤBLBQ be-
comes a sum of projectors onto local spin-2 pairs, which thus
favors the formation of spin-singlet valence bonds (in the
picture of the spin-1 consisting of two symmetrized virtual
spins-1/2). Note that the biquadratic exchange coupling is
also the simplest local term that is compatible with all the
system’s symmetries which may be added to the Heisen-
berg Hamiltonian of Eq. (6). The BLBQ model features both
gapped excitations and fractional spin-1/2 edge states, with
a fourfold degeneracy in the thermodynamic limit, in a range
that includes β ∈ (0, 1/3), which resides well within the Hal-
dane phase given by β ∈ (−1, 1) [28,54].

In the following section, we will argue that the low-energy
physics of the DSD chains (at weak enough td ) is well cap-
tured by the BLBQ Hamiltonian of Eq. (7) with β ∈ (0, 1/3),
and satisfies the necessary requirements of the Haldane phase.

III. RESULTS

To obtain the low-lying spectrum of the quasi-1D and
locally interacting systems considered here, our numerical
method of choice is the density matrix renormalization group
(DMRG) in the matrix-product-state formulation [55,56]. We
collect in Appendix B the technical details regarding our
simulations.

A. The DSD unit

Let us first briefly revisit the elementary QD-SI-QD (DSD)
unit, whose properties have been investigated in some detail in
Refs. [19,20]. The emergence of the spin-triplet ground state
in this setup may be understood in analogy to the double-dot
configuration of Ref. [57]. In a perturbative approach, in ad-
dition to the hybridization between the QDs’ spin-singlet and
the Cooper pairs (that would naively lead to an overall sin-
glet ground state), one must consider fourth-order tunneling
processes involving single-particle excitations in the super-
conducting leads. When it becomes advantageous to perform
the spin-exchange by virtually exciting the superconductor
instead of the QDs, a spin-triplet ground state may emerge,
as detailed in Appendix A and in Ref. [57].

FIG. 2. DSD spin-singlet-triplet energy gap and average SI and
QD spins 〈Sz〉 in the Stot = Sz,tot = 1 ground state. The dashed line
indicates the spin-singlet-triplet gap obtained by perturbation theory
(see Appendix A). The other parameters are U = −2εd = 6�, Ec =
2�. For the SI we employed the L̃ = 2 surrogate.

In modeling the DSD unit, we implicitly assumed that the
QDs are coupled through the same SI-orbitals, much like in
the poor man’s Majorana devices where a spatially extended
state in the proximitized semiconductor allows for crossed
Andreev reflections [13–15]. Also, it is important to note that
the spin-triplet character of the QD-SI-QD system is rather
sensitive to the asymmetry in the magnitude of the couplings
between the QD and superconducting levels (see the discus-
sion around Fig. 8 of Ref. [20]). Furthermore, due to the
two-orbital structure of the SI there is a leftover phase from
the four tunneling amplitudes that cannot be gauged away and
which may impact negatively on the robustness of the spin-
triplet. Altogether, this makes the basic DSD units vulnerable
to mesoscopic fluctuations, which seem hard to circumvent
with gate-defined quantum dots and islands. At this point, we
can only speculate that fluctuations could be reduced by mov-
ing to a super-semi hybrid platform based on highly regular
epitaxially grown tunnel barriers [58–60]. Henceforth, we will
assume the best-case scenario of symmetric couplings within
the DSD unit and focus on the physics that would emerge from
assembling many such units into longer chains.

We show in Fig. 2 the behavior of the DSD unit’s spin-
singlet-triplet gap with increasing QD-SI tunneling rate 
,
which shows a robust maximum corresponding to the crossing
between the two lowest-lying spin-singlet states. This maxi-
mum is located at 
 � 3.5� and reaches around 0.6� for L̃ =
2 (converging to a slightly larger value for L̃ � 3 surrogates).
At zero coupling, the difference between the lowest-lying spin
singlets is the presence of a broken Cooper pair with an energy
cost of 2Eqp. This becomes favored by a strong enough tunnel-
ing rate that encourages the states with single QD occupation
to hybridize with the SC quasiparticle excitations (and also
allows for empty/doubly occupied QDs).

Furthermore, Fig. 2 indicates that in the hybridization
regime where the DSD’s spin-triplet character is the most
robust, the QD and SI components contribute democratically
to the total spin S = 1. The physical picture is that of a
highly correlated DSD unit, fundamentally different from
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the weak QD-SI coupling scenario where each QD carries a
well-defined spin-1/2 moment. For weak QD-SI couplings,
the DSD chain would thus map well to the alternating
ferromagnetic-antiferromagnetic Heisenberg chain of spins-
1/2. With increasing antiferromagnetic coupling (the analog
of the interdot coupling td ), this model is known to experience
a continuous crossover between the Haldane phase and a
dimerized phase [61,62].

B. The DSD-DSD dimer

Moving on to the simplest DSD chain, i.e., the N =
2 dimer, we focus on its lowest lying total-spin-singlet,
triplet, and quintuplet states, indicated by different colors in
Figs. 3(a)–3(c). For all cases, we confirm in Fig. 3(a) the
gradual breakdown of the spin-triplet character of each DSD
unit with increasing interdot coupling td . Here, we show each
unit’s effective total spin SDSD defined by SDSD(SDSD + 1) =
〈�S 2

DSD〉, together with its range of fluctuations SDSD ± δSDSD

that reproduces the spread of the total spin squared between
〈�S 2

DSD〉 ±
√

〈(�S 2
DSD)2〉 − 〈�S 2

DSD〉2/2. The total spin of each
DSD unit is understood to be �SDSD = �SQD,L + �SSI + �SQD,R.

The behavior of the DSD-dimer’s low-lying energy spec-
trum interpolates between the AFH-specific scaling ES=1 −
ES=0 = (ES=2 − ES=1)/2 = JAF at low td , and the AKLT-
like scenario with degenerate spin-singlet and -triplet ground
states at large td (see also the discussion in Sec. II B above).
For intermediate values of td , we use the BLBQ prescription
ES=1 − ES=0 = JAF(1 − 3β ), ES=2 − ES=1 = 2JAF to obtain
the JAF and β parameters of the effective BLBQ model; see
Eq. (7). The fitting results are shown in Figs. 3(c) and 3(d),
with the effective antiferromagnetic coupling JAF following
the superexchange scaling JAF ∼ t2

d /U to a good extent [63],
and with the biquadratic term β interpolating smoothly be-
tween βAFH = 0 (at small td ) and βAKLT = 1/3 (at large td ).

C. Longer DSD chains

1. Energy spectra

When increasing to N � 3 two main signatures of the Hal-
dane phase become manifest, namely the exponential decay
of the spin-triplet-singlet gap (with alternating singlet and
triplet ground states for even and odd N) and the convergence
of the spin-quintuplet excitation energy to the corresponding
Haldane gap; see Fig. 4. Note that a faster breakdown of the
spin-triplet character is to be expected for the DSD units in
the bulk of N � 3 chains, as each unit now interacts with both
its left and right neighbors. This is apparent in Fig. 4, where
a value of βN=12 = 0.14 within the BLBQ model is needed to
reproduce well the DSD spin-gaps for N = 12, about twice as
large when compared to βN=2 � 0.07 required for the N = 2
DSD-dimer at the same td = 0.4�; cf. also Fig. 3(d).

2. Spin densities and edge states

Even longer chains show clear signatures specific to the
spin-1/2 edge fractionalization [28]; see Fig. 5(a). Here, the
average spin in the Stot = Sz,tot = 1 ground state of the N = 21
DSD chain displays the characteristic staggered profile decay-
ing in amplitude away from the edges. This decay is correlated
with the strength of the double-dot spin-singlet bonds, being

FIG. 3. (a) Effective total spin SDSD (continuous lines), defined
for each DSD unit by SDSD(SDSD + 1) = 〈�S 2

DSD〉, and its estimated
range of fluctuations (dashed lines) vs the interdot coupling td ,
for the NDSD = 2 dimer in its lowest-lying Stot = 0, 1, 2 states.
(b) Spin-triplet and spin-quintuplet excitation energies vs the interdot
coupling td . (c), (d) BLBQ parameters JAF = (ES=2 − ES=1)/2 and
β resulting from fitting the dimer’s energy spectrum (black curves).
For the fitting of JAF, see also [63]. The values referred to in the
main text are indicated by dashed grid lines. The other parameters
are U = 6� [in (a), (b)], εd = −U/2, 
 = 3�, Ec = 2�. For each
SI we employed the L̃ = 2 surrogate.

weakest at small td , i.e., in the AFH regime, and strongest at
large td , i.e., in the AKLT-like dimerized regime, where only
the end-spins-1/2 survive and there is no bulk magnetization.
When going towards the latter regime by progressively in-
creasing td , the double-dots tighten up into spin singlets and
the DSD units across the entire chain experience increasingly
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FIG. 4. Spin energy gaps for the DSD, AFH, and BLBQ(β =
0.14) chains relative to the spin-singlet (triplet) ground state for even
(odd) chain lengths N . The DSD chain parameters are U = −2εd =
6�, 
 = 3�, Ec = 2�, td = 0.4�, and JAF = 0.0205�. For each SI
we employed the L̃ = 2 surrogate.

stronger fluctuations, gradually losing their spin-1 character;
cf. Fig. 5(b) and see also the discussion around Fig. 3(a).

The increasing-td effects on the edge states are shown in
Fig. 6 for a larger N = 41 DSD chain. In this figure only, we
plot the detailed spin distribution for each individual QD and
SI instead of that corresponding to entire DSD units. For small
to moderate td , i.e., close to the AFH regime, each QD and
SI is seen to contribute a similar amount to the average spin

FIG. 5. (a) Average spin 〈Sz〉 along the N = 21 DSD, AFH, and
BLBQ(β = 0.14) chains in the Stot = Sz,tot = 1 ground state. (b) Ef-
fective total spin SDSD,n defined for each DSD unit n = 1, . . . , 21
by SDSD(SDSD + 1) = 〈�S 2

DSD〉, together with its estimated fluctuation
range. The other parameters are U = −2εd = 6�, 
 = 3�, Ec =
2�. For the SI we employed the L̃ = 2 surrogate.

FIG. 6. (a) Average spin 〈Sz〉 along the N = 41 DSD, AFH,
and BLBQ(β = 0.15) chains in the Stot = Sz,tot = 1 ground state.
(b) Detailed average spin 〈Sz〉 for each QD and SI in the first seven
units of the N = 41 DSD chain, in its Stot = Sz,tot = 1 ground state,
and for various interdot couplings td . The other parameters are U =
−2εd = 6�, 
 = 3�, Ec = 2�. For each SI we employed the L̃ = 2
surrogate.

projection 〈Sz〉 of a DSD unit. This is in agreement with the
expectation from the previous analysis of a single DSD unit;
see the discussion around Fig. 2. At large td , i.e., in the AKLT-
like dimerized regime, the bulk average spin-density becomes
strongly suppressed as all double-dots are tightly bound into
spin-singlet dimers. What remains is an effective spin-1/2
moment localized on the outermost QD-SI block, with the
individual QD and SI contributions close to their values in an
isolated QD-SI system (around 0.3 and 0.2, respectively, for
the chosen parameters).

3. String order parameters

The relatively long N = 41 chain features a bulk region
large enough to accommodate a sound investigation of var-
ious correlation functions relevant to the Haldane phase; cf.
Fig. 7. The correlators that are adequate here are string order
parameters [23] of the form

gO,U (d ) =
〈

Ôp

⎛
⎝p+d−1∏

j=p+1

Û j

⎞
⎠Ôp+d

〉
, (8)

which probe the transformation behavior of the bulk under a
symmetry U , e.g., a spin rotation around the z axis with π ,
Rz = exp(iπSz ).
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FIG. 7. (a) Average spin 〈Sz〉 along the N = 41 DSD, AFH, and
BLBQ(β = 0.15) chains in the Stot = Sz,tot = 1 ground state. (b)–
(d) Correlation functions gO,U (d ) of Eq. (8) for O = Sz and U = 1
(b), O = 1 and U = Rz (c), and O = Sz and U = Rz (d) in the bulk
(middle third, p = 14) of the N = 41 chain. The other parameters
are U = −2εd = 6�, 
 = 3�, Ec = 2�. For the SI we employed
the L̃ = 2 surrogate.

For O = Sz and U = 1, Eq. (8) reduces to the spin-spin cor-
relation function gSz,1(d ) = 〈Ŝz,p Ŝz,p+d〉, which is expected to
be short-ranged as there is no spontaneous breaking of the
rotational symmetry in the Haldane phase [21]. This behavior
is confirmed in Fig. 7(a). The corresponding local correlation
length may be estimated by ξ = −1/ log[gSz,1(d )/gSz,1(d −
1)], and is known to be ξAFH � 6 and ξAKLT = 1/ log 3 �
0.9 for the AFH and AKLT cases, respectively [28,64]. By
computing gSz,1(d ) for sites placed symmetrically around the
middle of the chain, we obtain the estimates ξDSD � 3, 1.4
and 0.5 for td/� = 0.4, 0.75 and 2, respectively. For td/� =
0.4, 0.75 the correlation lengths thus interpolate between their
AFH and AKLT counterparts. At a larger td = 2�, where the
DSD spin-1 character is mostly washed out, ξDSD drops below
the AKLT value.

For O = 1 and U = Rz one deals with the pure-string
correlator g1,Rz , which is nonzero at large d in the case of
topologically trivial configurations [23]. In Fig. 7(b), as long
as td is not too large, we find the pure-string correlator g1,Rz to
decay as expected for a Haldane phase where the bulk SO(3)
symmetry fractionalizes into the SU(2) edge-symmetry. For
the larger value td = 2�, this pure-string correlator acquires a
visibly finite positive value, signaling a trivial configuration.

The Haldane phase features a hidden antiferromagnetic or-
der [65] that may be revealed by employing the nonlocal string
order parameter gSz,Rz obtained from Eq. (8) upon setting
O = Sz and U = Rz [23,66]. This may be viewed as a standard
two-point spin-spin correlator that only picks up a ± sign from
the (nonlocally) alternating Sz = ±1 spins while ignoring all
Sz = 0 contributions in between. Figure 7(c) shows that the
DSD chain features a well-defined string order parameter,
with a value close to its AFH and BLBQ counterparts for
the moderate td = 0.4�. With increasing td , we notice how
the DSD string correlator |gSz,Rz (∞)| begins to decrease, e.g.,
reaching a significantly reduced value of 0.15 at td = 2� for
which the above-mentioned pure-string correlator g1,Rz also
had long-range order.

When interpreting the order parameters’ behavior, it is
important to realize that an increasing interdot coupling td
leads to the buildup of density fluctuations that gradually
erode the spin-1 character of the DSD units. Strictly speaking,
the original SO(3) symmetry of an isolated spin-1 DSD unit
is extended to SU(2) at any finite td . At large td , the above
string orders lose their distinguishing power, with gSz,Rz and
g1,Rz both acquiring a long-range order. Although the Haldane
phase is adiabatically connected to a trivial state, its charac-
teristic phenomena remain parametrically stable (i.e., over a
large part of parameter space even when the bulk is in a trivial
phase [67–69]).

In the remainder of this work, we will limit ourselves to
the moderate value td = 0.4�, which shows clear signatures
of the Haldane phase.

4. Entanglement entropy

Even in the absence of string order parameters, topological
phases can be characterized by their “entanglement spectrum”
obtained upon performing a bipartite cut of the system, tracing
out one part and diagonalizing the reduced density matrix
of the other [70–73]. Below, we denote by λ j the Schmidt
eigenvalues that square to the eigenvalues of the reduced
density matrix. In particular, the Haldane phases of integer
spin chains are characterized by an even degeneracy of the
entire entanglement spectrum, caused by the same symmetries
protecting the stability of the Haldane phase when applied
to the eigenstates of the reduced density matrix [74]. The
computation of the entanglement spectrum is straightforward
in our MPS approach, and leads to the results shown in Fig. 8.
All chains under investigation (DSD, AFH, and BLBQ) con-
sistently display the even degeneracy required by the Haldane
phase (up to minute finite-size effects), and perfectly agree
on the dominant pair of eigenvalues. While the higher-lying
portions of the AFH and BLBQ’s spectra naturally agree
on the degeneracy patterns, some deviations occur for the
DSD chain due to its underlying microscopic structure. This
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FIG. 8. Entanglement spectrum for a bipartition into (NL, NR) =
(20, 21) of the N = 41 DSD, AFH, and BLBQ chains in the Stot =
Sz,tot = 1 ground state. The DSD parameters are U = −2εd = 6�,

 = 3�, Ec = 2�, td = 0.4� (a) and td = 0.75�(b). For the SI we
employed the L̃ = 2 surrogate.

is to be expected as the entanglement spectrum is a highly
sensitive measure of a state’s correlations. The corresponding
entanglement entropies, computed as S = −∑

j λ
2
j log λ2

j , are
SDSD = 0.857, SAFH = 0.855, SBLBQ = 0.760 for Fig. 8(a).

5. Excited states

We end this section by examining how well the mapping
of the DSD chain onto the ideal AFH and BLBQ models
extends beyond the ground-state manifold. In Fig. 9, we show
the magnetization profile of the lowest-lying S = 2 state in
our longest N = 21 and 41 chains. All models agree well
on the familiar staggered profile giving rise to the two edge-
spins-1/2, and also on the bulk acquiring a quasiuniform spin
density (responsible for the spin-1 magnon excitation). The
only noticeable quantitative discrepancy is related to the DSD
staggered profile extending slightly more into the bulk than
in the case of the AFH or BLBQ. While higher-order correc-
tions such as bicubic exchange couplings could be considered
towards reaching a better quantitative agreement of an ideal
S = 1 chain with the DSD chain, this is well beyond the scope
of this work.

IV. CONCLUSIONS

The main purpose of this work was to show that
the Haldane phase may be realized in a superconductor-
semiconductor hybrid platform, more precisely in a chain of
repeating QD-SI-QD (DSD) blocks, each exhibiting a robust
spin-1 character over a sizable parameter regime. As long
as the coupling between neighboring DSD units was not too
strong to destroy their spin-1 character, the basic physics of
the DSD chain could be quite well fitted by the bilinear-
biquadratic spin-1 Hamiltonian of Eq. (7) with a biquadratic
coefficient β ∈ (0, 1/3). In this regime, the DSD chain was
found to exhibit clear signatures of the Haldane phase, such
as the presence of characteristic spin-density profiles with ef-
fective spins-1/2 at the edges, the long-range order of specific

FIG. 9. Same as in Figs. 5(a) and 7(a), but for the lowest Stot =
Sz,tot = 2 excited state.

string correlation functions, and the double-degeneracy of the
entanglement spectrum.

Our model could be extended, for example, by including
an external magnetic field in order to define a singlet-triplet
qubit protected from decoherence by a Haldane gap [38]. In
this regime, our DSD unit would be closely related to the
setup used in Ref. [13] to create poor man’s Majorana states;
it would thus be interesting to explore a possible crossover
between the Haldane and Majorana physics in these systems.
Furthermore, considering the effects of a spin-orbit interaction
in the QDs, one could envision a realization of more general
spin chains with anisotropic interactions, known to foster
symmetry-protected topological phases beyond the Haldane
phase [75].

One of the main advantages of the present super-semi
platform lies in the ease of designing higher-spin units: by
individually tunnel-coupling a number N of QDs to the same
SI, we would obtain a robust spin S = N /2 unit [20]. This
could enable the realization of more general spin models in
various geometries [76]. In particular, the generalization of
the AKLT state to spins-3/2 on a hexagonal lattice has notable
implications for quantum computation [77,78]. However, the
Heisenberg model on this lattice exhibits Néel order and is not
in the same phase as the AKLT model [79], but a more general
bilinear-biquadratic-bicubic model may actually be tuned to
an AKLT phase [80]. In this context, it would be worthwhile to
investigate how the present work generalizes to the analogous
QD3-SI hexagonal network depicted in Fig. 10.
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FIG. 10. Illustrations of the spin-3/2 QD3-SI honeycomb lattice.
The QDs (SIs) are indicated green dots (blue triangles).
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APPENDIX A: QD-SI-QD PERTURBATION THEORY

We provide here additional insights from perturbation
theory regarding the spin-singlet-triplet competition in the
QD-SI-QD system. For a complementary picture, see also
Appendix D of Ref. [19]. Our discussion below will parallel
that of Sec. III A in Ref. [57].

For simplicity, we work here in the equivalent BCS picture
obtained after transferring the charging term from the SI to
the QDs; see Ref. [20] for details. As in the main text, we
assume that the superconductor is described by an L̃ = 2
surrogate with both levels coupled to each QD by the same
tunneling amplitude t . We denote the quasiparticle energy by
Eqp =

√
�2 + ξ 2, with ξ = ξ1 = −ξ2 > 0 indicating the lev-

els’ positions. For convenience we employ the BCS coherence
factors u, v satisfying uv = �/2Eqp, u2 − v2 = ξ/Eqp > 0.

Straightforward fourth-order nondegenerate perturbation
theory in the tunnel coupling t (implemented for each total
spin subspace using the SNEG software [81,82]) leads to the
spin-singlet-triplet gap

δS-T ≡ ES=1 − ES=0

t4

= 16

(U/2 + Eqp + Ec)2(U + 2Eqp + 4Ec)

+ 64u2v2

(U/2 + Eqp + Ec)2(U + 4Ec)

+ 64u2v2

(U/2 + Eqp + Ec)2(U + 2Eqp)

− 16(u2 − v2)2

(U/2 + Eqp + Ec)2 2Eqp
. (A1)

The perturbative expansion may be visualized in terms
of spin-exchange processes with the matrix element of each
process being weighted by the inverse product of the virtual
excitation energies. A final state with exchanged spins may

FIG. 11. Spin-singlet-triplet gap of Eq. (A1) vs U and Ec. The
other parameters are � = 1, εd = −U/2, ξ = 1.31�. Only the re-
gion with a spin-triplet ground state is colored.

be reached via intermediate virtual states connected by four
tunneling events between the QDs and the superconductor.

In processes that involve only virtual excitations on the
QDs, the two initial electrons have to be swapped, leading
to an overall sign that energetically favors the spin-singlet
state. This is the case for the first three terms in Eq. (A1).
It is possible, however, to also exchange the spins without
anticommutation signs through processes in which a hole is
involved. These kinds of processes will energetically favor the
spin-triplet state, leading to the appearance of the last term in
Eq. (A1).

The ratio between triplet-favoring and singlet-favoring pro-
cesses is given schematically by 1 + EQDs/Eqp, where EQDs ∼
U + Ec is a typical excitation energy in the QD subsystem.
When it becomes advantageous to perform the spin-exchange
by virtually exciting the superconductor instead of the QDs, a
spin-triplet ground state may emerge.

Notice, however, that there is a certain amount of destruc-
tive interference in the last term of Eq. (A1). Namely, its
subset of processes involving all possible excitations on both
superconducting levels (of the type u1v1u2v2 = u2v2) will fa-
vor the spin-singlet instead. This effect completely suppresses
the last term of Eq. (A1) in the zero-bandwidth limit of degen-
erate levels ξ = 0: for the spin-triplet to be the ground state,
at least two distinct levels with enough separation are required
in the superconductor.

Finally, we consider the large-U limit

δS-T = − 32 ξ 2

U 2 E3
qp

+ 64
(
3 + 2 Ec ξ 2/E3

qp

)
U 3

+ O(U −4) (A2)

and the large-Ec limit

δS-T = 8

E2
c

[
− ξ 2

E3
qp

+ 2 �2

E2
qp(U + 2Eqp)

]
+ O

(
E−3

c

)
, (A3)
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FIG. 12. (a) Deviation of the total spin from its exact value,
〈Ŝ2

tot〉 − 2, vs the DMRG energy convergence threshold δE , for
the spin-triplet ground states of the N = 3, 5 DSD chains. (b), (c)
Ground-state average spin 〈Sz〉 along the N = 3, 5 DSD chains for
various energy convergence thresholds δE = 10−3�–10−7�. The
DSD chain parameters are U = −2εd = 6�, 
 = 3�, Ec = 2�,
td = 0.4�. For each SI we employed the L̃ = 2 surrogate.

which are both in agreement with the above considerations
(and with the conclusions of Ref. [19]) regarding the existence
of a finite bandwidth threshold for establishing the spin-triplet
ground state. Note, however, that the numerical examples
considered in the main text (with U = 6�, Ec = 2�) do not
fall under any of these limits, but are chosen instead to ensure
the maximum spin-singlet-triplet gap; see Fig. 11.

APPENDIX B: DMRG TECHNICAL DETAILS

We collect in this Appendix the technical details regarding
our DMRG simulations. The latter are based on the ITensor

FIG. 13. (a) Ground-state energy loss for various SI auxiliary
space dimensions daux = 4, 6, 8, relative to the daux = 10 value.
(b) Corresponding ground-state average spin 〈Sz〉 along the N =
5 DSD chain, for daux = 4, 6, 8. The DSD chain parameters are
U = −2εd = 6�, 
 = 3�, Ec = 2�, td = 0.4�. For each SI we
employed the L̃ = 2 surrogate.

library [83,84], which allows us to seamlessly combine vari-
ous kinds of local Hilbert spaces, e.g., fermionic and auxiliary
spaces for each SI. Our numerical codes are available online
[85] and may be run on a standard laptop or desktop computer.

In obtaining the results presented in the main text, we
employed a maximum MPS bond dimension of 2000, a sin-
gular value truncation cutoff of 10−13, and we made use of
the ITensor noise term for aiding convergence. We used an
energy convergence threshold of δE = 5 × 10−9� and we
truncated the auxiliary Hilbert space for each SI to the dimen-
sion daux = 10.

While the ITensor library does allow for the conservation
of locally additive quantum numbers, e.g., the total spin com-
ponent Sz,tot and the total particle number Ntot, it does not
currently support enforcing global non-Abelian symmetries
like the SU(2) total spin invariance. This is not an issue
for even-length DSD chains, where minimizing 〈Ĥ〉 in a
given Sz,tot sector leads to the corresponding |Stot = Sz,tot〉
state. However, in computing the first excited spin-singlet
state in odd-length DSD chains, a naive 〈Ĥ〉 minimization
in the Sz,tot = 0 sector would yield the |Stot = 1, Sz,tot = 0〉
component of the spin-triplet ground multiplet. To remedy
this situation, we perform the minimization of 〈Ĥ + wŜ2

tot〉,
where Ŝ2

tot is the total spin operator [19]. When the weight w

exceeds the spin-singlet-triplet gap, the extra term penalizes
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FIG. 14. Energy variation obtained by truncating the ground-
state MPS down to various bond dimensions D, relative to the
original D = 2000 value, for the N = 21, 41 DSD chains. The
DSD chain parameters are U = −2εd = 6�, 
 = 3�, Ec = 2�,
td = 0.4�. For each SI we employed the L̃ = 2 surrogate.

the spin-triplet enough to allow for the spin-singlet to be found
by the minimization.

In our simulations, the total spin is thus not a conserved
quantity, and its correct value is achieved only asymptotically
in the energy minimization process, as the contributions of
the excited states are systematically eliminated. This is illus-
trated in Fig. 12(a), where for the Stot = 1 ground state of

the N = 3, 5 DSD chains, we obtain 〈Ŝ2
tot〉 − 2 ∼ 1000 δE/�,

requiring quite a low-energy threshold δE to achieve good
convergence. This is reflected also in the spin-density profiles
along the chains shown in Figs. 12(b) and 12(c), which con-
verge well only below δE/� ∼ 10−5–10−6.

On the other hand, convergence with respect to increasing
the SI auxiliary space dimension daux is achieved much more
rapidly. Given the relatively large charging energy Ec = 2�

chosen in our simulations, a relatively small value of daux ∼
6–8 is able to safely account for all relevant SI charge fluctu-
ations; see Fig. 13.

Finally, let us discuss the effects of truncating the MPS
ground states for the longest chains analyzed in this work,
N = 21, 41. We show in Fig. 14 the energy variation 〈Ĥ〉D −
〈Ĥ〉D=2000 obtained upon truncating the two MPSs down to
various bond dimensions 100 � D � 1900, relative to the ac-
tual value used in the energy optimization process D = 2000.
This also provides an upper bound for the energy variations
that would be obtained by actually performing various DMRG
minimizations at smaller bond dimensions. Figure 14 con-
firms that convergence has been satisfactorily achieved at
D = 2000, with (〈Ĥ〉D=1900 − 〈Ĥ〉D=2000)/� ∼ 10−7–10−8

for N = 21, 41.
As a complementary convergence indicator for the large-

scale N = 21, 41 calculations, let us mention the errors in
the ground-state total spin (at D = 2000), i.e., 〈Ŝ2

tot〉 − 2 =
2.7 × 10−6 and 1.3 × 10−6, respectively, in good agreement
with Fig. 12 given the energy convergence threshold δE =
5 × 10−9� considered here.
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