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Quantum simulations are quickly becoming an indispensable tool for studying particle transport in correlated
lattice models. One of the central topics in the study of transport is bad-metal behavior, characterized by
the direct-current resistivity linear in temperature. In the fermionic Hubbard model, optical conductivity has
been studied extensively, and a recent optical lattice experiment demonstrated bad-metal behavior in qualitative
agreement with theory. Far less is known about transport in the bosonic Hubbard model. We investigate the
conductivity in the Bose-Hubbard model and focus on the regime of strong interactions and high temperatures.
We use numerically exact calculations for small lattice sizes. At weak tunneling, we find multiple peaks in
the optical conductivity that stem from the Hubbard bands present in the many-body spectrum. This feature
slowly washes out as the tunneling rate gets stronger. At high temperature, we identify a regime of T -linear
resistivity, as expected. When the interactions are very strong, the leading inverse-temperature coefficient in
conductivity is proportional to the tunneling amplitude. As the tunneling becomes stronger, this dependence
takes quadratic form. At very strong coupling and half filling, we identify a separate linear resistivity regime at
lower temperature, corresponding to the hard-core boson regime. Additionally, we unexpectedly observe that at
half filling, in a big part of the phase diagram, conductivity is an increasing function of the coupling constant
before it saturates at the hard-core-boson result. We explain this feature based on the analysis of the many-body
energy spectrum and the contributions to conductivity of individual eigenstates of the system.
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I. INTRODUCTION

Cold atoms in optical lattices have provided a clean and
tunable realization of the Hubbard model [1]. The focus of
early experiments was on studying phase transitions within
the model, but various aspects of nonequilibrium dynamics
have also been explored in this setup. In particular, a lot of
effort has been invested in performing transport measurements
with cold atoms [2–4]. Transport measurements in optical
lattices are of great interest as they allow us to isolate the
effects of strong correlations from the effects of phonons and
disorder in a way that is not possible in real materials.

Particular attention is paid to linear-in-temperature resis-
tivity, which is believed to be related to the superconducting
phase and/or quantum critical points in cuprates and more
general strongly correlated systems [5–10]. This phenomenon
has been studied theoretically in different versions of the
Fermi-Hubbard model and in different parameter regimes
[11–17]. The onset of resistivity linear in temperature was
addressed in more general terms from the theoretical side in
Refs. [18–20]. In experiment with fermionic cold atoms in
optical lattices, the T -linear resistivity has also been observed
to span a large range of temperature, in qualitative agreement
with theory [4]. However, transport in bosonic lattice models
has been less studied from both theoretical and experimental
perspectives.

Bosonic transport in the strongly interacting regime of the
Bose-Hubbard model was addressed in a cold-atom setup by
investigating expansion dynamics induced by harmonic-trap
removal [21,22] and by studying center-of-mass oscillations
induced by trap displacement [23,24]. However these studies

did not focus on optical conductivity. Optical conductivity of
bosons at zero and low temperature was calculated in early pa-
pers [25–27]. The conductivity of two-dimensional hard-core
bosons was addressed in Refs. [28,29], and a large tempera-
ture range with linearly increasing resistivity was found. The
conductivity of strongly correlated bosons in optical lattices
in a synthetic magnetic field was obtained in Ref. [30]. The
regime of resistivity linear in temperature was recently investi-
gated for the Bose-Hubbard model at weak coupling [31]. The
dynamical response within the scaling regime of the quan-
tum critical point and universal conductivity at the quantum
phase transition were investigated theoretically in an attempt
to establish a clear connection with ADS-CFT mapping
[32,33]. In addition to cold-atom studies, bosonic transport
properties have been studied in the context of an emergent
Bose liquid [34–36]. Transport properties of nanopatterned
film arrays have been analyzed in terms of bosonic strange
metal featuring resistivity linear in temperature down to low
temperatures [37].

In this paper, we study conductivity in the Bose-Hubbard
model [1,25] in relation to optical lattice experiments with
bosonic atoms. We consider the strongly interacting regime
and focus on high temperatures, away from any ordering
instabilities. We consider small lattice sizes of up to 4 × 4
lattice sites and employ averaging over twisted boundary con-
ditions to lessen the finite-size effects. We control our results
by comparing different lattice sizes, as well as by checking
sum rules to make sure that charge stiffness is negligible. We
also use both the canonical and grand-canonical ensembles
and compare the results. To solve the model, we use exact
diagonalization and finite-temperature Lanczos method [38].
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We compute and analyze the probability distribution of the
eigenenergies (the many-body density of states), the spectral
function, and the optical and the direct-current (DC) conduc-
tivities, as well as some thermodynamic quantities. Where
applicable, we compare results to the hard-core limit and
the classical limit, as well as to the results obtained with
the bubble-diagram approximation. Our results show several
expected features. First, the many-body density of states,
spectral function, and optical conductivity all simultaneously
develop gaps and corresponding Hubbard bands as the cou-
pling is increased. Next, we clearly identify the linear DC
resistivity regime at high temperature and find the connection
between the slope and the tunneling amplitude, along the lines
of Ref. [20]. Furthermore, at lower temperatures and high
coupling, we identify a separate linear resistivity regime cor-
responding to hard-core-like behavior, which can be expected
on general grounds. We also find some unexpected features:
we observe nonmonotonic behavior in the DC conductivity
as a function of the coupling constant, which we map out
throughout the phase diagram.

This paper is organized as follows: In Sec. II, we briefly
describe our method of choice. In Sec. III we present our
results: In Sec. III A we address the many-body density of
states, and in Sec. III B we show some thermodynamic prop-
erties of the Bose-Hubbard model in the high-temperature
regime. In Sec. III C we calculate th optical conductivity for
finite interaction strength, and in Sec. III D we investigate the
dependence of the direct-current conductivity on microscopic
parameters of the Bose-Hubbard model and temperature. In
Sec. III E we explain the observed features using an analy-
sis of the Kubo formula from Ref. [20]. Then in Sec. III F
we compare our results for half filling with the results for
hard-core bosons [28]. We discuss the finite-size effects in
Sec. III G and compare the results obtained with the canonical
ensemble with the results obtained with the grand-canonical
ensemble in Sec. III H. In Sec. III I we compare our results
obtained for small lattices with the result of the often used
bubble-diagram approximation. Finally, we summarize our
findings in Sec. IV.

II. MODEL AND METHODS

Cold bosonic atoms in optical lattices are realistically de-
scribed by the Bose-Hubbard model [1]:

H = −J
∑
〈i j〉

(b†
i b j + H.c. ) + U

2

∑
i

ni(ni − 1), (1)

where J is the tunneling amplitude between nearest-neighbor
sites of a square lattice and U is the on-site density-density
interaction. Unless stated differently, our units are set with the
choice U = 1. Throughout this paper, we set lattice constant
a = 1, h̄ = 1, and kB = 1. We also assume that the effective
charge of particles is q = 1.

The quantitative finite-temperature phase diagram of the
model on a square lattice was obtained in Ref. [39]. At integer
filling, a quantum phase transition between a Mott insulator
state and a superfluid is found [in particular, for filling n = 1
boson per site, the transition occurs at (J/U )c ≈ 0.0597]. At
finite temperature a Berezinskii-Kosterlitz-Thouless (BKT)

transition describes the loss of superfluidity [40]. In this
paper we work in the high-temperature regime, where we
expect only normal (noncondensed) states and short-range
correlations.

The Bose-Hubbard model represents only a low-energy
effective description of the full continuum Hamiltonian for
bosonic particles in a periodic potential [1]. For this rea-
son, the practicality of the high-temperature limit considered
throughout the paper is provisional. We assume that temper-
atures are high in comparison with the effective parameters J
and U but that they are small enough to keep all the higher
single-particle bands of the full model unoccupied. The appli-
cability of this condition will depend on actual experimental
parameters, such as the lattice constant and lattice depth.

In the cold-atom realization of Bose-Hubbard models, the
constituent particles are charge neutral. However, the current
can be induced and the conductivity can be probed either by
implementing a linear potential or by using artificial gauge
fields to introduce a time-dependent vector potential, which
would correspond to a constant electric field [41,42]. We
consider the retarded current-current correlation function at
finite temperature T = 1/β,

Cxx(t ) = −iθ (t )〈[Jx(t ), Jx]〉β, (2)

where the current operator is given by

Jx = −iJ
∑
〈i j〉x

(b†
i b j − H. c.), (3)

with the summation only over nearest neighbors along the
x direction. The partition function is Z (β ) = Tr(e−βH ), and
averaging is performed as

〈X 〉β = 1

Z (β )
Tr(e−βH X ). (4)

In the linear response regime, the conductivity is given by the
Kubo formula [43,44]:

σxx(ω) = i

ω

[〈 − Ex
kin

〉
β

+ Cxx(ω)
]
, (5)

where Cxx(ω) = ∫ ∞
−∞ dteiωtCxx(t ) and 〈Ex

kin〉β is the average
kinetic energy along the x direction. Note that for the real
conductivity from Eq. (5), we need the imaginary part of
the correlation function ImCxx(ω). The DC conductivity is
obtained as σDC = Re σxx(ω → 0).

In the following we rely on numerically exact approaches
for small lattice sizes. We use exact diagonalization to obtain
the eigenenergies En and eigenstates |n〉 of the Hamiltonian H
and calculate

Re σxx(ω) = π

Z (β )ω

∑
n,m

|〈n|Jx|m〉|2(e−βEn − e−βEm )

× δ(ω + En − Em). (6)

For larger lattice sizes, we apply the finite-temperature Lanc-
zos method [38]. We employ averaging over twisted boundary
conditions to lessen the finite-size effects [45,46]. This is done
by introducing in the model an external homogeneous gauge
field (vector potential). Formally, this amounts to setting the
same complex phase for each of the hopping amplitudes
in a given direction. In particular, for the hopping along
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the x direction to the first neighbor on the right we use
Ji j = J exp(iθx/Lx ), and for the hopping to the left we use
Ji j = J exp(−iθx/Lx ). The same is done for the y direction.
Physically, this corresponds to switching to a moving (iner-
tial) reference frame. Note that the expression for the current
operator from Eq. (3) in this case reads [47]

Jx = −i
∑
〈i j〉x

(Ji jb
†
i b j − H. c.). (7)

We randomly sample values of θx and θy in the range (0, 2π )
and perform averaging over the obtained eigenstates for these
different values of total flux in Eq. (6).

Due to the expected onset of charge stiffness in finite
systems and, more generally, longer-range correlations at low
temperature, we expect our method to be limited to the regime
of high temperature and relatively strong interactions (cor-
responding to a smaller ratio J/U ). For a crosscheck of the
validity of our numerical approaches, we rely on a comparison
of different lattice sizes (Sec. III G) and the sum rule [48]∫ ∞

0
dω Re σxx(ω) = π

2

〈−Ex
kin

〉
β
. (8)

Indeed, we find that the sum rule is satisfied at temperatures
T/U � 1 and tunneling J/U � 0.2. In this regime we find
that the results no longer significantly change with increasing
lattice size (Sec. III G); thus, our results are expected to be
reasonably representative of the thermodynamic limit.

Finally, we control the results with respect to the choice of
the statistical ensemble. A comparison of the results obtained
with the grand-canonical and canonical ensembles is given
in Sec. III H. We do not find a substantial difference in the
results between the two statistical ensembles; thus, we choose
to work in the canonical ensemble, as it allows us to consider
larger lattices. Unless stated differently, the results presented
in this paper are for the canonical ensemble.

III. RESULTS

A. Eigenstate spectrum

We first consider the many-body density of states of the
model (1) defined by

g(E ) =
∑

n

δ(E − En). (9)

We show our numerical results for fillings n = 1/2 and n = 1
in Fig. 1(a).

The classical limit J = 0 is simple to understand.
The many-body spectrum features energies EJ=0

n = nU, n =
0, 1, . . ., with huge degeneracies. The Hilbert space dimen-
sion is dim H = (L + Np − 1

Np
), where L is the number of lattice

sites and Np is the number of particles. For Np < L, there are
( L
Np

) states with zero energy, (L
1)( L − 1

Np − 1) states (a single site
occupied by two bosons) with energy En = U , and so on.
The number of different energy levels is set by the system
size that we consider. As the ratio J/U increases from zero,
these macroscopic degeneracies are slowly resolved, and the
bands obtain a finite width. This is precisely what we observe
in the numerical data, as shown in Fig. 1(a), but we find
that separate many-body bands do persist up to a finite value
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FIG. 1. The normalized many-body density of states defined in
Eq. (9) for (a) n = 0.5, Lx = 4, Ly = 3, and Np = 6 and (b) n = 1,
Lx = 3, Ly = 3, and Np = 9. The black solid line in (a) gives the
corresponding density of states for the case of hard-core bosons. We
use 100 random realizations of the twisted boundary conditions. In
(c) we plot the height of the peak at energies E = 2U (for half filling)
and E = 4U (for unit filling). The black solid lines give the fitted
(J/U )−1 dependence.

of J/U ≈ 0.05, regardless of filling. Around this value, the
peaks in g(E ) (found around E = nU ) have heights roughly
proportional to 1/J [see Fig. 1(c)]. As J increases further,
the density of states turns into a wide, bell-shaped curve, as
shown in Fig. 1(b) for unit filling at J/U = 0.2. This particular
feature of the spectrum has been considered for a related
one-dimensional model in Ref. [49]. We also observe that
for n = 1/2, the lowest many-body band can be reasonably
approximated by hard-core bosons.

B. Thermodynamic properties

We investigate thermodynamic properties for T/U � 1,
as this regime has not been discussed in much detail in the
literature. Our numerical results indicate that in this regime,

064501-3
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FIG. 2. (a) Interaction energy, Eq. (10), as a function of tem-
perature. (b) Kinetic energy, Eq. (15), as a function of temperature.
(c) The coefficient α(Np) from Eq. (15) as a function of system size.
System size Lx = 4, Ly = 3; number of particles Np = 12.

thermodynamic quantities approach the results of the atomic
limit J = 0. In particular, the interaction energy

〈Eint〉β = U

2

〈∑
i

ni(ni − 1)

〉
β

(10)

is very weakly dependent on the tunneling J/U , as shown
in Fig. 2(a), for the tunneling range that we consider 0 �
J/U � 0.2 and close to the single-site J = 0 value. From the
numerical results, we find that the average value of the kinetic
energy

〈Ekin〉β =
〈
−J

∑
〈i j〉

b†
i b j + H.c.

〉
β

(11)

can be reasonably approximated by the leading order in the
high-temperature expansion

〈Ekin〉β ≈ Tr(1 − βH )Ekin

Tr(1 − βH )
(12)

≈ −β
TrE2

kin

dimH (13)

= −α(Np)NpJ2/T, (14)

α(Np) = 1

dimH
∑
〈i j〉

Trni(n j + 1), (15)
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FIG. 3. Optical conductivity Re σxx (ω) as a function of fre-
quency. Parameters are (a) J/U = 0.04, (b) J/U = 0.1, and (c)
J/U = 0.2; Lx × Ly = 4 × 3; and Np = 6.

where Np is the number of particles in the system and dimH
is the dimension of the Hilbert space. The coefficient α(Np) is
size dependent [see Fig. 2(c)].

C. Optical conductivity

We present numerical results for the optical conductivity
in Fig. 3 for bosons with J/U = 0.04, 0.1, 0.2 and temper-
atures T/U = 2, 5, 10. We check that within this range of
physical parameters the sum rule given in Eq. (8) is satisfied
with accuracy better than 1%. For the weak tunneling am-
plitude J/U = 0.04 we observe that the conductivity exhibits
multiple peaks at ω ∼ nU, n = 1, 2, 3, . . . that stem from the
energy bands of the Hubbard model, as shown in Fig. 1.
As temperature is lowered, the higher-energy peaks become
smaller relative to the low-energy peaks, which is clearly
expected. However, in absolute terms, the optical conductivity
gets smaller with increasing temperature at all frequencies. As
the tunneling gets stronger the peaks merge, but the multipeak
structure is still visible at intermediate hopping J/U = 0.1.
Finally, for J/U = 0.2 the conductivity takes a simpler form
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FIG. 4. Imaginary part of the current-current correlation function
ImCxx (ω) multiplied by temperature T for a better comparison as a
function of frequency ω. Parameters are (a) Np = 6 and (b) Np = 12,
J/U = 0.1, and Lx × Ly = 4 × 3.

[see Fig. 3(c)]. In Fig. 4 we show that at low frequency, the
current-current correlation function scales with temperature in
a simple way, but the behavior is more complicated at higher
frequencies.

D. DC limit and T -linear resistivity

We now focus on the range of small ω. We have seen that
the strong interaction U introduces gaps in the many-body
spectrum that translate into peaks in the optical conductivity.
In order to address the role of tunneling J in more detail,
we replot numerical data in Fig. 5 by showing the current-
current correlation ImCxx(ω)/J2 as a function of ω/J . The
rescaling by J2 is motivated by the basic definition of the
current-current correlation function from Eq. (2). We find that
for up to J/U ≈ 0.08 numerical data overlap near ω = 0 and
are very weakly dependent on J/U . We further analyze and
explain this feature in Sec. III E.

In order to extract the DC conductivity σDC from the
current-current correlation function, we consider small but
finite ω and perform a linear fit, limω→0 ImCxx(ω)(T ) ≈
σDC(T ) × ω. For numerical purposes we perform the fitting
in the range ω ∈ (0, J ).

In Fig. 6 we plot the DC conductivity as a function of
inverse temperature β. Overall, we find that the normalized
conductivity σDC/Np decreases with filling from n = 1/2 to
n = 1 in this strongly interacting regime. This is easily under-
stood because, at integer fillings, the model is expected to have
maximal resistivity (at integer filling, low temperature, and
strong enough coupling, the model is in the Mott insulating
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FIG. 5. Imaginary part of the current-current correlation function
ImCxx (ω) as a function of frequency, T/U = 10. Parameters are
(a) Lx × Ly = 4 × 3 and Np = 6 and (b) Lx × Ly = 3 × 3
and Np = 9.

FIG. 6. DC conductivity σDC as a function of inverse temperature
β for (a) J/U = 0.04, (b) J/U = 0.1, and (c) J/U = 0.2. System size
Lx × Ly = 4 × 3. The solid lines give fits according to Eq. (16), and
the dashed lines give the leading linear dependence in β.
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VASIĆ AND VUČIČEVIĆ PHYSICAL REVIEW B 110, 064501 (2024)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

FIG. 7. The coefficient c1 introduced in Eq. (16) versus tunneling
amplitude J/U . The solid lines give linear fits, and the dashed lines
present quadratic functions.

phase). More importantly, we observe at high temperature a
clear linear regime σDC ∼ β, i.e., ρDC ∼ T .

In general, it is expected that a finite-size system with a
bounded spectrum exhibits resistivity linear in temperature in
the limit T → ∞ (or σDC linear in the inverse temperature
β) [18,20]. When working within the canonical ensemble in
the strongly interacting limit, the upper bound of the Bose-
Hubbard model is close to Np(Np − 1)U/2, where Np is the
number of particles, and all the bosons occupy the same site.
Within the grand-canonical ensemble we control the average
density by reducing the chemical potential μ, and in this way
we effectively limit the highest-energy state.

The key question is how far down in the temperature range
resistivity linear in temperature persists. In particular, for
hard-core bosons it has been shown that higher-order correc-
tions become strong only at low temperatures in the vicinity of
the BKT phase transition [28]. To determine where quadratic
corrections to σDC ∼ β start to play a role, we fit our result to

σDC(β ) ≈ c1β + c2β
2 (16)

in the range βU ∈ (0.1, 0.2). We find that this approximation
works well even for a wider range βU ∈ (0.1, 0.5). For weak
hopping J/U � 0.1, in agreement with the observation from
Fig. 5, we find that c1 ∼ J , or

σDC ∼ J/T . (17)

A closely related result for the fermionic model was de-
rived using a high-temperature expansion in Ref. [13]. For
stronger hopping it holds that c1 ∼ J2, as shown in Fig. 7.
The subleading term c2 becomes more prominent as the ratio
J/U gets stronger.

E. The analysis of the Kubo formula

We explain the numerically identified features of the
conductivity using the framework introduced in Ref. [20].
Starting from the Kubo formula, Eq. (6), we consider small
enough ω → 0. Following the previous numerical analysis,
in the following we use small but finite ω. We approximate
the Dirac delta function from Eq. (6) as δ(x) ≈ θ (
ω/2 −
|x|)/
ω, where θ is the Heaviside function and the bin width

ω is chosen to accommodate a reasonably large number of
energy levels of our finite-size system. By rewriting Eq. (6)

and taking the limit ω → 0, we obtain

σDC = lim
ω→0

π (1 − e−βω )

ωZ (β )

∑
n,m

δ(En − Em − ω)|〈n|Jx|m〉|2e−βEn

= πβ

Z (β )
lim

ω→0,
ω→0

1


ω

∑
n,m:|En−Em−ω|<
ω/2

|〈n|Jx|m〉|2e−βEn

= β

Z (β )

∑
n

lim
ω→0

fn(ω)e−βEn , (18)

where

fn(ω) = lim
ω→0,
ω→0

π


ω

∑
m:|En−Em−ω|<
ω/2

|〈n|Jx|m〉|2. (19)

Using the high-temperature expansion in Eq. (18), we find
approximate results for the coefficients c1 and c2 introduced
in Eq. (16),

c1 ≈ 〈 fn(ω)〉n ≡ 1

dimH
∑

n

fn(ω), (20)

c2 ≈ 〈 fn(ω)〉n〈En〉n − 〈 fn(ω)En〉n, (21)

where 〈An〉n ≡ 1
dimH

∑
n An. By a numerical inspection, we

find that estimates for the coefficients c1 and c2 obtained in
this way do match numerical data. Based on the approxima-
tion in Eq. (20), we infer that c1 ∼ J behavior is related to
the presence of bands in the many-body spectrum. The bands’
density of states is inversely proportional to J (see Fig. 1),
and consequently, the number of available states within a
frequency bin 
ω in Eq. (19) is inversely proportional to
the tunneling J . For stronger J a quadratic dependence c1 ∼
(J/U )2 appears as the band structure is washed out (Fig. 7).
Following Ref. [20], we perform coarse graining of the coef-
ficients fn(ω) from Eq. (19),

f (E , ω) = 1

g(E )

∑
n

δ(En − E ) fn(ω), (22)

where g(E ) is the many-body density of states, Eq. (9). An
almost flat line, an indicator of the invariance of f (E , ω) with
energy E , ensures resistivity linear in temperature far down in
T , as shown in Ref. [20]. In Fig. 8(a) we present the coarse-
grained coefficients f (E , ω) for J = 0.1 and U = 2 and U =
4. In both cases the many-body spectrum consists of bands
centered around 0,U, 2U, . . .. Within each band f (E , ω) is
roughly constant and weakly dependent on U . As U gets
weaker, the gaps between bands are closed, and the function
f (E , ω) acquires more features; see Fig. 8(b) for U = 1.
Because the function f (E , ω) deviates from an averaged flat
line throughout the spectrum, at first glance resistivity linear
in temperature is found only at high temperatures. This obser-
vation is in agreement with the data presented in Fig. 6, where
the regime of linear resistivity is found roughly at T � 5U
(β � 0.2). However, in the next section we discuss another
regime of linear resistivity found at lower temperatures when
the hard-core description becomes relevant.

F. Comparison with hard-core bosons

Conductivity of hard-core bosons at half filling was inves-
tigated in Ref. [28]. It was found that a Gaussian function
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FIG. 8. The function f (E , ω) as defined in Eq. (22) for J = 0.1
and U = 4 and (a) J = 0.1 and U = 2, (b) J/U = 0.1 and U = 1,
and (c) hard-core bosons with J = 0.1. Parameters are Lx × Ly =
4 × 3, Np = 6, ω/J = 0.35, and 
ω/U = 0.01. The horizontal lines
show averaged values of f (E , ω) over the full spectrum.

approximates well optical conductivity as a function of fre-
quency. In order to reach the limit of hard-core bosons here
we consider bosons at half filling (n = 1/2 bosons per lattice
site). We keep fixed hopping rate J = 0.1 and change the
value of local interaction U . In Fig. 9(a) we show that for a
low enough ratio T/U , for example, for U = 4 and T = 1,
our results for the optical conductivity at half filling approach
the result for hard-core bosons for ω/U < 1 as expected.
The contribution of higher Hubbard bands is absent in the
hard-core model.

The same applies to the DC conductivity, as shown in
Fig. 9(b). Reference [28] showed that the resistivity of hard-
core bosons is linear in temperature down to very low
temperatures close to the BKT transition. Our considerations
from the previous section are in line with this conclusion, as
we find that the hard-core bosons exhibit a nearly constant
function f (E , ω) [see Fig. 8(c)], which closely corresponds
to the function f (E , ω) of the lowest band of the full model.
As expected, when the temperature is low enough with respect
to U , only the lowest band of the full model is occupied, and
bosons can be described as hard-core particles. Consequently,
the DC conductivity starts off as a linear function of the
inverse temperature β, exhibits a transitional behavior for a
range of intermediate β values, and changes into a linear
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FIG. 9. (a) The conductivity Re σxx (ω) vs frequency ω for half
filling at T = 1 for hard-core bosons, U = 2 and U = 4. (b) The
DC conductivity as a function of inverse temperature β. The dot-
dashed lines give the leading-order high-temperature result σDC ≈
c1 × β for U = 4 and U = 2. Parameters are J = 0.1, Lx × Ly = 4 ×
3, and Np = 6.

function corresponding to hard-core-boson behavior at large
β (low T ).

Now we investigate in more detail how the DC conduc-
tivity of hard-core bosons is reached by varying parameter
U of the full model and temperature T . We present data
for the DC conductivity as a function of temperature T and
interaction U in Fig. 10. As we plot the DC conductivity
multiplied by temperature T , for hard-core bosons we find
an almost perfect constant within the considered temperature
range [see Fig. 10(a)]. This constant is reached for U = 8
at T = 2 and for U = 4 at T = 1. What we find surprising
is the U dependence of the conductivity: we find that σDCT
exhibits a minimum at some finite U before reaching the
hard-core-boson result [see Fig. 10(b)].

This behavior can be traced back to the result from
Fig. 8(c), where we saw that the average value of f (E , ω →
0) of hard-core bosons overestimates the result of the full
model. We rewrite Eq. (18) as

σDC T = 1∑
n e−βEn

∑
n

lim
ω→0

fn(ω)e−βEn (23)

and consider the strongly interacting limit where the function
fn(ω → 0) can be approximated by a sum of rectangular func-
tions centered around 0,U, 2U, . . ., as presented in Fig. 8(a).
From Fig. 8(a) we observe that from the several lowest Hub-
bard bands, it is the lowest band that has the highest value
of f (E , ω → 0). From Eq. (23) we infer that at fixed tem-
perature, as we increase the interaction strength U , both the
numerator and the denominator of the last expression are
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FIG. 10. The DC conductivity multiplied by temperature T as a
function of (a) temperature T , (b) interaction U , and (c) the ratio
T/U . The large blue circles in (b) give the value of the coefficient c1

introduced in Eq. (20) as a function of U . (d) The color map gives the
DC conductivity multiplied by temperature T . The limit of hard-core
bosons is reached in the bottom right corner of the plot. The yellow
circles in (d) give the location of minima in σDCT as a function of
U . The solid line is a guide to the eye. Parameters are J = 0.1, Lx ×
Ly = 4 × 3, and Np = 6.

reduced. Yet the partition function Z (β ) decays faster because
each term e−βEn ∼ e−βnU in the numerator is multiplied by a
factor fn < 1 (and gets smaller with increasing n), while in
the denominator it is multiplied by 1. Therefore, the conduc-
tivity increases with increasing U , and we reach the limit of
hard-core-boson conductivity from below. This is a striking
and highly counterintuitive observation. We have checked that
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FIG. 11. The current-current correlation function vs frequency
ω for unit filling and three different system sizes: Lx × Ly = 4 × 2,
Lx × Ly = 3 × 3, and Lx × Ly = 4 × 3. Parameters are J/U = 0.1
and (a) T/U = 10, (b) T/U = 5, and (c) T/U = 2.

this feature persists even when calculations are done in the
grand-canonical ensemble and when the size of the lattice is
changed, but it still might be an artifact of the finite size of the
system.

G. Finite-size effects

While that lattice sizes that we consider are too small
to quantitatively predict results in the thermodynamic limit,
we expect that the main features of the optical con-
ductivity that we observe remain valid. For example, at
high temperature we do expect DC conductivity to take
the form σ th

DC ∼ J/T , yet the exact values of the tun-
neling J and temperature T where this behavior changes
into a more complex dependence are possibly system size
dependent.

In Fig. 11 we compare the current-current correlation
functions for three different lattice sizes at several values
of temperatures. Overall, the results show good agreement,
and the main discrepancies are found close to ω → 0. By
comparing the results for the two largest available lattice sizes
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FIG. 12. The current-current correlation function ImCxx (ω) vs
frequency ω for half filling and J/U = 0.04 (left column) and J/U =
0.2 (right column). Parameters are (a) and (b) T/U = 10, (c) and (d)
T/U = 5, and (e) and (f) T/U = 2. Lattice size Lx × Ly = 4 × 3,
and Np = 6. The thin lines give results for each of the 100 boundary
conditions separately. The thick line is the averaged value.

and assuming that finite-size results approach the thermody-
namic limit as σDC(Np) ≈ σ th

DC + const/Np, we estimate the
relative errors of σDC with respect to the result in the ther-
modynamic limit σ th

DC to be roughly of the order of 10%. In
particular, for Np = 8 and Lx × Ly = 4 × 4, 
σDC/σDC ≈ 3%
at J/U = 0.04 and T/U = 10, 
σDC/σDC ≈ 12% at J/U =
0.04 and T/U = 1, and 
σDC/σDC ≈ 15% at J/U = 0.2 and
T/U = 10. Another way to claim that finite-size effects are
under control is to explore in more detail the role of boundary
conditions. In our study we implement the so-called twisted
boundary conditions, as introduced in [45,46]. We emphasize
that the dependence of the results on the choice of the gauge
is a measure of finite-size effects. The variance of the results
with respect to a random choice of the gauge field being small
is a good indication that the results are well representative of
the thermodynamic limit.

As we typically implement 100 twisted boundary con-
ditions [45,46,50], in Fig. 12 we plot the results for the
imaginary part of the current-current correlation function for
all the different boundary conditions separately, together with
their averaged value. At high T we find very weak dependence
on the boundary conditions already for lattice size Lx × Ly =
4 × 3, as can be seen in the top row of Fig. 12. However,
the dependence gets stronger with decreasing temperature, as
shown in the bottom row of Fig. 12, and it increases with the
ratio J/U .
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FIG. 13. (a) The partition function in different particle sec-
tors, ZN = Tr exp[−β(H − μN )]. The chemical potential is set by
the requirement 〈N〉/(Lx × Ly ) = 1. The imaginary part of the
current-current correlation function for J/U = 0.04 at (b) T/U = 2,
(c) T/U = 5, and (d) T/U = 10. Lattice size Lx × Ly = 4 × 2, with
no twisted boundary conditions.

H. The grand-canonical ensemble

Here we consider the grand-canonical ensemble and intro-
duce chemical potential μ,

Hμ = H − μN, (24)

where N is the number of particles. The value of the chemical
potential μ is set as usual by requiring a certain filling. In
Fig. 13 we compare the results obtained in this way with the
results within the fixed particle-number sector. We consider
a small lattice Lx × Ly = 4 × 2 and up to 20 particles. We
find that there are some quantitative differences, while the
main qualitative features of the correlation function remain
unchanged. The contribution of conductivity peaks found at
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FIG. 14. Spectral functions for (a) J/U = 0.04 and (c) J/U = 0.1. Optical conductivity Re σxx (ω) as a function of frequency ω for
(b) J/U = 0.04 and (d) J/U = 0.1. Parameters are Lx × Ly = 3 × 2, βU = 0.2, and μ/U ≈= −1.97, such that 〈N〉 = 1.

ω = nU is stronger at high temperatures when we take into ac-
count particle-number fluctuations within the grand-canonical
ensemble.

I. Comparison with the bubble-diagram approximation

Here we use the bubble-diagram approximation, which has
been extensively used for the calculation of the conductivity
within the Fermi-Hubbard model [11,12,14,15,17,47,51–54].
We find that for small lattices the bubble-diagram approxima-
tion works well only at high frequencies. A similar relation
between the full result and the bubble-diagram approximation
was observed in the fermionic Hubbard model [14] and, more
recently, even in the context of the Holstein model [55]. By
contrast, however, here vertex corrections appear to reduce
conductivity, rather than increase it.

Within the grand-canonical ensemble we first calculate the
single-particle Green’s function,

Gk(ω + iδ) = 1

Tre−β(H−μN )

∑
m,n

e−β(En−μNn ) − e−β(Em−μNm )

ω + iδ + En − Em + μ

× 〈n|bk|m〉〈m|b†
k|n〉, (25)

where bk = 1√
LxLy

∑
r eikrbr and r are vectors labeling lattice

sites. The eigenenergies En and Em and eigenstates |n〉 and |m〉
are obtained in two different particle sectors with Nn and Nm =
Nn + 1 particles. From here we obtain the spectral function:

Ak(ω) = − 1

π
ImGk(ω + iδ). (26)

The current operator from Eq. (3) is given by Jx =∑
k ∂kx εkb†

kbk/
√

LxLy, where εk = −2J (cos kx + cos ky) is
the noninteracting dispersion relation on a two-dimensional
lattice. The current-current correlation function used in Eq. (5)
involves four bosonic operators. By using the imaginary time
τ and Matsubara frequencies ωn = 2πn/β, where n is an

integer, we find [43]

σxx(iω) = 1

LxLy

1

ω

∑
k,q

∂kx εk ∂qx εq

∫ β

0
dτeiωτ

× 〈b†
k(τ )bk(τ )b†

qbq〉. (27)

To estimate the last expectation value we decouple the four-
particle operator by using the Wick theorem. In this way, we
obtain an approximate expression for the conductivity:

σ bubble
xx (iω) = 1

LxLy

1

ωβ

∑
k

(∂kx εk )2
∑
ωn

Gk(iωn)

× Gk(iωn + iω). (28)

By using the spectral representation Gk(iωn) =∫
dω 1

iωn−ω
Ak(ω) and by performing a summation over ωn we

arrive at the bubble-diagram approximation for conductivity:

Re σ bubble
xx (ω) = π

1

LxLy

∑
k

∫
dω1

(
∂kx εk

)2
Ak(ω1)

× Ak(ω1 + ω)
nB(ω1) − nB(ω1 + ω)

ω
, (29)

where nB(x) = 1/[exp(βx) − 1] is the Bose-Einstein distribu-
tion. The same approach has often been used in the study of
the conductivity of the Fermi-Hubbard model. All the details
can be found in Ref. [47]. A closely related calculation for
bosons is given in Ref. [30]. In comparison with Ref. [30],
here we work at finite temperature and use exact numerical
results for the single-particle Green’s function in Eq. (29).

We perform a numerical test of the accuracy of this approx-
imation by comparing results obtained from Eq. (29) with the
full result from Eq. (5). We find that for small system sizes the
approximation works well at higher frequencies ω, but it fails
to reproduce numerical data in the limit ω → 0, as shown in
Fig. 14. For J/U = 0.04 we find that the spectral function fea-
tures separate peaks close to ωn ≈ −μ + nU , n = 0, 1, 2, . . ..
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From Eq. (29) it follows that the peaks in optical conductiv-
ity emerge when the two peaks in A(k, ω1) and A(k, ω1 +
ω) overlap, as for ω = 0,U, 2U, . . ., as discussed in
Sec. III C.

IV. CONCLUSION AND DISCUSSION

In this paper we investigated the optical conductivity of the
Bose-Hubbard model in the high-temperature regime. Based
on the numerically exact calculation for small lattice sizes,
we identified multiple peaks in optical conductivity stem-
ming from the Hubbard bands at weak tunneling J/U . As
the tunneling rate gets stronger, these peaks merge, and the
conductivity takes a simpler form. We analyzed the regime
with resistivity linear in temperature and found that the pro-
portionality constant is inversely proportional to the tunneling
rate J in the limit J/U → 0. Additionally, in some cases we
observed two separate linear regimes with different slopes:
one at lower temperature corresponding to hard-core-boson
behavior and one at high temperature corresponding to the
leading order in the β expansion. Finally, we found a strik-
ing and unexpected nonmonotonic dependence of σDC on the
coupling constant. At half filling and fixed temperature T ,
above some value of U , σDC grows with increasing U , and
eventually, it approaches the hard-core-boson conductivity.
Further work is necessary to confirm that this feature of our
results survives in the thermodynamic limit.

We expect that these results can be probed in cold-atom
experiments, along the lines of Ref. [4]. Because the Bose-
Hubbard model is only the low-energy effective description
of lattice bosons, the regime of intermediate temperature
T/U ∼ 1 may be the most realistic for making quantitative
comparisons with experiments. For this purpose, it may turn
out that additional Hamiltonian terms describing bosons in
optical lattices should be taken into account in addition to
the Bose-Hubbard model. Moreover, processes beyond the
linear-response regime may play a role [42]. In order to extend
these calculations to larger system sizes, beyond-mean-field
approximations [56–60] could be considered.
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[54] J. Vučičević and R. Žitko, Phys. Rev. Lett. 127, 196601
(2021).

[55] V. Janković, P. Mitrić, D. Tanasković, and N. Vukmirović, Phys.
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