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Analysis of stability and transition dynamics of skyrmions and skyrmioniums in ferromagnetic
nanodisks: A micromagnetic study at finite temperature
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Understanding the stability of skyrmions and skyrmioniums is crucial for potential applications, as thermal
fluctuations can cause them to transform into other magnetic structures. In this study, we used micromagnetic
simulations to examine the regions of stable existence for skyrmion and skyrmionium structures in Co/Pt
ferromagnetic nanodisks at 300 K and beyond. We identified stability regions for different values of anisotropy
energy (Kz) and interfacial Dzyaloshinskii-Moriya interaction (DMI). Interestingly, these structures share a
mutual region of stability. Depending on the thermal energy system, transitions can occur from skyrmionium
to skyrmion. We further compute the corresponding thermal activation energy barrier for this transition as
�E/kB = (15 ± 2) × 102 K, with an average lifetime of τ0 = 0.9 ± 0.4 ns. This transition can also be triggered
by a magnetic field applied along the z-axis.
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I. INTRODUCTION

Skyrmions are distinctive circular magnetic spin nanos-
tructure textures, showing promise for spintronic applications.
They are characterized by a quantized topological charge
(Q). Their theoretical description of these structures as
two-dimensional (2D) localized states in magnetic materials
with broken symmetry was first introduced by Bogdanov
et al. [1,2]. Many years later, the experimental observation of
skyrmions was initially achieved through neutron scattering in
MnSi [3], Fe1−xCoxSi [4], and Lorentz transmission electron
microscopy in Fe0.5Co0.5Si [5].

In contrast to skyrmions, skyrmioniums are composite
structures formed by combining two skyrmions with opposite
topological charges. Researchers have explored various meth-
ods for stabilizing these structures [6–11], with the interfacial
Dzyaloshinskii-Moriya interaction (DMI) emerging as an im-
portant stabilizing factor [12–14].

Both skyrmions and skyrmioniums have attracted signifi-
cant attention due to their promising applications in areas such
as logic devices [15,16], microwave devices [17,18], quantum
computing [19–22], and neuromorphic computing [23–25].

These structures can be displaced through various meth-
ods, including spin-polarized currents [26–29], anisotropy
gradients [30], spin waves [31–33], acoustic waves [34], and
temperature gradients [35–37]. One crucial distinction be-
tween skyrmions and skyrmioniums lies in their response
to manipulation. Skyrmions exhibit the skyrmion Hall effect
(SkHE), while skyrmioniums do not [38].

For future applications, it is crucial to ensure both stability
and controllability of these structures at room tempera-
ture [39,40]. This is because different perturbations, such as
magnetic fields, spin-polarized currents, thermal fluctuations,
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and other effects [27,41–47], can trigger transformations from
a skyrmion to other magnetic configurations. For such a con-
version to take place, it is essential to overcome an energy
barrier.

Previous studies involving micromagnetic simulations,
atomic simulations, and experimental measurements have in-
vestigated the energy barrier required for the transformation
of a skyrmion into a ferromagnetic state [46,48–50]. The topo-
logical transition from skyrmionium to skyrmion, particularly
through the annihilation of its inner core, was first investigated
by Hagemeister et al. [51] using the geodesic nudged elastic
band (GNEB) method. Very recently, Jiang et al. [52] explored
this transition using micromagnetic theory.

In this study, we conducted micromagnetic simulations by
considering a Co/Pt nanodisk to determine if there are regions
in the phase diagram of Kz (uniaxial anisotropy) versus DMI
where both the skyrmion and the skyrmionium remain stable
at room temperature. Based on these results, we calculated the
average diameter for both topological structures. Additionally,
we computed the energy barrier that has to be overcome to
transform a skyrmionium into a skyrmion, as well as the
skyrmionium mean lifetime. Subsequently, we constructed a
phase diagram that correlates Kz and DMI with the magnetic
field strength required to induce the transition.

II. METHODOLOGY

In this study, we made micromagnetic simulations using
the MUMAX3 program [53]. The simulations were performed
considering a ferromagnetic nanodisk of Co/Pt material, with
a diameter of 150 nm and a thickness of 1 nm of Co. The
cell size was set to 1.0 × 1.0 × 1.0 nm3. We used the stan-
dard magnetic parameters for cobalt (Co) [54,55]: a saturation
magnetization (Ms) of 0.58 MA/m, an exchange stiffness
constant (Aex) of 15 pJ/m, and a Gilbert damping constant (α)
of 0.3. The values of Ms and Aex can be reduced by increasing
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the temperature. A comprehensive discussion of this reduction
is provided in Sec. 1 of the Supplemental Material [56].

To determine if the magnetic structure (skyrmion and/or
skyrmionium) is near a minimum energy, we used the min-
imize command from MUMAX3 [66,67]. This approach,
employing a steepest-descent method, offers faster conver-
gence compared to the solvers used by the relax command.
We then verify the structure’s stability for a certain time
of simulation using the run command. All these com-
mands (minimize, relax, and run) perform the numerical
integration of the Landau-Lifshitz-Gilbert equation, which is
described by

dm
dt

= −γ0m × Heff + αm × dm
dt

, (1)

where m represents the vector magnetic moment, γ0 =
2.211 05 m A/s denotes the phenomenological Gilbert damp-
ing parameter, and Heff (effective field) is the functional
derivative of the energy, given by

Heff = − 1

μ0Ms

δE

δm
, (2)

where Ms is saturation magnetization. The energy con-
tributions in our system of study arise from several
sources: Heisenberg exchange interaction, magnetocrystalline
anisotropy, Dzyaloshinskii-Moriya interaction. These inter-
actions are specified by phenomenological parameters Aex,
Kz, and DMI, respectively. The demagnetization field, arising
from the shape of the system and Ms, is automatically cal-
culated within MUMAX3. An external magnetic field (Hext)
could be added to the effective field. Thermal fluctuations are
introduced to the simulation system as a stochastic magnetic
field (Htherm) following Brown’s model [53,68]. This stochas-
tic field is also implemented in MUMAX3 and is described by

Htherm = ηstep

√
2μ0αkBT

Msγ�V �t
, (3)

where ηstep is a random vector whose value is changed after
every time step, kB is the Boltzmann constant, T is the tem-
perature, γ is the gyromagnetic ratio, �V is the cell volume,
and �t is the time step.

The topological charge (Q) was used to verify the topology
of the system and is defined as

Q = 1

4π

∫
d2x m ·

(
∂m
∂x

× ∂m
∂y

)
. (4)

It was calculated by using the ext topologicalchargelat-
tice extension implemented in MUMAX3, which utilizes the
lattice-based approach [53,69].

The analysis of the results obtained through magnetic
simulations was conducted using the PYTHON 3.7.11 program-
ming language by utilizing the PANDAS 1.3.4 [70], NUMPY

1.21.5 [71], and MATPLOTLIB 3.5.3 [72] libraries.

III. RESULTS

A. Stability of skyrmion and skyrmionium

We studied a range of anisotropy energy (Kz) from 0.5
to 1.5 MJ/m3 and Dzyaloshinskii-Moriya interaction (DMI)

FIG. 1. Phase diagram depicting the stabilization of skyrmions
(blue squares), skyrmioniums (red squares), and both structures
(green squares) at a temperature of 300 K in the Co/Pt nanodisk.

from 0.2 to 7.0 mJ/m2, focusing on regions where these
values support the existence of both skyrmion and skyrmio-
nium. However, it is well-established that these structures
undergo shape fluctuations due to thermal energy at room
temperature, often leading to changes to different magnetic
configurations [39].

We determined the regions of stability by following this
protocol: each simulation started either with a skyrmion or
a skyrmionium configuration. We verified that the magnetic
structures were in a minimum energy state using the min-
imize command [66]. Subsequently, we ran the simulations
for 1 ns. This allowed us to observe any temperature-induced
fluctuations that might occur. We then analyzed the resulting
configurations after 1 ns to confirm if the topology remained
stable.

Figure 1 shows a phase diagram, where color-coded
regions represent the stability of skyrmions (blue), skyrmio-
niums (red), and the coexistence of both (green) after 1 ns
of simulation time. It is important to remark that other mag-
netic configurations could be stabilized within the depicted
Kz and DMI parameter space. For instance, Sec. 2 of the
Supplemental Material [56] presents the stability regions of
single-domain and multidomain states under the same simula-
tion protocol, but with different initial configuration.

B. Skyrmion and skyrmionium sizes

We determined the diameters of skyrmion and skyrmion-
ium structures from the saved simulation images. Figure 2
presents the results, showing the minimum (a),(c) and
mean (b),(d) diameters as a function of Kz (a),(b) for
DMI = 5 mJ/m2, and as a function of DMI (c),(d) for Kz = 1.5
MJ/m3. The minimum diameter is obtained from the image
saved immediately after the minimization routine ends, while
the mean diameter represents the average value calculated
from 20 images saved during the runtime interval.

Previous studies have shown that the diameter of both
skyrmions and skyrmioniums increases with increasing DMI,
and decreases with increasing Kz (at both 0 K [38] and
at finite temperatures [73]). The diameters obtained after
the minimization routine agree with this observation. The
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FIG. 2. The diameter of the skyrmion (blue), as well as the core and shell diameters of the skyrmionium (red) vs Kz and DMI at 300 K.
The effect of Kz was investigated keeping DMI constant at 5 mJ/m2 for Dmin (a),(c) and Dmean (b),(d) values, and the effect of varying DMI for
a fixed value of Kz (1.5 MJ/m3).

run command allows us to observe the effects of thermal
fluctuations more similar to reality. While the variation in
skyrmionium diameter with Kz and DMI is less pronounced
within the simulation time frame, we observe that the average
diameter Dmean remains relatively constant for both skyrmions
and skyrmioniums when DMI is held fixed.

Interestingly, the difference in diameters between the core
and shell of the skyrmionium remains almost constant as a
function of DMI or Kz, considering both the minimum and
mean results. This diameter difference is 50 ± 2 nm when
DMI is fixed and 48 ± 6 nm for constant Kz, in the case
of minimum values. Considering the mean values, this dif-
ference is the same for constant DMI and Kz: 51 ± 1 and
51 ± 2 nm, respectively. This characteristic is expected to
contribute to the enhanced stability of the skyrmionium, as
recently highlighted in the experimental work of Powalla
et al. [74]. The complete diameter data for skyrmions and
skyrmioniums across various Kz and DMI values can be found
in Sec. 3 of the Supplemental Material [56].

C. Topological transitions and thermal activation
of energy barrier

A simulation time of 1 ns might not be sufficient to defi-
nitely assess skyrmion stability. Therefore, we opted to extend
the simulation time from 1 to 100 ns, particularly focusing
on skyrmionium stability. Within the numerous viable values
in the green region of Fig. 1, we selected the specific com-
bination for Kz = 0.54 MJ/m3 and for DMI = 2.6 mJ/m2.
Notably, multiple simulations at 300 K showed no change in
the value of the topological charge, which remained near zero
(skyrmionium). An attempt was made to detect changes in
Q by doing simulations at higher temperatures. Figure 3(a)
presents the results of the skyrmionium’s topological charge
as a function of the simulation time [calculated with Eq. (4)].
The figure shows that at 390 K, Q can exhibit three distinct

paths: remaining stable at zero (green line), or fluctuating
randomly around 0.3 (orange line, potentially a metastable
state), or else fluctuating around 1 (blue line, which represents
a skyrmion).

FIG. 3. (a) Mean moving average of the topological charge as a
function of time, calculated after the stabilization of a skyrmionium
at a temperature of 390 K. The skyrmionium could be stable (green
line), or change to a skyrmion (blue line) or change to stripe domains
(orange line). Evolution process from skyrmionium (b) into stripe
domains, and (c) into a skyrmion.
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FIG. 4. (a) Relaxation time (τ ) as a function of the tem-
perature in the transition from skyrmionium to skyrmion. The
energy barrier is �E/kB = (15 ± 2) × 102 K and τ0 = 0.9 ± 0.4 ns.
(b) Schematic illustration of the energy minima corresponding to the
two configurations.

Figures 3(b) and 3(c) illustrate how the skyrmionium is
transformed into a stripe domain (b) and a skyrmion (c) as the
simulation time progresses. This transition of the skyrmion-
ium to a skyrmion can be described as radial edgewise, as it
involves the gradual fading of the outer part of the skyrmion-
ium at the edge of the nanodisk.

Among the total set of simulations, only about 37% of
them exhibited the transitions mentioned. Within this 37%, a
mere 7% of the transitions resulted in stripe domains. For the
simulations showing the skyrmionium-to-skyrmion transition,
we determined the relaxation time by fitting an exponential
function (see Sec. 4 of the Supplemental Material [56]). We
repeated this process at other temperatures, and the resulting
relaxation times are shown in Fig. 4(a).

These relaxation times could be fitted by an exponen-
tial function. A schematic illustration of this behavior is
depicted in Fig. 4(b), where �E is the minimal energy
that must be provided to the system if the skyrmionium
phase is metastable. This behavior has been previously
observed in superparamagnetic systems, including nanopar-
ticles [75,76] and molecular magnets [77,78], and it is
usually described by a modified version of Arrhenius’

law:

τ = τ0 exp (−�E/kBT ), (5)

where �E represents the thermal activation energy or the
height of the energy barrier between the two states, τ0 is the
mean lifetime parameter that depends on the nature of the
transition, kB is Boltzmann’s constant, and T is the temper-
ature.

The fitting process yielded a thermal barrier height
�E/kB = (15 ± 2) × 102 K and a mean lifetime of τ0 =
0.9 ± 0.4 ns. This barrier height is comparable to that re-
ported for the skyrmion-to-ferromagnet transition in other
Co/Pt [49,79,80] and PdFe/Ir systems [44,46], obtained
through atomistic simulations and experimentally observed
in Mn/Si [48]. This result agrees with the idea that a
skyrmionium is a composite of two skyrmions with opposite
topological charges. In this case, the thermal effect breaks the
skyrmionium apart by destroying one of its constituents. In the
case of the skyrmionium-to-skyrmion transition, Hagemeister
et al. [51] found a higher activation energy barrier for the
PdFe/Ir system at T = 0 K. Conversely, Jiang et al. [52] stud-
ied the annihilation time of the skyrmionium’s center, which is
of the order of picoseconds. This is significantly shorter than
the nanosecond mean lifetime we observe. This difference
could be attributed to the fact that our study deals with the
disappearance of the entire outer region of the skyrmionium,
as opposed to just a tiny core.

As described in Sec. 1 of the Supplemental Material, a
decrease in Ms and Aex is expected with increasing tempera-
ture [59]. This reduction is dependent on the thickness of both
Co and Pt films. For instance, a sample with a Co film thick-
ness of 1 nm is expected to experience a maximum reduction
of 6% in Ms and Aex between 300 and 420 K. This percent-
age of reduction is not expected to significantly reduce the
value of the energy barrier height.

D. Topological transition induced by external magnetic fields

Another method of inducing a topological transition in-
volves the application of a magnetic field. Figure 5 illustrates
the variation in Q when a magnetic field is applied along the
positive (a) and negative (b) z-axis. The magnetic field was
incremented by 0.001 mT every 0.005 ns.

The plots demonstrate that the strength of the magnetic
field required to trigger the transition depends on the ori-
entation of the magnetic moments within the nanodisk. A
skyrmionium consists of a central core and two encircled
rings. The core and the outer ring have magnetic moments
pointing in the same direction, while the center ring’s mo-
ments point in the opposite direction. Domain walls separate
these three regions.

In the simulations, the stable skyrmionium has its core
magnetic moments pointing in the positive z-axis direction.
When a positive field is applied, the domain walls move ra-
dially towards the center of the nanodisk, collapsing the core
region into a Bloch point (a specific magnetic configuration
with three magnetic moments). This behavior is consistent
with findings by Hagemeister et al. [51]. Conversely, when the
magnetic field is applied in the opposite direction, the domain
walls move radially away from the center of the nanodisk,
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FIG. 5. Topological charge vs magnetic field applied (a) in the
positive direction and (b) in the negative direction of the z-axis.

similar to the behavior depicted in Fig. 3(c). As is evident from
Figs. 5(a) and 5(b), the field’s effect is clearly dependent on
its direction.

For the selected values of Kz and DMI, inducing outward
radial movement of the domain walls proves more challeng-
ing. Additionally, the transition could either occur suddenly
or require a more extended application of the magnetic field,
and these variations are attributable to thermal fluctuations.
As the domain walls shift outwards from the rim of the nan-
odisk, the outermost part of the skyrmionium is gradually
removed, while in the case of inward movement, the core of
the skyrmionium eventually becomes a Bloch point.

We then applied a series of linear magnetic fields to all
possible combinations of Kz and DMI values within the green
region of Fig. 1, where both skyrmionium and skyrmion re-
mained stable at 300 K. This approach enabled us to ascertain
the strength of a positive z-axis magnetic field required to
induce the skyrmionium-to-skyrmion transition for each Kz

and DMI combination. The results are visualized in Fig. 6 as
a color map, where each color (ranging from creamy yellow
to black) represents the magnetic field strength required for
the transition. The color-scale key mapping these values is
provided on the right side of the graph.

Analyzing these values, we observed a range of magnetic
field strengths required for the transition, with a minimum
of 0.076 T (at Kz = 0.50 MJ/m3 and DMI = 2.4 mJ/m2),
and a maximum of 0.360 T (at Kz = 1.02 MJ/m3 and
DMI = 4.8 mJ/m2). These results suggest that the energy

FIG. 6. Phase diagram of Kz vs DMI, illustrating the magnetic
field strength required to induce the topological transition when
applied along the z-axis.

barrier height between skyrmionium and skyrmion for the
latter case could be up to five times higher than the value
determined in the previous section. Notably, it is apparent that
lower values of Kz and DMI require a lower magnetic field for
the topological transition. Interestingly, the highest magnetic
field value was not observed at the extreme Kz and DMI values
but rather at intermediate values.

IV. CONCLUSIONS

We investigated the stability of skyrmioniums and
skyrmions in a Co/Pt nanodisk using micromagnetic simula-
tions. We identified a region of Kz and DMI values where both
structures are stable at room temperature (300 K), defining a
region of mutual stability.

With the objective of determining the maximum tempera-
ture at which skyrmioniums remain stable, more simulations
were performed at higher temperatures. These simulations
revealed specific temperatures where skyrmioniums undergo
thermally driven topological transitions following a Marko-
vian process. Subsequently, we calculated the relaxation times
at nine distinct temperatures ranging from 380 to 420 K.
Our analysis revealed that these results follow Arrhenius law,
leading us to determine the thermal activation energy bar-
rier between skyrmionium and skyrmion, as �E/kB = (15 ±
2) × 102 K. Notably, this activation energy is in the same
range of values observed in the transition from a skyrmion to a
ferromagnetic state in different ferromagnetic systems. How-
ever, the energy barrier height is dependent on the thickness
of Co and Pt films, and it can also be tailored by incorporating
different materials.

Different types of perturbations can induce the observed
transition from skyrmionium to skyrmion. For simplicity, we
employed magnetic fields that varied linearly with time to
induce this transition. By doing so, we determined the field
strength required to induce this topological transition for each
pair of Kz and DMI values, where these topologies are stable.
These findings suggest the presence of points on the phase
diagram that may exhibit energy barriers higher than the one
that was determined.
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