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Mode-resolved micromagnetics study of parametric spin wave excitation in thin-film disks

Maryam Massouras ,1 Salvatore Perna ,2 Massimiliano D’Aquino ,2 Claudio Serpico,2 and Joo-Von Kim 1,*

1Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
2Department of Electrical Engineering and ICT, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy

(Received 10 April 2024; revised 19 June 2024; accepted 29 July 2024; published 28 August 2024)

We present a computational study of the parametric excitation of spin waves in thin-film disks with a
mode-resolved approach. The method involves projecting out the time-dependent magnetization, computed using
micromagnetics simulations, onto the spatial profile of the eigenmodes that are obtained from the linearization of
the equations of motion. Unlike spectral analysis in the frequency domain, the projection allows for the analysis
of transient mode dynamics under parametric excitation. We apply this method to parallel pumping of quantized
spin wave modes in in-plane magnetized thin-film disks, where phenomena such as frequency pulling, mutual
phase locking, and higher-order magnon scattering processes are identified.
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I. INTRODUCTION

Spin waves in patterned magnetic thin films differ from
their counterparts in bulk systems in many important ways.
For example, the finite-sized nature of a confined system
such as a thin-film disk results in spatially nonuniform
dipolar fields and pinning at boundary edges that play a cru-
cial role in governing the spin wave eigenmode spectrum
[1–23]. Nonlinear processes such as parametric excitation
and magnon-magnon scattering [24–27] are also greatly in-
fluenced by finite-size effects, where by virtue of a discrete
mode spectrum certain scattering processes may be inhibited
or enhanced [28–30]. From a theoretical and computational
perspective, it is therefore interesting to examine how para-
metrically excited spin wave eigenmodes interact with one
another in arbitrary confined geometries, for which analytical
descriptions of the eigenmodes may be lacking.

Such considerations become particularly acute for po-
tential applications [31–33], where detailed knowledge of
nonlinear spin wave processes is important for tasks in in-
formation processing. For example, the parametric excitation
of spin waves in waveguides [34] or narrow conduits [35,36]
is crucial for populating certain spin wave modes, which can
also shed light on subsidiary processes such as spin pumping
driven by magnon decay [37]. For tasks such as pattern recog-
nition, a recent study by Körber et al. showed that nonlinear
spin wave interactions can be exploited within the paradigm
of physical reservoir computing [38]. The approach involves
mapping a recurrent neural network to a dynamical system
[39,40], whereby input signals are transformed by the nonlin-
ear dynamics of the physical system, and machine learning
is performed on the outputs to perform tasks such as classifi-
cation. In contrast to other proposals for using spin waves in
reservoir computing, which rely on spatial nodes (nonlinear
interference patterns [41,42] or rf fingerprinting in artificial
spin ice [43]) or temporal nodes (delayed feedback [44–47]),
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the approach in Ref. [38] maps the node structure into recip-
rocal space using the spin wave eigenmodes of a vortex state
in a thin-film ferromagnetic disk, where inputs correspond to
radial eigenmodes that couple to an external radio-frequency
(rf) field, while output modes correspond to azimuthal eigen-
modes that are driven by three-magnon scattering processes.
Understanding the nonlinear magnon processes in nanostruc-
tured materials is therefore crucial if one seeks to formulate
computational tasks based on such phenomena.

To this end, we revisit the problem of parametric spin
wave excitation via parallel pumping in confined magnetic
systems, specifically an in-plane magnetized disk for which
recent work have shown rich behavior in the mode spec-
trum [28,48,49]. We present a mode-resolved approach in
computational micromagnetics, which allows us to compute
the transient dynamics of the mode amplitude and intensities
of excited and scattered modes. This method differs from
the more conventional approaches based on analyses of the
power spectral density in the frequency domain, since it al-
lows nonlinear phenomena such as frequency pulling, mutual
synchronization of excited spin wave modes, and temporal
dynamics such as mode growth and inhibition to be studied
in detail.

This paper is organized as follows. In Sec. II, we describe
the system studied and the methodology behind the mode-
filtering technique. In Sec. III, we apply this technique to
the problem of the parametric excitation via parallel pumping
of the quasiuniform mode. Section IV discusses parametric
thresholds and their functional form for thin-film disks, which
is followed by Sec. V in which mode generation at high power
is discussed. Finally, we present a discussion and concluding
remarks in Sec. VI.

II. GEOMETRY AND METHOD

A. Geometry

The system studied is illustrated in Fig. 1(a). We consider
a ferromagnetic thin film disk with a diameter of 1 µm and a
thickness of 50 nm, where a static magnetic field, B0, and a

2469-9950/2024/110(6)/064435(12) 064435-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0205-2456
https://orcid.org/0000-0002-3612-6030
https://orcid.org/0000-0002-5321-5772
https://orcid.org/0000-0002-3849-649X
https://ror.org/03xjwb503
https://ror.org/05290cv24
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.064435&domain=pdf&date_stamp=2024-08-28
https://doi.org/10.1103/PhysRevB.110.064435


MARYAM MASSOURAS et al. PHYSICAL REVIEW B 110, 064435 (2024)

FIG. 1. (a) Geometry of the thin-film disk studied, where we
assume the static B0 and rf driving field brf are applied along the
x direction. The static magnetization m0 is largely oriented along the
direction of B0, but slight deviations appear near the boundary edges,
which arise from minimizing dipolar surface charges. (b) Schematic
of the steady-state elliptical precession of magnetization, where it is
assumed that the static orientation lies along the u axis, while the
dynamic components of the magnetization span the vw plane.

sinusoidal radio-frequency (rf) field, brf , are both applied
along the x direction, which corresponds to the parallel
pumping configuration. To excite a normal mode in this con-
figuration, it is necessary to apply an rf field at twice the
normal mode frequency. m0 denotes the static configuration of
the magnetization in the disk, which is largely aligned along
the x direction as a result of B0, but nonuniformities can ap-
pear at the edges through the minimization of surface dipolar
charges. In Fig. 1(b), we present a local coordinate system
in which m0 is aligned along u, while v,w denote the two
components perpendicular to u along which magnetization
fluctuations (δmv,w) lie. We will make use of this coordinate
transformation later.

The time evolution of the magnetization is calculated using
the MUMAX3 code [50], which employs the finite-difference
method to perform the numerical time integration of the
Landau-Lifshitz equation with Gilbert damping,

dm
dt

= −|γ0|m × (Heff + hth ) + αm × dm
dt

, (1)

where m(r, t ) is the unit vector representing the magneti-
zation, γ0 = μ0gμB/h̄ is the gyromagnetic constant, and α

is the Gilbert damping constant. The effective field, Heff =
−(1/μ0Ms)δU/δm, represents a variational derivative of the
total magnetic energy U with respect to the magnetiza-
tion (with Ms being the saturation magnetization), where
U contains contributions from the Zeeman, nearest-neighbor
Heisenberg exchange, and dipole-dipole interactions. Finite-
temperature effects are modeled by including a random field
hth in the effective field, which has zero mean, 〈hth〉 = 0, and
represents a Gaussian white noise with the spectral properties

〈hth,i(r, t )hth, j (r′, t ′)〉 = 2αkBT

μ0V
δi jδ(r − r′)δ(t − t ′), (2)

where i, j represent the different Cartesian components of the
field vector, and V is the volume of the unit cell [51]. Time
integration of the Langevin problem is performed using an
adaptive time-step scheme [52].

FIG. 2. (a) Supercells, delimited by red lines, are constructed
from ensembles of finite-difference cells, delimited by black lines.
(b) Finite-difference and supercell discretization used for the 1–µm
disk. (c) Time evolution of magnetizations mi, j in the supercells Vi, j

shown in (a). (d) Power spectrum Si, j (ω), shown on a log scale, of the
magnetization in Vi, j calculated from the discrete Fourier transform
of the amplitudes in (c). The overall power spectrum is obtained by
summing over the individual mode spectra.

In all simulations presented here, the 1 µm-diameter,
50 nm-thick disk was discretized using 256 × 256 × 1 finite-
difference cells. We used an exchange constant of A = 3.7
pJ/m, a saturation magnetization of Ms = 141 kA/m, and a
Gilbert damping constant of α = 1.5 × 10−3, which are mod-
eled after experiments on thin-film, µm-sized disks of yttrium
iron garnet [49].

B. Supercell method for spectral analysis

Two methods to estimate the power spectral density of ex-
citations, S(ω), are considered here. The first is the supercell
approach, which involves averaging the dynamics over en-
sembles of finite-difference cells as shown in Fig. 2(a). In this
schematic illustration, the finite-difference cells are delimited
by black lines and represent the ultimate spatial resolution of
the system studied, while the supercells delimited by red lines
represent a coarse-grained version of the simulated dynamics.
Note that this only applies to the simulation output; Eq. (1)
is always solved for each finite-difference cell, while the
choice of the supercell size is based on the tradeoff between
accuracy and convenience. For the examples discussed further
below, the supercells used correspond to blocks of 8 × 8 × 1
finite-difference cells, leading to a coarse-grained output of
32 × 32 × 1 supercells as shown in Fig. 2(b).

The time-dependent magnetization is averaged within each
supercell, Vi, from which we can project out δmi,v and δmj,v ,
the fluctuations transverse to the static magnetization, m0, as
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FIG. 3. (a) Examples of spatial profiles ψ (r). (b) Mode ampli-
tude a(t ) as a function of time. (c) Power spectrum S(ω), shown on
a log scale, of the modes in (a) calculated from the discrete Fourier
transform of the amplitudes in (b). The overall power spectrum is
obtained by summing over the individual mode spectra.

shown in Fig. 2(c). The power spectrum of these transverse
fluctuations, Si(ω), is then obtained from the discrete Fourier
transform (DFT) of δmi. The total power spectrum of the
spin wave excitations is then obtained by summing over the
contributions from each supercell, S(ω) = ∑

i Si(ω). One im-
portant caveat should be noted here. By virtue of averaging
the magnetization within each supercell, we lose information
about higher-frequency spin waves whose wavelengths are
smaller than the supercell size. The choice of the supercell
size is therefore also guided by the frequency regime under
study.

From a technical perspective, the supercell approach of-
fers a computationally efficient method for obtaining S(ω). A
more direct approach would involve recording the full mag-
netization state at each desired time step, from which S(ω)
is calculated from the time-dependent magnetization in each
finite-difference cell [53], rather than in each supercell. While
this allows for more accurate spatial profiles to be obtained
and avoids the high-frequency cutoff, it requires greater com-
putational resources in the postprocessing phase of the data
analysis. With the supercell approach, on the other hand, the
averaged magnetization in each supercell is computed on the
fly (e.g., by using the CROP function in MUMAX3) and ex-
ported directly during the course of the simulation run, which
greatly reduces the need for postprocessing. Its inclusion in
the discussion here is simply to provide a reference for a
spatially resolved approach against which we compare the
mode-filtering method, which we discuss next.

C. Mode-filtering method for spectral analysis

The second method we use for spectral analysis is the
mode-filtering method, which is the focus of this paper and
schematized in Fig. 3. The starting point is the determination
of the magnetization normal oscillation modes associated to

the confined structure under investigation. Initially, we assume
that m(r, t ) = m0(r) + δm(r, t ) in Eq. (1) and we analyze the
system in the regime of small δm(r, t ), where its dynamics
are governed by a linearized equation of motion. Diagonal-
izing this linear equation yields the normal modes, denoted
as ϕκ (r), which are complex-valued vector fields transverse
to m0(r) [54,55]. Specifically, δm(r, t ) can be expressed in
terms of these normal modes as

δm(r, t ) =
∞∑

κ=1

cκ (t )ϕκ (r) + c.c., (3)

where c.c. means complex conjugate, κ represents the mode
index, and ϕκ (r) is given by

ϕκ (r) = ϕκ,v (r) ev (r) + ϕκ,w(r) ew(r), (4)

where ev (r), ew(r) are Cartesian unit vectors spanning the
plane orthogonal to m0(r) [Fig. 1(b)], and ϕκ,v and ϕκ,w are
the components of ϕh(r) along ev (r) and ew(r), respectively.

In contrast, in conventional spin wave analysis for a con-
tinuous medium, the basis functions are plane waves,

ϕk(r) = φk e±i k·r, (5)

where k is the wave vector and φk a constant vector with com-
plex entries, orthogonal to the direction of the magnetization
ground state, which describes the polarization of the spin wave
with wave vector k. Consequently, δm(r, t ) can be expanded
in spin waves as

δm(r, t ) =
∑

k

ak(t )ei k·r + c.c., (6)

where ak(t ) = ak(t )φk are time-dependent vectors and ak(t )
are appropriate complex expansion coefficients.

It is important to notice that the r dependence of the spin
wave modes is contained in the scalar factor e±i k·r, while
in the normal mode expansion [Eq. (3)] the r dependence is
taken into account by the vector fields ϕκ (r). To facilitate the
comparison of the description based on the normal modes with
spin wave analysis, and subsequently relate expansions (6)
and (3), we introduce approximately orthogonal scalar basis
functions

ψκ (r) = Re[gκ,vϕκ,v + gκ,wϕκ,w], (7)

where gκ,v, gκ,w are normalization constants ensuring

1

V

∫
V

[ψκ (r)]2dV = 1. (8)

These basis functions are approximately orthogonal as the
overlap integral

Fκ,κ ′ = 1

V

∫
V

ψκ (r) ψκ ′ (r) dV (9)

slightly differs from the Kronecker delta, δκ,κ ′ . For the prob-
lem at hand, the off-diagonal elements of Fκ,κ ′ are less than
10−2 [56].

We refer to the scalar fields ψκ (r) as the spatial mode
profiles [Fig. 3(a)] and express δm(r, t ) in terms of these as

δm(r, t ) =
∞∑

κ=1

aκ (r, t )ψκ (r), (10)
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where

aκ (r, t ) = aκ,v (t )ev (r) + aκ,w(t )ew(r). (11)

We can therefore interpret ψκ (r) as the modified version of
the scalar factor present in the usual spin wave expression
(6), with aκ,v (t ), aκ,w(t ) corresponding to the components of
the complex mode amplitude ak(t ). As such, Eq. (10) can
be viewed as a generalization of the traditional spin wave
expansion applied to confined structures.

Equation (10) is the basis of the mode-filtering method.
The use of scalar mode profile ψκ (r) functions enables a
more direct comparison between the mode-filtering method
and traditional spin wave analysis that will be discussed later
in the paper. In contrast to the supercell case [Fig. 2(c)],
where the power spectrum of the individual supercells con-
tains information on all the magnetization fluctuations in the
system [Fig. 2(d)], the mode amplitudes aκ,v (t ) and aκ,w(t )
only contain information about the associated mode profile
ψκ (r) [Fig. 3(b)].

III. PARAMETRIC EXCITATION
OF THE UNIFORM MODE

In this section, we focus on the parametric excitation of
the quasiuniform mode of the 1-µm disk studied to illustrate
the salient features of the mode-filtering technique, in partic-
ular, in how it can overcome shortcomings of the supercell
approach (and, by extension, any spatially resolved frequency-
domain analysis).

A. Spectral analysis with supercells

We first consider the thermal spectrum of spin wave exci-
tations at 300 K, which in shown in Fig. 4(a). The stochastic
dynamics under a static field B0 = 50 mT is simulated over an
interval of 100 µs, and subsequently the Welch method [57]
with half-overlapping 1-µs Hann windows is applied to obtain
the averaged power spectrum. For this value of B0, the fre-
quency of the quasiuniform mode (ψ12) is ν12 = 2.901 GHz,
so we restrict the plot in Fig. 4 to a frequency range of in-
terest about this mode frequency. In the inset above Fig. 4(a),
the spatial profiles of selected modes within this frequency
range are shown, where the indices κ are ordered according
to the mode frequency. The quasiuniform mode is not the
lowest-frequency mode, as there are a number of edge modes
and modes with a backward-volume character, e.g., κ = 8
and κ = 11, which are lower in frequency. We note that the
profiles in Fig. 4(a) are those computed with the linearization
technique [54,55], which are matched with the peaks in the
thermal PSD computed with the supercell technique.

The power spectrum corresponding to a parametric excita-
tion of brf = 1.0 mT at νrf = 2ν12 = 5.902 GHz, applied over
an interval of 1 µs, is shown in Fig. 4(b). The top inset shows
spatial mode profiles computed by back Fourier transform of
the supercell data. While it is unsurprising that the dominant
response is found at νrf/2 = 2.901 GHz, the spatial profile
corresponding to this frequency does not resemble the qua-
siuniform mode (ψ12), but rather a distorted version of the
neighboring ψ11 mode. Along with the primary excitation, we
can observe two pairs of satellite peaks centered about νrf/2.

FIG. 4. Power spectral density S(ν ) computed with the supercell
method of spin waves around ν = ν12 = 2.901 GHz at T = 300 K.
(a) Thermal spectra with peaks labeled by normal mode indices
and the corresponding spatial profiles obtained from linearizing
the equations of motion. (b) Parametric excitation at νrf = 2ν12 =
5.802 GHz with brf = 1.0 mT. The spatial profiles represent the
back-transformed data from the supercell spectra. (c) Parametric
excitation at 5.802 GHz and 1.5 mT. The spatial profiles represent
the back-transformed data from the supercell spectra

Frequency pulling in some of these satellites peaks can be
seen, where ψ9 and ψ13 exhibit a frequency red shift while
ψ14 experiences a slight frequency blue shift. Like with the
primary excitation, modes ψ8 and ψ13 appear distorted with
respect to their linearized profiles. As the driving field am-
plitude is increased to brf = 1.5 mT, one pair of the satellite
peaks disappears (ψ9, ψ13), while the other pair (ψ8, ψ14) re-
mains at the same frequency splitting as under brf = 1.0 mT.

B. Spectral analysis with mode filtering

We can shed light on the supercell results above using
the mode-filtering method, with which we used to study the
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FIG. 5. Power spectral density S(ν ) computed with the mode-
filtering method of spin waves around ν = ν12 = 2.901 GHz at T =
300 K. The spectrum of each mode Sκ (ν ) is presented in a different
color, while the shaded, gray curve in the background represents
the total PSD S(ν ). (a) Thermal spectra. (b) Parametric excitation
at νrf = 2ν12 = 5.802 GHz with 1.0 mT. (c) Parametric excitation at
5.802 GHz and 1.5 mT. The peaks are indexed by the normal mode
number κ .

same cases as shown in Fig. 4. These results are presented in
Fig. 5. The thermal power spectrum is shown in Fig. 5(a),
where the gray background represents the full S(ν) while
the mode-resolved responses are shown in color for selected
modes. In contrast to the supercell case, we find that a 10-µs
simulation with half-overlapping 1-µs windows for the Welch
method was sufficient, as the projection effectively filters out
contributions from other spin wave modes. The peaks are
numbered according to the spatial profiles given in Fig. 4(a),
which provide an important verification that the same modes
are identified using the two methods.

The power spectrum for the parametric excitation at brf =
1.0 mT is shown in Fig. 5(b). The mode filtering reveals
that the primary excitation corresponds to modes ψ11 and
ψ12 being excited simultaneously, with ψ12 more strongly
excited than ψ11 but comparable in intensity. This indicates
that the deformed profile seen in Fig. 4(b) results from a su-
perposition of ψ11 and ψ12. The frequency pulling associated
with modes ψ9, ψ11, ψ13, and ψ14 can be seen by inspection
upon comparing Fig. 5(a) and Fig. 5(b). However, no other
mode appears to be associated with mode ψ8, which suggests

FIG. 6. Power spectral density S(ν ) computed with the mode-
filtering method of spin waves around 3ν12/2, 2ν12, and 3ν12 at T =
300 K. The spectrum of each mode Sκ (ν ) is presented in a different
color, while the shaded, gray curve in the background represents
the total PSD S(ν ). (a) Thermal spectra. (b) Parametric excitation
at νrf = 2ν12 = 5.802 GHz with brf = 1.0 mT. (c) Parametric excita-
tion at 5.802 GHz and 1.5 mT. The peaks are indexed by the normal
mode number κ , with the corresponding spatial profiles shown in the
top inset of (a).

that the distorted profile observed for the lowest-frequency
satellite peak in Fig. 4(b) is not related to the coexistence of
several modes. The coexistence of modes ψ11 and ψ12 persist
under the stronger driving field of brf = 1.5 mT, as shown
in Fig. 4(c), with only the ψ8 and ψ14 satellites present as
discussed previously.

Similar frequency pulling, satellite peaks, and mode co-
existence are also observed about other (integer fraction)
multiples of ν12, such as about ν = 3ν12/2, 2ν12, and 3ν12

as shown in Fig. 6. The thermal spectrum is presented in
Fig. 6(a), where some modes of interest are highlighted and
their spatial profiles are shown in the inset. Under brf =
1.0 mT, the close frequency degeneracy for modes ψ140 and
ψ141 is lifted, with ψ141 locking to the frequency νrf = 2ν12

and ψ140 and ψ146 becoming satellite peaks. Around 3ν12, on
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FIG. 7. Phase portraits (a), (c), (e) and Lissajous curves (b),
(d), (f) for parametric excitation with νrf = 2ν12 = 5.802 GHz and
B0 = 50 mT. (a) a11, a12 and (b) (a11,v, a12,v ) under under brf =
1.0 mT. (c) a11, a12 and (d) (a11,v, a12,v ) under under brf = 1.5 mT.
(e) a42, a44 and (f) (a42,w, a44,w ) under under brf = 1.5 mT. The
curves are drawn from the last 100-ns segment of a 1-µs simulation.

the other hand, we observe that modes ψ277 and ψ279, which
possess distinct spectral peaks in the pure thermal regime,
lock onto ν = 3ν12 under parametric excitation at νrf = 2ν12

and is accompanied by ψ272, which undergoes a frequency
blue shift. As the driving field amplitude is increased to brf =
1.5 mT, satellite peaks appear about ν = 3ν12/2, where the
lower-frequency satellite comprises modes ψ42 and ψ44, while
the higher-frequency satellite corresponds to mode ψ105.

C. Phase portraits

To better understand the coupled dynamics of ψ11 and
ψ12, which are the primary excitations under parallel pumping
at νrf = 2ν12 = 5.902 GHz, we examine their phase portraits
based on the mode amplitudes aκ,v and aκ,w. Figure 7(a)
illustrates the phase space dynamics over the last 100 ns of
the 1-µs long simulation, which was performed to obtain the
power spectral density in Figs. 5 and 6. The phase portraits
illustrate a well-defined limit cycle for each of ψ11 and ψ12,

FIG. 8. Transient dynamics of different mode populations nk

under parametric excitation of brf = 1.0 mT (a), (c), (e), (g), (i)
and brf = 1.5 mT (b), (d), (f), (h), (j) at a pumping frequency of
νrf = 2ν12 = 5.802 GHz.

where the ellipticity of the limit cycle reflects the average
ellipticity ε of the spin precession associated with the mode,
as illustrated for mode ψ11 in Fig. 7(a). The finite width of
the limit cycles is due to thermal fluctuations, which result
in both phase and amplitude noise. The mutual dynamics of
modes ψ11 and ψ12 can be seen in Fig. 7(b), which features a
Lissajous curve constructed from the v component of a11 and
a12. The resulting ellipse here indicates that the modes are in
fact mutually phase locked, with a constant phase difference
of approximately 14.7◦. Under the larger excitation field of
brf = 1.5 mT, the limit cycles increase in size [Fig. 7(c)] and
mutual phase locking persists [Fig. 7(d)], but with a phase dif-
ference of approximately −160.9◦ as reflected by the change
in orientation of the Lissajous ellipse.

Similar phase-locking behavior is observed for the modes
ψ42 and ψ44, which appear as secondary excitations under
brf = 1.5 mT as shown in Figs. 6(c) and 8(h). The natural
frequencies of these modes are ν42 = 3.685 GHz and ν44 =
3.726 GHz, respectively, but become phase locked at a lower
frequency of ν = 3.668 GHz under parametric excitation.
Figure 7(e) shows the phase space dynamics of these two
modes, which exhibit clear limit cycles albeit with larger
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fluctuations in comparison with the primary excitations ψ11

and ψ12. This suggests that the secondary excitations do not
possess the same degree of coherence as the primary excita-
tions. Nevertheless, like in the case of the primary excitations,
the corresponding Lissajous curve reveals a well-defined el-
lipse that is indicative of mutual phase locking.

D. Transient dynamics

We now discuss the transient dynamics of the different
mode populations obtained with the mode-filtering method,
corresponding to the parametric excitation in Figs. 4(b), 4(c)
5(b), 5(c) and 6(b), 6(c). We define the mode population as

nκ ≡ a2
κ,v + ε2

κa2
κ,w. (12)

Consider first the growth of the modes related to the primary
excitation, ψ11 and ψ12, the latter being the mode targeted
by parallel pumping. Figure 8(a) illustrates the transients for
these modes under brf = 1.0 mT. The targeted quasiuniform
mode (ψ12) is excited first, exhibiting an exponential growth
in intensity from thermal levels within the first 150 ns, before
reaching a steady-state level for the remainder of the 1-µs long
simulation. As this level is attained at t1, we observe the onset
of the growth in the intensity of mode ψ11, exhibiting a similar
exponential growth before reaching in turn a steady-state level
at around t2. Similar behavior is observed under the stronger
driving field of brf = 1.5 mT as shown in Fig. 8(b), with the
primary difference being the shorter t1 and t2 needed to reach
steady state for the populations of ψ11 and ψ12.

The transient dynamics of the first set of satellite peaks,
ψ8 and ψ14, is shown in Fig. 8(c) for brf = 1.0 mT and in
Fig. 8(d) for brf = 1.5 mT. Both of these modes remain at
their thermal levels during initial growth of the target mode
ψ12, but grow exponentially in intensity once ψ12 reaches
steady state at t1, mirroring the growth dynamics of mode ψ11.

In a similar way, the second set of satellite peaks, ψ9 and
ψ13, remain at thermal levels with the onset of exponential
growth triggered by ψ11 reaching steady state, as shown in
Fig. 8(e) for brf = 1.0 mT. As discussed above, the second
set of satellite peaks are less perceptible under the stronger
driving field of brf = 1.5 mT, where population levels are an
order of magnitude lower as shown in Fig. 8(f). The satellites
around 3ν12/2 [Fig. 8(h)] also mirror the transient dynamics
seen in Fig. 8(e), namely that the departure from thermal
levels takes place once ψ11 reaches steady state.

This example serves to highlight one of the strengths of
the mode-filtering approach, which allows complex transient
dynamics of individual modes to be quantified. In this case,
parallel pumping of ψ12 results in a cascade of secondary
parametric processes, which would be difficult to ascertain
from frequency-domain analyses alone.

IV. PARALLEL PUMPING THRESHOLDS

We turn our attention to computing thresholds for parallel
pumping using mode filtering. In general, analytic expressions
for the threshold field are only known for some limiting cases.
For example, for plane-wave excitations in a uniformly mag-
netized bulk system, the threshold field for the first mode to

be excited, k, is given by

brf,c = min

[
4ωkηk

γωM sin2 θk

]
, (13)

where ωM = γ0Ms, ηk is the Gilbert (linear) relaxation rate,
and θk represents the propagation direction with respect to
the static magnetization. We note that the sin2 θk term in the
denominator captures the ellipticity of the mode, which shows
that the threshold tends towards infinity as θk → 0, i.e., for
circular precession. We will revisit this point further below.

In contrast to bulk systems or continuous films, there are
only a few (nearly) degenerate modes in a confined system
such as the in-plane magnetized disk considered here. It is
therefore possible to determine the parallel pumping threshold
of each mode individually by targeting it with the appro-
priate pump frequency, i.e., ωrf = 2ωκ . We proceed by first
computing the population growth rate of a given pumped
mode for different values of brf , as shown in Fig. 9(a) for the
mode ψ8. After an initial incubation time driven by thermal
fluctuations (here we take T = 1 K), the mode population
grows exponentially until reaching a steady-state level, as
discussed previously in Fig. 8. This exponential growth can
be parametrized by nκ = c exp(κt ), with κ representing a
characteristic (mode-dependent) growth rate and c a constant.
The dashed lines in Fig. 9(a) indicate this exponential growth,
whose slope on the log-linear plot gives κ directly.

The variation of the growth rate as a function of the rf field
amplitude for three different modes is presented in Fig. 9(b).
Here, we isolate the cases in which only one mode is excited
parametrically in order to avoid secondary processes as shown
in Fig. 8. For these cases, κ varies linearly with brf . By fitting
these linear relations and extrapolating to brf = 0, we can
deduce two important characteristics. First, the critical field
amplitude for parametric excitation, brf,c, is determined by the
condition for which κ = 0, i.e., the point at which the rate
of Zeeman energy provided by the rf field that flows into the
mode compensates Gilbert relaxation. Second, the intrinsic
mode-dependent Gilbert relaxation rate, ηκ , is determined by
the y intercept at brf = 0.

While no explicit expressions exist for the mode-dependent
critical field and relaxation rate for the system considered
here, we can gain some insight into their relationship with
the mode frequency and ellipticity by revisiting well-known
spin wave theory for an infinite medium. The usual prescrip-
tion involves performing Holstein-Primakoff and Bogoliubov
transformations to diagonalize the Hamiltonian (see, e.g.,
Refs. [24,58]), resulting in harmonic oscillator variables ck

representing the spin wave eigenmodes with frequency

ωk =
√

A2
k − |Bk|2, (14)

where the coefficients Ak and Bk are related to the Bogoliubov
transformation. For dipole-exchange spin waves in the pres-
ence of an applied external field H0,

Ak =
(

2γ A

Ms

)
k2 + ω0 + 1

2
ωM sin2 θk, (15)

|Bk| = 1
2ωM sin2 θk, (16)

where ω0 = γ0H0. The critical field discussed above in
Eq. (13) pertains to this system. We recover the familiar
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FIG. 9. (a) Transient dynamics of the mode population for ψ8,
n8(t ), for different rf field amplitudes brf at νrf = 2ν8 = 5.632 GHz.
Dashed lines represent exponential fits to the initial growth be-
fore saturation. The inset shows the spatial profile of the mode.
(b) Growth rate, κ , as a function of rf field amplitudes brf for
three different modes. Dashed lines indicate linear fits, from which
the critical field amplitude, brf,c, and the linear (Gilbert) relaxation
rate, ηκ are deduced. (c) Comparison between the fitted and theoret-
ical Gilbert damping rates for the first 50 eigenmodes under three
different applied fields, B0. (d) Scaling relation between the fitted
critical field, theoretical Gilbert damping, mode frequency, and mode
ellipticity for the data in (c).

expression form of the mode frequency

ωk = √
ωc,k (ωc,k + ωM ), (17)

where ωc,k = (2γ A/Ms)k2 + ω0 represents the circular part of
the precession (i.e., arising from the exchange and Zeeman
terms) and ωM represents the anisotropic, dipolar contribu-
tion that leads to ellipticity. Ignoring propagation losses, the

Gilbert relaxation rate is given by

ηk = αωk
∂ωk

∂ωc,k
= α

(
ωc,k + 1

2
ωM sin2 θk

)
= αAk . (18)

We can relate this to the average mode ellipticity εk by noting
that the ratio between the major and minor axes of the ellipse
of precession is given by [24]

εk =
√

Ak + |Bk|
Ak − |Bk| . (19)

By combining this with Eq. (14), we find

ηk = 1
2αωk

(
εk + ε−1

k

)
, (20)

which directly relates the relaxation rate with the mode fre-
quency and ellipticity. A comparison between the predicted
values of ηκ given by Eq. (20), by using the mode frequency
and ellipticity found from linearization, and the fitted values
based on the method in Fig. 9(b) is shown in Fig. 9(c). Data
are given for the first 50 eigenmodes at three values of the
applied field. While there is some scatter in the data, the
overall trend follows the dashed line, which indicates that
Eq. (20), which was motivated by arguments based on the
spin wave dispersion for an infinite medium, also provides a
good quantitative estimate of the relaxation rate in the in-plane
magnetized disks studied.

The same line of reasoning can be employed to deduce a
relationship between the threshold field for parallel pumping
and the mode frequency and ellipticity. We rewrite Eq. (13) as

brf,c = 2ωkαAk

γ |Bk| , (21)

and substitute Eq. (19) for the ellipticity, which results in the
expression

brf,c = 2αωk

γ

(
ε2

k + 1∣∣ε2
k − 1

∣∣
)

. (22)

Figure 9(d) shows a comparison between the predicted values
given by Eq. (22) and the fitted values of brf,c based on
the method in Fig. 9(b). As for the relaxation rate, the data
are given for the first 50 eigenmodes under three values of the
external field. The data show that an even better quantitative
agreement is found between the predicted and fitted values
of the critical field, where the majority of the data points lie
along the dashed line, which indicates an equivalence between
the two quantities.

V. MODE GENERATION UNDER HIGH POWER

As discussed in Sec. III, the mode-filtering method com-
plements more conventional analyses based on the power
spectral density by revealing features such as nonlinear fre-
quency shifts and mutual phase locking that arise from the
parametric excitation of a targeted mode. In this section, we
examine a few cases of how secondary modes, which ap-
pear as satellite peaks to the primary excitation mode driven
parametrically, appear as a function of the supercriticality
parameter brf/brf,c.

We begin by revisiting the case considered in Sec. III,
where the uniform mode (ψ12) is targeted by parallel
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FIG. 10. (a) Color map of the power spectral density, S(ν ), as a
function of the supercriticality, brf/brf,c for νrf = 2ν12 = 5.802 GHz
and B0 = 50 mT. (b) Color map of the time-averaged population nκ

as a function of supercriticality corresponding to the excitation in
(a), where each mode is assigned a different color with an intensity
corresponding to the population level on a log scale.

pumping with νrf = 2ν12 = 5.802 GHz under an external field
of B0 = 50 mT and with T = 300 K. We use the mode-
filtering method to compute the power spectral density and
population of the modes as a function of the supercriticality,
where brf,c = 0.51 mT. For each value of brf , time integration
is performed for 500 ns and the population of each of the
50 modes is recorded at the end of simulation, while the
power spectral density is computed over the entire duration
of the simulation. Figure 10(a) shows a color map of the
power spectral density as a function of the supercriticality.
The color map extends the analyses described in Sec. III
by revealing how different satellite peaks, associated with
higher-order nonlinear processes, appear as the strength of
the parametric drive is increased. Below threshold, we can
observe the spectrum of thermally populated modes, as shown
in Fig. 5(a). As the supercriticality is increased above one,
the targeted mode at ν12 exhibits a sharp increase in intensity,
while the other modes in the frequency range considered
remain largely unchanged. The first set of satellite peaks
appear around brf/brf,c ≈ 1.5, which is accompanied by an
increasing frequency splitting between the two edge modes
ψ1 and ψ2 whose linear frequencies are 1.924 and 1.926 GHz,
respectively. Around these frequencies, we can observe that a
horizontal line persists up brf/brf,c ≈ 2.5, indicating that one
of the modes remains largely unaffected by the parametric
excitation, while the other exhibits a strong positive frequency
shift. At around brf/brf,c ≈ 2.2, we observe the onset of a
second set of satellite peaks [i.e., the lowest being around

FIG. 11. (a) Color map of the power spectral density, S(ν ), as a
function of the supercriticality, brf/brf,c for νrf = 2ν11 = 5.770 GHz
and B0 = 50 mT. (b) Color map of the time-averaged population nκ

as a function of supercriticality corresponding to the excitation in
(a), where each mode is assigned a different color with an intensity
corresponding to the population level on a log scale.

3.67 GHz corresponding to ψ42 and ψ44 in Fig. 6(c)], followed
by broadband excitations at around brf/brf,c ≈ 2.9 that are
suggestive of highly nonlinear and possibly chaotic dynamics.

Figure 10(b) shows a color map that encodes the response
in terms of the mode populations instead. The color code
indicates the population at the end of the simulation run,
i.e., 500 ns after the start of the rf field excitation. This rep-
resentation allows us to better identify the different modes
at play, which can be masked in a spectral analysis when
phenomena such as frequency shifts and phase locking take
place. Besides the targeted mode, we can identify directly
the modes corresponding to the secondary excitations, which
become more prominent as the supercriticality is increased.
Interestingly, for increasing brf we find that the onset of mode
ψ11, which subsequently becomes phase locked to the targeted
ψ12, slightly precedes with the appearance of the satellite
peaks in the PSD, which are associated with the modes ψ8,9

and ψ13,14 as shown in Fig. 5.
In order to better understand whether the nonlinear pro-

cesses leading to the appearance of these satellite peaks result
from the coupled dynamics of modes ψ11 and ψ12, or whether
they are driven primarily by the excitation of ψ11 alone, we
present in Fig. 11 the color maps for an rf excitation that
targets instead ψ11, with νrf = 2ν11 = 5.770 GHz. Indeed,
the map of the power spectral density differs qualitatively
in comparison with Fig. 10(a), where secondary excitations
appear at a higher supercriticality brf/brf,c ≈ 1.75, with a
larger frequency spacing. The transition toward the highly
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nonlinear regime brf/brf,c � 2.8 also appears more abrupt,
with a stronger broadband response. The marked, qualitative
differences are also visible in the variation of the mode pop-
ulations in Fig. 11(b) where we can identify by inspection
the different modes that appear as the rf field amplitude is
increased.

In general, the dynamics at high power depends very much
on the targeted mode. Examples of different qualitative behav-
ior related to other modes can be found elsewhere [56].

VI. DISCUSSION AND CONCLUDING REMARKS

We have highlighted a number of shortcomings related
to spatially resolved frequency-domain analyses, such as the
supercell approach discussed here, where we encounter dif-
ficulties in identifying modes profiles at a given frequency
(using the back-transformed Fourier spectra) when several
modes are at play, such as in the case of mutual phase locking
of ψ11 and ψ12 in Fig. 2. Such difficulties would persist even
if all finite-difference cells were used in the analysis, rather
than the local spatial averages used in the supercells. Mode
coexistence at a given frequency results in a superposition of
the spatial profiles of two (or more) eigenmodes, so one would
need detailed knowledge of the relative phases between the
complex mode amplitudes in order to reconstruct the mode
populations from this spatial analysis.

The mode-filtering described relies on using the profiles
of the different eigenmodes as spatial filters. This approach
holds as long as the magnetization dynamics can be described
in terms of a collection of weakly interacting modes about the
equilibrium state. However, as we have seen in Figs. 10(b)
and 11(b) at large supercriticality, the method returns large,
nonthermal population levels across a wide range of mode
indices. At these levels of parametric excitation, it is likely
that the overall dynamics is in fact highly chaotic, which is

reflected in the appearance of broadband noise both in the
frequency domain, as seen in the power spectral density, and
in the spatial domain, as characterized by nκ .

Turning now to one of the motivations highlighted in the
introduction, we discuss some perspectives on applying the
mode-filtering method for tasks such as reservoir computing.
The capacity to resolve mode populations directly means that
outputs can be constructed from these populations, rather than
on spectral signatures in the frequency domain, which, as we
have shown here, can mask several modes. If we take the
magnon reservoir considered by Körber et al. as an example
[38], mode filtering would allow machine learning for pattern
recognition to be performed directly on the mode populations,
rather than on frequency bins of the power spectral density.
This also connects to more general concepts of reservoir
computing using state variables, e.g., utilizing the Hilbert
space associated with quantum systems as a computational
resource [59].

In summary, we have presented a mode-filtering method
for micromagnetics simulations in which the spin wave mode
amplitudes can be computed on the fly. The method was
applied to the study of parametric excitation of spin waves
in in-plane magnetized disks, where phenomena such as the
transient dynamics of excited mode populations, mutual phase
locking, and frequency pulling were examined. The method
complements existing techniques based on frequency-domain
analysis and can be applied to studied transient processes
related to nonlinear spin wave interactions.
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