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First-principles study of the tunnel magnetoresistance effect with Cr-doped RuO2 electrode
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We investigate the functionality of the Cr-doped RuO2 as an electrode of the magnetic tunnel junction (MTJ),
motivated by a recent experiment showing that Cr doping into rutile-type RuO2 is an effective tool to easily
control its antiferromagnetic order and the resultant magnetotransport phenomena. We perform first-principles
calculation of the tunnel magnetoresistance (TMR) effect in the MTJ based on the Cr-doped RuO2 electrodes.
We find that a finite TMR effect appears in the MTJ originating from the momentum-dependent spin splitting in
the electrodes, which suggests that RuO2 with Cr doping will function effectively as the electrode of the MTJ.
We also show that this TMR effect can be qualitatively captured by the local density of states inside the tunnel
barrier.
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I. INTRODUCTION

The tunnel magnetoresistance (TMR) effect is a spin-
dependent transport phenomenon observed in a magnetic
tunnel junction (MTJ), a multilayered system consisting of
insulating thin films sandwiched by magnetic electrodes [1].
The tunnel resistance can differ when the magnetic moments
of two magnetic electrodes align parallelly or antiparallelly.

The TMR effect has long been discussed with ferro-
magnetic electrodes [1–23] since it has been believed that
macroscopic spin polarization is essential to generate a TMR
effect. However, recent studies have revealed that MTJs with
antiferromagnets can also exhibit a finite TMR effect [24–42].
Particularly, the antiferromagnets breaking the time-reversal
symmetry macroscopically are promising materials to show
the TMR effect; when the magnetic order of an antiferro-
magnet breaks the time-reversal symmetry macroscopically,
namely, when a magnetically ordered state does not return
to the original state after the time-reversal operation and
succeeding translation or inversion operations, a finite spin
splitting in the momentum space is generated [43–48]. When
such an antiferromagnet is used for the electrode of the MTJ,
the momentum-dependent spin splitting contributes to gener-
ating the difference in the transmission of two configurations.
The MTJs using such antiferromagnets have been discussed
theoretically [24,29–32,34,35,37–40], and a finite TMR effect
has been actually observed in experiments [24,32,40].

A typical candidate material whose antiferromagnetic
structure breaks the time-reversal symmetry macroscopically
is the rutile-type RuO2. Recently, it has been experimentally
proposed that RuO2 possess the collinear antiferromag-
netic structure [49,50]. Triggered by this proposal, its spin
splitting nature in the momentum space [44,51] and the
magnetotransport phenomena such as the anomalous Hall
effect [46,52] or the Néel spin current [53] have been dis-
cussed. As for the TMR effect, the TMR ratio has been

theoretically calculated in the RuO2(001)/TiO2/RuO2- [29],
RuO2(110)/TiO2/RuO2- [37], and RuO2/TiO2/CrO2-MTJs
[38,39], as well as in the argument based on the properties
of the electrode [30].

However, several studies argue that the magnetism in
RuO2 is very weak [54] and even nonmagnetic experimen-
tally [55,56], which might prevent us from applying RuO2

to the TMR effect or other spintronic phenomena. Here,
we avoid the potentailly weak antiferromagnetism of RuO2

while preserving the time-reversal symmetry-breaking mag-
netic structure in rutile systems by element substitution. A
recent experiment investigated the physical properties of Cr-
doped RuO2 [57] demonstrating that the Cr-doped RuO2

exhibits a distinct anomalous Hall effect even in a small or
zero magnetic field. This experiment has suggested that dop-
ing Cr is a possible way to easily manipulate the magnetic
order and magnetotransport properties of RuO2 systems.

In this paper, we discuss the functionalities of the Cr-
doped RuO2 as an electrode of the MTJ. First we perform
first-principles calculation of the Cr-doped RuO2 and show
that Cr-doped RuO2 has the spin splitting depending on the
momentum. Then, we perform first-principles calculation of
the TMR effect with Ru1−xCrxO2/TiO2/Ru1−xCrxO2 MTJ
and find that the Cr-doped RuO2 shows a finite TMR effect
owing to the spin-splitting structure.

This paper will also have a practical significance in de-
signing MTJs with compensated magnets. There have been
proposals that the TMR properties can be evaluated by fo-
cusing on the local density of states (LDOS) in the MTJs
[10,12,13,18,26]. For example, an early study evaluated the
transmission by the LDOS at the interface of the MTJs and
the decaying factor [10]. To further advance the utility of the
LDOS, we have recently proposed a real-space method to
evaluate the TMR effect qualitatively with the LDOS inside
the tunnel barrier in model calculations [33]. By using this
method, the calculation of the transmission, which usually
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Ru1−xCrxO2 TiO2 Ru1−xCrxO2

FIG. 1. (a) Crystal structure of Ru1−xCrxO2. (b) Crystal structure
of the Ru1−xCrxO2/TiO2/Ru1−xCrxO2 magnetic tunnel junction and
schematics of the alignments of the magnetic moments for the par-
allel and antiparallel configurations. Arrows and arrows with broken
lines represent the magnetic moments of the Ru/Cr-A and Ru/Cr-B
sites, respectively.

demands high computational cost in first-principles calcula-
tions, could be skipped. However, that proposal is based on the
idealized lattice model and it is not trivial to apply this esti-
mation, in terms of the local density of states, to more realistic
MTJ systems, particularly the TMR effect with compensated
magnets. We verify the applicability of the estimation method
based on the LDOS.

II. SYSTEM AND METHOD

A. Density functional theory calculations of Cr-doped RuO2

and tunnel magnetoresistance effect with Cr-doped RuO2

We use the rutile-type RuO2 whose Ru sites are par-
tially substituted for Cr, Ru1−xCrxO2, as the electrode of
the MTJ. RuO2 has the tetragonal crystal structure (space
group: P42/mnm) with two inequivalent Ru sites, Ru-A
and Ru-B, in a unit cell [Fig. 1(a)]. We use the a- and
c-axis lattice constants of RuO2 as aRuO2 = 4.4919 Å and
cRuO2 = 3.1066 Å, respectively. The position of oxygen atom
is x = 0.3058 for RuO2. The crystal structure and the lattice
parameters of RuO2 are obtained from the Inorganic Crystal
Structure Database (ICSD) (Collection Code 15071) [58].

As a barrier layer of the MTJ, we use the rutile-type
TiO2. Specifically, we calculate the TMR effect in the
Ru1−xCrxO2/TiO2/Ru1−xCrxO2 MTJ. Here, Ru1−xCrxO2 and
TiO2 are stacked along (001) direction [Fig. 1(b)]. For TiO2,
the in-plane lattice constant is matched to aRuO2 , and c-axis

length is cTiO2 = 2.9589 Å. The interface between RuO2 and
TiO2 is given by the average of cRuO2 and cTiO2 . The position
of oxygen atom for TiO2 is x = 0.3057. The crystal structure
and the lattice parameters of TiO2 are obtained from the ICSD
(Collection Code 9161) [58].

The TMR effect is calculated based on the scattering theory
approach [59] with the Landauer–Büttiker formula [60–63].
First, we separate the whole MTJ into three parts: the left
and right leads, and the scattering region. Here, the left and
right leads are Ru1−xCrxO2, and the scattering region is nine
monolayers (MLs) of TiO2 with four MLs and five MLs of
Ru1−xCrxO2 on its left and right sides, respectively. We calcu-
late the electronic structure of each of these three parts. Then,
we construct the MTJ attaching these three parts and calculate
the transmission.

To obtain the electronic structure, we perform the den-
sity functional theory (DFT) calculations [64,65] using the
QUANTUM ESPRESSO (QE) package [66,67]. We use the
norm-conserved pseudopotential obtained from PSEUDODOJO

[68,69]. The exchange correlation is taken in by the Perdew-
Berke-Ernzerhof type generalized gradient approximation
[70]. The energy cutoff for the wave-function is 110 Ry, and
that for the charge density is 440 Ry. We take 15 × 15 × 20
and 15 × 15 × 1 k points for the self-consistent field (scf)
calculation of the lead and the scattering region, respectively.
We do not consider the effect of spin-orbit coupling or the
additional Coulomb interaction +U . We use the virtual crystal
approximation (VCA) [71,72] to substitute Ru with Cr [73].
We mix the potential of Ru and Cr, VRu and VCr, respec-
tively, to generate the potential of the virtual atom Ru1−xCrx,
VRu1−xCrx (x). The mixed potential is written as VRu1−xCrx (x) =
(1 − x)VRu + xVCr. For the antiparallel configuration, we at-
tach the copy of the scattering region with its magnetic
structure inverted and calculate the electronic structure of
the doubled scattering region to deal with the electronic and
magnetic structures at the boundary between the leads and
the scattering region properly. When we calculate the trans-
mission, the doubled supercell is cut in half and restored
to the original scattering region. Here, the parallel and an-
tiparallel configurations are defined by focusing on the same
sublattices; the MTJ has the parallel (antiparallel) configu-
rations when Ru/Cr-A sites of the left and right electrodes
have the magnetic moments aligned parallelly (antiparallelly)
[Fig. 1(b)].

For the calculation of the transmission, we use the PW-
COND codes contained in the QE package [74–76]. Following
the Landauer-Büttiker formula, the total conductance G is
given by the total transmission Ttot as G = (e2/h)Ttot with
the elementary charge e and the Planck constant h. The total
transmission Ttot is calculated by summing up the transmis-
sion at each in-plane k‖ = (kx, ky) point perpendicular to the
conducting path with spin-σ , Tσ (k‖) as

Ttot =
∑

σ=↑,↓

1

Nk‖

∑

k‖

Tσ (k‖). (1)

Here, the z direction, which is the conducting direction, is
taken along the c axis of the MTJ [see also Fig. 1(b)], and
Nk‖ is the number of k‖ point in the transmission calculation.
We take Nk‖ = 251 × 251.
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FIG. 2. (a) Averaged size of the magnetic moments of Ru(Cr)
ions in Ru1−xCrxO2 with respect to the amount of Cr doping.
(b) Spin-resolved density of states (DOS) and projected DOS
(PDOS) of two Ru/Cr sites for Ru0.65Cr0.35O2 as a function of energy.
Positive (negative) values of the (P)DOS are the spin-up (down)
components. (c) Energy band structure of Ru0.65Cr0.35O2 resolved
by the spin degrees of freedom. The high-symmetry points in the
Brillouin zone for the tetragonal crystal structure are schematically
shown on the right side of the energy band, where bi (i = 1, 2, 3) is
the primitive reciprocal lattice vector.

B. Evaluation of tunnel magnetoresistance effect with local
density of states

Here, we briefly review the method which is used to
qualitatively estimate the TMR effect with LDOS based
on Ref. [33]. Using the conventional Jullire’s picture, the
transmission is approximated by the spin polarization, or
equivalently, the total DOS, of the two magnetic metals used
for the electrodes [1,2]. Specifically, τDOS is given as

τDOS ∼
∑

σ=↑,↓
DL,σ (E )DR,σ (E ). (2)

Here, DL/R,σ (E ) is the density of states of the left/right elec-
trodes.

In a similar manner to the Julliere’s picture, we can con-
sider the product of the LDOS inside the insulating barrier
dL/R,σ (E ),

τLDOS ∼
na∑

i=1

∑

σ=↑,↓
dL,i,σ (E )dR,i,σ (E ), (3)

FIG. 3. (a) Cr-doping amount dependence of the total trans-
mission for the parallel and antiparallel configurations of the
Ru1−xCrxO2/TiO2/Ru1−xCrxO2 magnetic tunnel junction. (b) TMR
ratio calculated by (TP − TAP)/TAP. [(c)–(f)] Transmission resolved
by the spin and the in-plane momentum k‖, Tσ (k‖), for the x = 0.35
system. Transmission of (c) up and (d) down spins for the parallel
configuration. Transmission of (e) up and (f) down spins for the
antiparallel configuration.

where dL/R,i,σ (E ) is the LDOS inside the barrier, and na is
the number of atoms in the barrier layers which we focus on,
layer-L and R. By using the LDOS inside the barrier instead of
the DOS of the electrodes, we can take account of the details
of the characters of materials used for the electrodes and
barriers and also the decay inside the tunneling barrier, which
is in sharp contrast to τDOS where only the bulk properties of
the metals are considered.

To obtain the LDOS inside the barrier, we per-
form the non-scf calculation for the scattering region
used in the transmission calculation, specifically,
Ru1−xCrxO2 (4 MLs)/TiO2 (9 MLs)/Ru1−xCrxO2 (5 MLs),
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FIG. 4. Spin-resolved local density of states (LDOS) at each layer of the scattering region for the x = 0.35 system. Positive (negative)
values of the LDOS represent the LDOS of the up (down) spin components.

or the aforementioned doubled supercell for the antiparallel
configuration, with a k-point mesh of 21 × 21 × 1 following
the scf calculation. Then, we calculate the projected DOS
onto each atom. Here, we use the LDOS of the atoms in one
layer away from the center of the barrier and take the product
of the LDOS of the two atoms with the same xy coordinates
[77].

III. RESULTS AND DISCUSSIONS

A. Bulk property of Cr-doped RuO2

Before discussing the transmission properties of the MTJ
with Cr-doped RuO2, we discuss the bulk properties of
Ru1−xCrxO2. We consider the systems with 0.3 � x � 0.5
to ensure a large enough magnetic moment. In this region,
the collinear antiferromagnetic state has a lower energy than
the nonmagnetic state. We also confirm that the ferromag-

FIG. 5. Cr-concentration dependence of the product of the local
density of states at the Fermi energy for parallel and antiparallel
configurations calculated by Eq. (3).

netic state has a higher energy than the antiferromagnetic
state for 0.3 � x � 0.5 thereby excluding the possibility of
realizing the ferromagnetic state as rutile-type CrO2 exhibits
a ferromagnetic state [78–81]. The comparison of the total
energies of the nonmagnetic, ferromagnetic, and antiferro-
magnetic states is shown in Appendix. A.

In Fig. 2(a), we show the Cr concentration dependence of
the magnitude of the magnetic moments in Ru1−xCrxO2. The
size of the magnetic moments becomes larger as the amount
of Cr doping increases, which is consistent with the results
of the previous study showing that the magnetic moments
of Ru ion increase by substituting the Ru ion with Cr ion
[57]. This enhancement of the magnetic moment indicates
that the Cr-doping strengthens the electronic correlation. It
should be noted that the Coulomb U is not required to stabilize
the magnetically ordered states here. To discuss RuO2 as an
antiferromagnet, calculations with additional U have been
performed. However, in Ref. [54], it has been pointed out
that the actual Ru materials have a relatively small U (Ueff)
of �1 eV, indicating that stoichiometric RuO2 will not be an
antiferromagnet. Also, the observed values of the magnetic
moment of the Ru-ions are ∼0.05 μB (0.23 μB) in the po-
larized (unpolarized) neutron diffraction measurement [49],
which indicates that the electron correlation in RuO2 is not
likely to be large [82]. Therefore, we restrict ourselves to the
case without +U . In our case, the realization of the magnetic
state is attributed not to the effect of +U but to the replace-
ment of Ru-4d electrons with Cr-3d electrons. Hence, we
expect to naturally describe the Ru-based materials here.

We show the total DOS and projected DOS (PDOS) of two
Ru/Cr-sites resolved by the spin degrees of freedom for the
x = 0.35 system in Fig. 2(b). The total DOS is symmetric with
respect to the spin degrees of freedom, which suggests that
the magnetization in Ru1−xCrxO2 is compensated overall. We
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FIG. 6. Cr-concentration dependence of the total energies of the
antiferromagnetic (AFM), ferromagnetic (FM), and nonmagnetic
(NM) states. The energy differences with the energy of the AFM
states are shown.

also find that each of the two Ru/Cr-sites in a unit cell has the
spin-polarized PDOS, consistent with the presence of finite
magnetic moments of Ru sites.

Figure 2(c) shows the energy band structure of
Ru1−xCrxO2. We see the spin splitting along M−� and
A−Z lines in the momentum space, where |kx| = |ky|. which
is the same as the spin splitting band observed in the pure
RuO2 [44,46].

B. Tunnel magnetoresistance effect with
Cr-doped RuO2 electrode

Next, we discuss the TMR effect in the
Ru1−xCrxO2/TiO2/Ru1−xCrxO2 MTJ. In Fig. 3(a), we show
the Cr concentration dependence of the total transmission Ttot

of the parallel and antiparallel configurations at the Fermi
level, TP and TAP, respectively. Both TP and TAP decrease as
the amount of the Cr-doping increases. In 0.3 � x � 0.5, TP

is larger than TAP. This means that the corresponding TMR
ratio, defined by (TP − TAP)/TAP, takes positive finite values
as shown in Fig. 3(b). The TMR ratio is around 100%–200%.
This value is smaller than that in the RuO2/TiO2/RuO2 MTJ
[29]. Still, we should note that a large U is often assumed
for RuO2, which possibly overestimate the magnetism of
pure RuO2 as discussed in Sec. III A. In addition, we do not
add the Coulomb U here, which makes us underestimate the
energy gap of TiO2 here. If we take the effect of +U into
account and evaluate the band gap of TiO2 more accurately,
the TMR ratio in the Ru1−xCrxO2-based MTJ may become as
large as that in the RuO2-based MTJ, which we leave as the
future work.

In Figs. 3(c)–3(f), we show the transmission at the Fermi
level resolved by the in-plane momentum perpendicular to the
conducting path k‖ for the x = 0.35 system. For the parallel
configuration, the transmission takes a large value near the
|kx| = |ky| line, where the spin splitting of Ru1−xCrxO2 is
present as seen in the band structure shown in Fig. 2(b). For
the antiparallel configuration, since the two magnetic elec-
trodes have the opposite spin polarization with each other,
T (k‖) around the � point takes a large value.

It should be stressed that the transport discussed here is
the tunneling one. We show the energy dependence of the
LDOS of each layer of the scattering region for the parallel
configuration with x = 0.35 in Fig. 4. We find that the LDOS

FIG. 7. Results of the transmission calculation with eight mono-
layers of TiO2. (a) Total transmission with respect to the amount of
Cr doping. (b) TMR ratio. (c)–(f) Momentum resolved transmission
for the x = 0.35 system. (c) Up and (d) down spins for the par-
allel configuration. (e) Up and (f) down spins for the antiparallel
configuration.

in the TiO2 layers is small enough around the Fermi level.
Namely, the Fermi level of the scattering region is well inside
the band gap of TiO2, which ensures the tunneling transport.

We also calculate the TMR effect for the MTJ with eight
MLs of TiO2 to check the effect of the magnetic moments at
the interface. In the MTJ with nine MLs or odd numbers of
MLs of TiO2, the interfacial magnetic moments of the two
magnetic electrodes align parallelly (antiparallelly) for the
parallel (antiparallel) configuration, as schematically shown
in Fig. 1(b). When the number of layers is even, the magnetic
moments at the interface of the electrodes align antiparallel
for the parallel configuration of the MTJ, and parallel for
the antiparallel configuration. This difference of the relative
directions of the interfacial magnetic moments may influence
the TMR effect. However, for the present case, we obtain
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similar TMR properties in the range 0.3 � x � 0.5 between
the MTJ with nine MLs of TiO2 and the one with eight MLs
of TiO2, indicating that the interfacial magnetic structure does
not qualitatively affect the TMR properties in this region. See
Appendix B for detailed results.

In our previous calculations using the lattice model,
we have pointed out that the TMR ratio can change its
sign depending on the relative alignments of the interfacial
magnetic moments of the two electrodes when using the
magnets with multiple sublattices, such as the ferrimagnets
or antiferromagnets [33]. However, the situation is differ-
ent between that lattice model and the current system, the
Ru1−xCrxO2/TiO2/Ru1−xCrxO2-MTJ. In the model calcu-
lation, we have considered the relative alignments of two
magnetic moments at the interface, which had the same in-
plane coordinates perpendicular to the conducting path. In
contrast, in the present case, the interfacial magnetic moments
of the two electrodes have different in-plane positions. The
magnetic moments of the two electrodes with the same in-
plane positions align parallelly (antiparallelly) for the parallel
(antiparallel) configuration regardless of the number of barrier
layers.

C. Local density of states inside the barrier

Finally, we discuss the correspondence between the trans-
mission and the LDOS inside the barrier. Recent studies have
revealed that the LDOS inside the barrier can evaluate the
TMR effect more precisely [18,33]. While the k-space pic-
ture of the LDOS [18] can also be adopted, here we use
the real-space approach [33]. Figure 5 shows the product of
the LDOS at the Fermi energy calculated following Eq. (3)
with respect to the amount of Cr. We find that the product of
the LDOS decreases for each of the parallel and antiparallel
configurations, and τLDOS, P takes larger values than τLDOS, AP.
These features are consistent with the transmission property
shown in Fig. 3(b), indicating that we can qualitatively capture
the transmission behavior using the LDOS not only in the
idealized lattice models [33] but also in a realistic system.

IV. SUMMARY

In summary, we have discussed the tunnel magnetoresis-
tance (TMR) effect using the Cr-doped RuO2 as an electrode
of the magnetic tunnel junction (MTJ) from first-principles
calculations. We have performed ab initio calculation of the
tunneling conductance in the Ru1−xCrxO2/TiO2/Ru1−xCrxO2

MTJ. We have found that a finite TMR effect is generated
by a finite spin splitting in the momentum space, which is

supported by the enhancement of the electron correlation in
Ru1−xCrxO2 owing to the Cr doping. We have also shown that
the qualitative nature of the obtained TMR effect can be traced
using the local density of states (LDOS) inside the barrier of
the MTJ. We believe that this correspondence between the
TMR property and the LDOS in realistic systems will be
helpful in searching for materials suitable for MTJs.
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APPENDIX A: COMPARISON OF TOTAL ENERGY
OF DIFFERENT MAGNETIC STATES

In Fig. 6, we plot the total energies of the nonmagnetic,
ferromagnetic, and antiferromagnetic states of Ru1−xCrxO2

with respect to the amount of Cr. This result shows that the
antiferromagnetic state takes lower energy than the other two
states.

APPENDIX B: TRANSMISSION WITH EVEN NUMBER OF
BARRIER LAYERS: EFFECT OF INTERFACIAL

MAGNETIC MOMENTS

In the main text, we have discussed the TMR effect in
the MTJ with nine MLs of TiO2. To check the effect of the
magnetic moments at the interface, we calculate the TMR
effect with eight MLs of TiO2. For the scattering region, we
use the eight MLs of TiO2 with four MLs of Ru1−xCrxO2

attached to both sides.
We present the results of the transmission calculation in

Fig. 7. As shown in Figs. 7(a) and 7(b), TP takes a larger value
than TAP in 0.3 � x � 0.5, and thus the TMR ratio is positive,
which is qualitatively the same as the case with nine MLs of
TiO2. Also, the momentum resolved transmissions for the x =
0.35 system shown in Figs. 7(c)–7(f) exhibit similar structures
to those in the MTJ with nine MLs of TiO2 [see Figs. 3(c)–
3(f)]. Hence, the magnetic moments at the interface do not
change the TMR properties qualitatively in this region.
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