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Effects of frustration on the spin dynamics of the zigzag honeycomb lattice
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This investigation covers the effects of variable exchange interactions on the spin dynamics of the zigzag hon-
eycomb lattice. Using a Holstein-Primakoff expansion of the Heisenberg Hamiltonian with easy-axis anisotropy,
we characterize the effects of multiple nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions
with asymmetry within the context of a frustrated and nonfrustrated zigzag magnetic configuration. By building
the model term by term, we directly observe the behavioral contributions from each interaction, how the system
changes with anisotropy, and how asymmetric terms transform the system from a nonfrustrated to a frustrated
state. By analyzing geometric frustration, we are able to demonstrate the role that NN and NNN interactions
play within an asymmetric honeycomb lattice, show the emergence of direction-dependent Dirac nodes, and
postulate that the standard Heisenberg interaction has a notable contribution to the behavior observed in the
spin excitation behavior within the high-symmetry pathway �-M. Furthermore, to examine the efficacy of our
model, we compare it to known inelastic neutron scattering data for α-RuCl3, which has been established to host
a zigzag honeycomb ground state dominated by anisotropic interactions.
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I. INTRODUCTION

The dramatic increase in the use of electronic devices in all
aspects of the world has fueled a great need for high-efficiency
materials. As the electronic demand increases with faster data
consumption, cryptocurrency, and high-speed internet use,
the energy demand and carbon footprint for electronics put
them in the spotlight [1–3]. In pursuing more energy-efficient
electronics, the best way to improve devices is to have better
materials that provide the same or better ability to store and
transfer information as current electronic devices [4,5].

Areas of interest that have gained attention in the past
few decades are the fields of spintronics and magnonics,
which manipulate the properties of spin and spin waves for
information transport [6,7]. Since magnetic interactions (∼1–
10 meV) are typically smaller than electronic excitations
(∼1 eV), spintronic and magnonic devices have the potential
to provide considerable energy savings while maintaining or
even exceeding the speed and fidelity of standard electronic
components [8–10].

To identify materials that allow for the utilization of
magnons and spin waves for application purposes, it is crucial
to understand how magnetic interactions affect the propaga-
tion of spin excitations through various lattice configurations
[11]. Previous studies have provided insight into square,
hexagonal, honeycomb, and Kagome lattices [12–14]. Each
lattice configuration has various magnetic configurations con-
sisting of ferromagnetic and antiferromagnetic interactions.
The honeycomb and kagome lattices are particularly interest-
ing due to the multiple sublattice interactions that can lead to
Dirac nodes and potential exotic spin states like the elusive
quantum spin liquid [15–17].

Since the discovery of graphene [8,18], the interest in
two-dimensional systems has been promulgated due to the
fascinating nature of graphene’s properties and potential ap-
plications. Like such, many new two-dimensional materials

have fallen under investigation and the production of multiple
honeycomb systems with similar properties has come to light,
such as Na2IrO3, RuCl3, CrX 3 (X = Cl, Br, and I), and more
[16,19–22]. With the two-dimensional honeycomb lattice on
the rise, we take a deeper look into the generalized honey-
comb’s magnetic structure and how the magnetic interactions
respond to outside perturbation.

As shown in Fig. 1(a), the honeycomb lattice is a special
form of hexagonal lattice that consists of two sublattices,
where the primitive translation vectors of the hexagonal lattice
introduce angles of 120◦ in between equal lengths and rotate
90◦ with length b = 4π/a

√
3 within reciprocal space. Within

the context of spin exchange, such a structure can present five
different collinear (and other noncollinear) magnetic struc-
tures such as ferromagnetic (FM), antiferromagnetic (AFM),
zigzag (ZZ), dimerized (DIM), and armchair (ARM) [13,23];
however, the focus of this study is on the zigzag magnetic
configuration.

In this study, we focus on the ZZ AFM configuration of
the honeycomb lattice and use a Heisenberg spin Hamilto-
nian to investigate the effects of nonfrustrated and frustrated
interactions on the spin-wave excitations. Through a Holstein-
Primakoff expansion with easy-axis anisotropy, we effectively
characterize the effects of multiple nearest-neighbor and next-
nearest-neighbor interactions and of asymmetry within the
context of a frustrated and a nonfrustrated zigzag magnetic
configuration. To begin understanding the zigzag magnetic
configuration and how the spin waves are affected by com-
peting interactions, it is necessary to note the behavior shown
in the most basic FM and AFM configurations.

It is observed that the introduction of spin into the honey-
comb lattice complicates the presence of inversion symmetry
in the two-sublattice structures [13]. Observing the FM
configuration, it is seen that, in every direction, inversion sym-
metry is maintained and, therefore, should produce a Dirac

2469-9950/2024/110(6)/064429(9) 064429-1 ©2024 American Physical Society

https://orcid.org/0009-0003-4395-6491
https://orcid.org/0000-0002-8641-5412
https://ror.org/01j903a45
https://ror.org/01j903a45
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.064429&domain=pdf&date_stamp=2024-08-26
https://doi.org/10.1103/PhysRevB.110.064429


E. M. WILSON AND J. T. HARALDSEN PHYSICAL REVIEW B 110, 064429 (2024)

FIG. 1. (a) An illustration showing the physical configuration
of the honeycomb lattice as a two-sublattice hexagonal structure.
(b) The reciprocal space representation of the honeycomb lattice and
the high-symmetry-pathways �-M-K-�-M′-K′-�.

cone [17]. Interestingly, in the AFM configuration, no mat-
ter what direction is analyzed, when the magnetic structure
is imposed, it is found that inversion symmetry is broken
and produces only a single-band mode within its spin-wave
spectra [13,16,23,24].

II. ZIGZAG SPIN HAMILTONIAN

The zigzag magnetic configuration, characterized by a
collinear arrangement of spins, demonstrates a unique pat-
tern where nearest-neighbor and next-nearest-neighbor atoms
interact along a distinctive “zigzag” path (see Fig. 2). This
striking configuration dynamically oscillates between FM
and AFM interactions. Intriguingly, within the framework of
the zigzag magnetic arrangement, a noteworthy phenomenon

FIG. 2. Four-sublattice interactions where α is the nearest-
neighbor interaction and β is the next-nearest-neighbor interaction.
The prime terms α′ and β ′ are asymmetric nearest-neighbor and
next-nearest-neighbor interactions, respectively. The blue lattice sites
represent the up spin, the red lattice sites represent the down spin, and
the darker red/blue sites represent the unit cell.

emerges: when observed in a specific direction, inversion
symmetry is preserved. Moreover, inversion symmetry re-
mains preserved along two distinct directions upon system
rotation. This observation holds the potential to uncover the
existence of magnetic Dirac nodes [25–28]. The effective
Hamiltonian for this model, then, is

H = − J

2

[ ∑
NN

α �Si · �S j +
∑
NNN

β �Si · �S j

+
∑

nn

α′ �Si · �S j +
∑
nnn

β ′ �Si · �S j

]
− D

∑
i

S2
iz. (1)

The terms involving α = J1/J , α′ = J ′
1/J , β = J2/J , and

β ′ = J ′
2/J correspond to the nearest-neighbor (NN and nn)

and next-nearest-neighbor (NNN and nnn) interactions, re-
spectively. NN and NNN interactions are between like spins
and nn and nnn interactions are between opposite spins. The
final term represents the single-ion anisotropy, D, associated
with each spin site i. The positive scaling factors correspond to
ferromagnetic interactions, while negative ones indicate anti-
ferromagnetic interactions. This comprehensive Hamiltonian
captures the intricate interplay between exchange interactions
and anisotropy, crucial for understanding the magnetic proper-
ties of the system; however, an expansion of the terms is still
necessary for capturing the dispersion relation of spin-wave
excitation within a bosonic system [29].

To determine the spin-wave dynamics, a Holstein-
Primakoff (HP) expansion is employed on the Heisenberg spin
Hamiltonian, allowing us to delve into the effects of nearest-
neighbor and next-nearest-neighbor interactions [26,28]. The
HP transformation involves mapping the spin operators onto
these bosonic operators and then truncating the expansion at
certain orders in 1/S [29–31]. The HP transformation enables
us to express the spin operators as combinations of bosonic
creation (b†

i ) and annihilation (bi) operators, which corre-
spond to magnons, the quanta of spin excitations. Utilizing
the known region of stability for the ZZ magnetic phase [13],
we use an exact diagonalization of the spin dynamics matrix,
which is composed of exchange interactions and produces the
observed magnon modes [32–34]. By building the model by
its components, we look to provide insight into how each
interaction affects the total behavior and its role in the spin
dynamics of a ZZ magnetic structure. By analyzing these parts
individually, insight into the interactions and how they affect
the resultant perturbation is prevalent.

A. Effects of nearest and next-nearest neighbors

To show the evolution of the spin dynamics represented by
a ZZ magnetic configuration within a honeycomb lattice, we
start with a base case where the nearest-neighbor interaction
α > 0, and all other interactions are set to 0. In this regime,
the zigzag configuration consists of decoupled ferromagnetic
ZZ stripes of up and down spins in the honeycomb lattice
that are mirror images of each other. α needs to be ferromag-
netic along the ZZ direction as it stabilizes the spin wave. A
negative α in this case would lead to an instability in the spin-
wave spectra as the ZZ configuration requires parallel spins.
As shown in Fig. 3(a), there are two spin waves produced
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FIG. 3. (a) Two-dimensional plot showing the nearest-neighbor
interaction’s behavior as α is added. This produces two direction-
dependent diagonal nodes at M and K′. Panel (b) shows how this
changes as deformities are introduced as α′. This creates distortions
in the spin wave that increase alongside α′.

due to the two opposing zigzag chains. As α increases, the
energy dispersion is scaled by α along the high-symmetry
pathway � to M to K and back to �. The resultant spin
wave progresses from a smooth behavior to a more deformed
propagation, most noticeably from M to K′, as the magnitude
of α increases. Observably, the symmetry of the ZZ chains
produces two spin-wave modes with distinct crossing points
between the two spin-wave modes arising at high-symmetry
points M and K′. This crossover indicates the potential for
Dirac magnons similar to those observed in the FM magnetic
phase [13,16]. However, considering only the NN interaction,
these crossover points are produced by two decoupled spin
waves with inversion symmetry, which increases the potential
for Dirac magnons [15].

Furthering our investigation of the ZZ magnetic con-
figuration, the ferromagnetic chains are coupled with the
nearest-neighbor interaction α′, which produces an asymme-
try relative to α. As α = 1.00 remains ferromagnetic, the
natural, nonfrustrated order is to introduce α′ to be antifer-
romagnetic since the ZZ magnetic order is not stable without
anisotropy when α = α′. This configuration provides insight
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FIG. 4. (a) Two-dimensional plot showing the next-nearest-
neighbor interaction’s behavior as β is added. Panel (b) shows how
this changes as deformities are introduced as β ′. This creates dis-
tortions in the spin wave and increases alongside β ′. Only one spin
wave is produced as the interactions of the next-nearest neighbor
degenerate in this direction.

into the role α′ plays within the model and how it affects the
behavior reflected in the first case where there was no α′.

Starting with |α| > |α′|, small values of α′ are added and
steadily increased until α′ = −α. As the values increase, the
noted deformities in Fig. 3(b) become profound, and new
distinct behavior blatantly presents itself from K to �′ and
M′ to �. It is observed that the stability increases with the
introduction of α′ as the high-symmetry points become more
recognizable, and the spin-wave velocity shifts from being
quadratic in behavior to linear. As α′ increases, the spin waves
produced within the Brillouin zone have a higher dispersion
energy due to the increase in the energy of the system.

Continuing with the same method, the next-nearest-
neighbor interaction is examined by itself with β > 0, and
all other interactions are set to 0. As shown in Fig. 4(a),
the resultant spin wave has only one mode, which is due to
the ferromagnetic chains being identical, which produces the
emergence of a singular mode. The modes mentioned above
are stable and demonstrate the same scaling of the spin wave
that was observed with nearest-neighbor interactions as β
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FIG. 5. Two-dimensional plot of the evolution of spin waves within the nonfrustrated model as the interactions change. Each plot starts
dotted and becomes more solid with each increment until the final calculation, which is the solid black. Starting in panel (a) with α = −1.00,
β is added in increments of −0.25 until it reaches β = −1.00. In panel (b), α′ produces deformities and is added similarly. This adds small
changes in the behavior but not much energy. As β ′ is introduced in panel (c), the changes in the spin wave become more accented, and the
deformities become more prevalent with higher energies. An anisotropy test in panel (d) shows how it affects the calculations. As anisotropy
is added, the energy of the spin wave increases all around without changing the behavior.

increased. The change for the next-nearest-neighbor interac-
tion is reflected in Fig. 4(a), where the dispersion invoked by
the next-nearest-neighbor interaction is double degenerate and
would explain the interaction not changing for its spin.

Similarly to the case where the nearest-neighbor interac-
tion was examined, asymmetry is added to the system by
introducing β ′, which produces decoupled triangular lattices.
Setting β > 0 increases asymmetry and starts to add distinct
behavior to the interaction. As with the introduction of α′, the
spin-wave velocity shifts from quadratic to linear as the dis-
persion energy approaches 0 at � from both K and M′ [shown
in Fig. 4(b)]. Seemingly, the next-nearest-neighbor interaction
has strong effects on systems such as the AFM configuration
and, therefore, could play a dominant role in the ZZ magnetic
configuration due to the double degeneracy. Determining the
evolution of a zigzag magnetic configuration’s spin dynamics
in a honeycomb lattice depends on all the constituent parts.

B. Nonfrustrated model

Within the nonfrustrated model, all the interactions coa-
lesce without competition where they are “content” in their
configuration. Starting at the nearest-neighbor interaction α,

a next-nearest-neighbor interaction β is added. Observing
how the response to disturbance changes with the addition
of another interaction, the nearest-neighbor interaction is set
to a FM interaction α = 1.00. The FM next-nearest-neighbor
interaction β is then added in increments of 0.25 until α = β.
Figure 5(a) illustrates the calculations as the interactions ap-
proach being equal, starting as a dashed line and progressing
to a solid line with the increase of β. The overall energy
spectrum increases at the peaks M and K′, and the troughs at �

drop in energy and become more defined, which suggests that,
between the two, the nearest-neighbor interaction dictates
the behavior observed, and the addition of the next-nearest-
neighbor increases the strength of the spin wave and controls
the presented crossover points. This effect is potentially due to
the degeneracy presented in Fig. 4, where all the spin waves
have the same energy levels, and only one perturbation is
preserved. The produced spin wave by α is then shaped by
the degeneracy that is introduced by β. The crossover points
are presented on the high-symmetry locations M and K′ at
ω

|J|S ≈ 6 as α = β.
Figure 5(b) continues with α = β; a second nearest-

neighbor interaction called α′ is added and is set to be AFM.
As α′ increases by increments of −0.25 until α′ = −1.00,
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the general characteristics of the spin wave do not change.
Instead, what is observed is a small gradual increase in the
asymmetry as the behavior itself becomes more defined and
the overall energy increases. Moreover, deformities begin to
present themselves from K-� and M′ − �, but only slightly.
These deformities are expected due to the competition be-
tween interactions, which is consistent with the introduction
of α′ to α in Fig. 3(b).

Furthermore, in Fig. 5(c) the nonfrustrated model is
completed by the addition of asymmetry among the next-
nearest-neighbor interactions with β ′. The calculations are
continued by starting with α = β = −α′ and adding β ′
in increments of −0.25. The deformations presented from
K to � and M to � by adding α′ become very distinct
as the energy increases across the spin wave. With all
interactions α = β = −α′ = −β ′ represented in the solid
black line in Fig. 5(c), the crossover points are observed
to shift up to ω

|J|S ≈ 11, and the system continues to be
stable.

The nonfrustrated model does not require easy-axis
anisotropy as all the nearest-neighbor and next-nearest neigh-
bors match their configuration within the honeycomb lattice.
In Fig. 5(d), anisotropy is added similarly to the other cal-
culations by adding increments of 0.25 to the initial case of
α = β = 1.00. As the single-ion anisotropy increases, the en-
ergy is proportionally increased across the spin wave without
changing the observed propagation. Seemingly, the system’s
response to an outside disturbance within a nonfrustrated
model is stable without requiring any anisotropy.

Investigating the nonfrustrated model highlighted how
interactions seamlessly merged without competition, main-
taining a harmonious “content” configuration. Starting with
the nearest-neighbor interaction α, we introduced the next-
nearest-neighbor interaction β. As β gradually approached
equality with α, the reflected changes unveiled an overall
energy spectrum increase at peaks M and K′, while troughs at
� became more defined. This emphasized the dominance of
the nearest-neighbor interaction dictating the observed behav-
ior, with the next-nearest neighbor enhancing the spin-wave
strength and controlling crossover points, potentially due to
the effect degeneracy introduces observed in Fig. 4.

Continuing the exploration by introducing an AFM second
nearest-neighbor interaction α′ when α = β revealed a grad-
ual increase in asymmetry and defined behavioral changes,
evident from K-� and M′ − �, aligning with prior observa-
tions in Fig. 3. Further completion of the nonfrustrated model
with asymmetry among the next-nearest-neighbor interactions
β ′ exhibited distinct deformations across the spin wave as
energy increased to ω

|J|S ≈ 11, maintaining stability without
requiring easy-axis anisotropy.

C. Frustrated model

The honeycomb lattice is characterized by a coordination
number of three and bipartite properties. Its sites can be
partitioned into two sublattices, where each site within one
sublattice exclusively connects to sites in the other sublattice
[35]. Geometric frustration emerges as the lattice’s trian-
gular arrangement conflicts with the magnetic interactions
among its components. This results in frustration, where the

concurrent minimization of all interactions becomes unattain-
able [36,37]. This phenomenon is frequently encountered in
systems featuring specific lattice symmetries, such as tri-
angular or honeycomb lattices, and it gives rise to exotic
phenomena like spin-ice and spin-liquid phases [12,25,29].

A honeycomb system with identical magnetic interactions
does not match the physical configuration and forces a com-
petition of exchange interactions. As the interactions vie to
be stable within their configuration, frustration is produced
within the system, causing a different dispersion. Figure 6(a)
shows the nonfrustrated model where α and β are AFM
and β is introduced in increments of −0.25. When α = β,
a different AFM nearest-neighbor interaction is introduced
as α′, breaking the symmetry within the nearest-neighbor
interactions, which causes the dispersion to become com-
pletely unstable until easy axis anisotropy (D) is instituted
and stabilizes the interactions at D = 3.10. The introduction
of asymmetry produces an inversion of the behavior presented
in the nonfrustrated model, dropping the crossover point of the
spin wave from ω

|J|S ≈ 6 to ≈0.8 as observed in Fig. 6(b). As
α′ is increased by −0.25, the behavior remains the same, and
the energy makes a small shift from ω

|J|S ≈ 6.5 up through to
ω

|J|S ≈ 7.2, but the Dirac node remains the same.
Continuing the trend of adding asymmetry, next-nearest-

neighbor asymmetry is initiated as β ′. This causes the energy
to shift up to ω

|J|S ≈ 8, and as β ′ increases, the required
anisotropy to stabilize the system decreases. Moreover, by
increasing the next-nearest-neighbor asymmetry, the peaks
of the dispersion begin to collapse, creating smaller peaks
between M-K-�-K′ and from M′ − � as can be seen in
Fig. 6(c). To further understand the dynamics between the
frustration in the interactions, a variation of how the asym-
metry is introduced is established by beginning with the
next-nearest-neighbor asymmetry and bringing in the nearest-
neighbor asymmetry in increments of −0.25. The deformation
of the spin waves is initially present, and as α′ increases, the
anisotropy decreases, and the peaks between M-K-�-K′ and
from M′ − � become more defined in Fig. 6(d).

Overall, in the frustrated model, we observed a scenario
where identical magnetic interactions led to competitive be-
havior produced by next-nearest-neighbor interaction that
induces frustration and results in a distinctive dispersion.
Introducing AFM α′ disrupted symmetry, leading to an unsta-
ble dispersion until stabilized by the imposition of easy-axis
anisotropy. This alteration caused a significant shift in the
crossover point from ω

|J|S ≈ 6 to ω
|J|S ≈ 0.8, showcasing a

remarkable inversion in the behavior of the spin wave. The
addition of further asymmetry, especially with the introduc-
tion of β ′, demonstrated shifts in energy up to ω

|J|S ≈ 8,
concurrently decreasing the required anisotropy for system
stabilization. We then examined variations in asymmetry,
initiating next-nearest-neighbor asymmetry β ′ and system-
atically introducing nearest-neighbor asymmetry α′. These
analyses uncovered initial deformations in the spin waves,
accompanied by a decrease in anisotropy as α′ increased;
this process yielded refined peaks observed between M-
K-�-K′ and from M′ − �, offering comprehensive insights
into the intricate dynamics underlying the frustration within
interactions.
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FIG. 6. Two-dimensional plot of the evolution of spin waves within the frustrated model as the interactions change. Each plot starts dotted
and becomes more solid with each increment until the final calculation, which is the solid black. Starting in panel (a) with the nonfrustrated
model, α is set to −1.00, and β is added in increments of −0.25 until it reaches β = −1.00. After this, we add competition of exchanges
through α′ in panel (b). This is done in similar increments and requires anisotropy to stabilize the behavior. This also causes the Dirac nodes
to drop in energy, and the overall behavior of the spin wave inverts. β ′ is introduced, increased in panel (c), and adjusted in different ratios in
panel (d). As β ′ is added, the anisotropy to stabilize the system is reduced and defines the deformities that appear in the spin wave.

III. FRUSTRATED MODEL APPLIED TO α-RuCl3

Building upon the insights gained from our investigation
into frustrated magnetic systems on a zigzag honeycomb
lattice, we apply our easy-axis frustrated model to a cur-
rent material of interest in the condensed-matter community
[38,39]. α-RuCl3 is composed of thinly interconnected lay-
ers of RuCl6 octahedra that share edges, with the central
Ru3+ ions with 4d5 orbital arranged in an almost per-
fect honeycomb configuration, a critical factor utilized in
the Kitaev-Heisenberg model [40]. This indicates α-RuCl3

as a prime candidate for the realization of fractionalized
Kitaev physics, as well as quantum spin-liquid behavior
[41–44].

Considering that Ru3+ ions carry a spin of S = 1/2, a hon-
eycomb arrangement allows for the possibility of frustration
between the Ru-Ru bonds in a single crystal. The magnetic
moments of the Ru ions align antiparallel to each other
along one direction and then reverse their alignment along
the perpendicular direction, which results in a zigzag pattern
of magnetic moments in the material [21,29,39,45]. Given
the honeycomb’s propensity to induce frustration in magnetic
configurations, the interactions become highly anisotropic and

depend on the spins relative to the bonds between Ru3+ ions
[35,39].

To understand the α-RuCl3’s spin-orbit excitation spec-
trum, various experimental techniques like THz spectroscopy,
IR spectroscopy, and Raman spectroscopy have been used
[46]. Warzanowski et al. investigated this spectrum and
identified the first absorption band as the spin-orbit ex-
citon [47]. Controversies exist, with some suggesting that
the featureless spectra could result from magnetic anhar-
monicity and a breakdown of magnon excitations [48–51].
Nonetheless, α-RuCl3 has demonstrated that any supple-
mentary crystal field effects, such as trigonal or tetragonal
distortions, exert negligible influence when contrasted with
the prevailing octahedral crystal field [52]. Consequently,
despite its comparatively reduced bare spin-orbit coupling
(SOC) value, single crystal α-RuCl3 continues to mani-
fest significant SOC-driven effects with an ordered moment
characterized by in-plane and out-of-plane anisotropy com-
ponents [43,44,53,54]. Previous investigations suggest that
in-plane anisotropy dominates the bulk crystal of α-RuCl3

and easy-axis anisotropy dominates single-layer samples [55].
Moreover, it has been shown that the in-plane lattice constant
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FIG. 7. (a) Comparison of the approximate experimental inelas-
tic neutron scattering data from Ref. [38] to our frustrated model. The
black open circles and the red open squares represent the estimated
peak position of the lower and upper modes from the experimental
data, respectively. The blue line is the frustrated model as it manifests
in a zigzag honeycomb lattice through the high-symmetry pathway
�-M. (b) A 3D plot presenting the frustrated model shows the
spin wave throughout the entire Brillouin zone given the parameters
needed to reproduce the curves.

expands 3% from 5.99 Å (bulk) to 6.19 Å (monolayer) [56].
Therefore, as layers are removed from a multilayer sample
down to a single layer, α-RuCl3 transitions from easy-plane
to easy-axis anisotropy [27,55].

Applying a frustrated model with asymmetric superex-
change interactions and easy-axis anisotropy, we analyze
inelastic neutron scattering data for α-RuCl3 reported in
Ref. [38], as shown in Fig. 7. While our model does not
incorporate Kitaev-� interactions, and the quasiquantum 1/S
expansion is limited in its ability to capture S = 1/2 char-
acteristics fully, we adjusted the exchange parameters to
approximate the inelastic neutron scattering data. The primary
objective was to investigate whether adjustments to model
parameters could present reported behavior, as illustrated in
Fig. 7(a). In Fig. 7, the black open circles and the red open
squares represent the estimated peak position of the lower and
upper modes from the experimental data, respectively. The
blue line is the frustrated model as it manifests in a zigzag

honeycomb lattice through the high-symmetry pathway �-
M. Figure 7(b) presents a three-dimensional (3D) dispersion
spanning the Brillouin zone.

Employing a frustrated model with asymmetric exchange
interactions and easy-axis anisotropy, we analyzed inelastic
neutron scattering data for α-RuCl3. While our model does not
encompass Kitaev interactions, this model does approximate
the inelastic neutron scattering data [38], aiming to adjust
model parameters for a better understanding of the Heisenberg
interaction’s role within this material. Within this framework,
the Holstein-Primakoff expansion facilitates the characteriza-
tion of spin excitations as potential Dirac magnons, allowing
the competition of exchange parameters to encapsulate the
competition inherent to the zigzag configuration.

As the honeycomb lattice induces frustration in magnetic
configurations, interactions become anisotropic and rely on
spins relative to Ru-Ru bonds. Notably, our analysis re-
confirms past experiments, emphasizing the prevalence of
easy-axis anisotropy in monolayer samples [55]; moreover,
our study suggests that a frustrated Heisenberg interaction is
an important contributor to shaping the observed spin-wave
behavior in α-RuCl3. Overall, this study imparts valuable
insights into the lattice’s spin dynamics, demonstrating the
roles played by competing exchange interactions, asymmetry,
and anisotropy in the system’s behavior.

IV. CONCLUSIONS

The increasing need for advanced materials in electronic
device development has spurred investigations into spintron-
ics and magnonics. These avenues aim to conserve energy
while potentially outperforming traditional electronics, result-
ing in numerous studies [8,16,19,41,45,57,58]. Consequently,
comprehending the impact of magnetic interactions on the
propagation of spin excitations across diverse lattice con-
figurations becomes paramount for identifying materials
amenable to magnon and spin-wave-based applications. This
investigation aims to elucidate the influence of various mag-
netic exchange interactions on the spin dynamics inherent to
the zigzag honeycomb lattice.

In this study, we present an analysis of competing nearest-
neighbor to next-nearest-neighbor interactions on the spin
dynamics of the zigzag honeycomb lattice. Using the exact
diagonalization of the Heisenberg Hamiltonian, we determine
the spin-wave dynamics and examine the effects of magnetic
frustration. Overall, we illustrate that, by building the model
term by term, we can directly observe the behavioral contri-
butions from each interaction, how the system changes with
anisotropy, and how asymmetric terms transform the system
from a nonfrustrated to a frustrated state.

By analyzing geometric frustration, we are able to demon-
strate the role that NN and NNN interactions play within
an asymmetric honeycomb lattice, show the emergence of
direction-dependent Dirac nodes, and postulate that the stan-
dard Heisenberg interaction has a notable contribution to the
behavior observed in the spin excitation behavior within the
high-symmetry pathway. Furthermore, we demonstrate the
nature of the spin-wave crossover at the M and K′ symmetry
points and discuss the potential for the realization of Dirac
magnons.
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Additionally, to demonstrate the usefulness of this model,
we compare the frustrated Heisenberg model to the inelastic
neutron scattering data of α-RuCl3 and show that competing
interactions within a Heisenberg framework can produce a
similar response to that of Kitaev interactions. This model
is not meant to be a definitive study of α-RuCl3, as this is
a fit to one data set of the material. However, the fit does
show the importance of competing and frustrated interactions
in magnetic systems. Furthermore, given the complex nature

observed in this material, this study presents the potential of
Dirac physics in α-RuCl3.
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