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Interaction between spins forms diverse classes of magnetic materials. The interaction can be carried out
not only by electrons and photons but also by phonons. We consider a general symmetry-allowed spin-phonon
Hamiltonian in C3v systems which consists of spins interacting with symmetric and antisymmetric lattice
deformations. The derived model is used to calculate the phonon-mediated spin-spin interaction—the interaction
is a quadrupole-quadrupole interaction. We first consider phonons in a homogeneous elastic medium, which leads
to a spin-spin interaction with unphysical oscillations as a function of distance between the spins. We overcome
this by extending the theory for lattice systems and confirm that the interaction strength decays as 1/r3. The effect
of surface acoustic waves is also considered. The general theory is demonstrated for nitrogen vacancy centers
in diamond as a prominent example. Furthermore, we provide an estimation of the magnitude of the spin-spin
interaction and discuss the effect of the phonon-mediated spin-spin interaction on the energy level scheme of
two interacting spins.
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I. INTRODUCTION

Investigating the coupling between multiple spins is of
central importance in condensed matter physics. The spin-spin
interaction via electrons gives rise to the exchange coupling
and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion, and the interaction via photons gives rise to the magnetic
dipole-dipole interaction. Coupling between spins may also be
carried out by phonons. Phonon-induced spin-spin interaction,
or the virtual phonon exchange, was first considered by Sugi-
hara in 1959 [1] and later extended by other works, including
in the context of the cooperative Jahn-Teller effect [2–6].

Phonon-induced spin-spin interaction could be significant
in light of quantum technology involving spins in solids.
One of the leading candidates of such spins is the negatively
charged nitrogen vacancy (NV) color center in diamond,
which is anticipated to become a spatially accurate mul-
tipurpose sensor that can measure electromagnetic fields,
temperature, pressure, and rotation [7,8]. The quantum spin of
NV centers is also expected to host quantum bits (qubits) for
information processing [7,9–11]. A single NV center is well
described by a spin-1 hard axis magnetic anisotropy Hamil-
tonian. In the case of multiple NV centers, magnetic dipole
interaction [12] and magnon-mediated interaction [13,14]
have been discussed. However, it is crucial to understand
the full picture of the spin-spin interaction when one likes
to utilize quantum spins for qubits and accurate sensors, so
a theory describing the interactions between NV centers via
phonons is also desired.

In this paper, we theoretically study the phonon-mediated
spin-spin interaction in lattices. In Sec. II, we first prepare

the general symmetry-allowed spin-phonon interaction in C3v

systems. In addition to the spin-strain coupling [15,16], we
also consider the coupling of spins to the antisymmetric lattice
deformation [17]. In Sec. III B, following previously used
procedures, we first calculate the phonon-mediated spin-spin
interaction in an elastic medium with a cutoff wave number
in the integration (Debye approximation) [1,3], which we
find gives rise to unphysical oscillations. Next, in Sec. III C,
we employ a fcc crystal lattice to properly account for
the Brillouin zone boundary and periodicity. In Sec. III D,
the obtained spin-spin interaction is used to estimate the
phonon-mediated spin-spin interaction coupling in diamond
NV centers. We consider the energy level scheme of a two
spin-1 system. The spin-spin interaction forms six energy
states, three of which are spin degenerate. We discuss that
under an applied magnetic field, six out of nine energy states
show a 3θ dependence due to the spin-phonon interaction.
Finally in Sec. III E, we calculate the surface acoustic wave
mediated spin-spin interaction and compare the results.

II. SPIN-PHONON COUPLING

The general lowest-order spin-lattice interaction of a spin S
embedded at r in a lattice interacting with the nearest-neighbor
sites is written as

H = Si(r)S j (r)
∑

d

hi jk (d )[uk (r + d ) − uk (r)], (1)

where u(r) is the displacement vector of the atom located at
lattice point r, hi jk are the coupling constants, and the sum-
mation d is taken over the nearest-neighbor atoms. The order

2469-9950/2024/110(6)/064428(9) 064428-1 ©2024 American Physical Society

https://orcid.org/0009-0004-6466-1294
https://orcid.org/0000-0002-9474-8970
https://orcid.org/0009-0009-7339-0912
https://ror.org/05mjgqe69
https://orcid.org/0000-0003-4052-774X
https://ror.org/04chrp450
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.064428&domain=pdf&date_stamp=2024-08-23
https://doi.org/10.1103/PhysRevB.110.064428


NAKANE, TAHARA, KUTSUKI, AND YAMAKAGE PHYSICAL REVIEW B 110, 064428 (2024)

of the spin operator must be even because of time-reversal
symmetry, and S must be greater than 1/2 for there to be
coupling with the lattice. The coupling constants are narrowed
down by symmetry considerations.

Let us restrict ourselves to C3v systems [18], with the
threefold rotation axis in the z direction and the mirrors on
the (xz) and equivalent planes. The spin coupling with the
nearest-neighbor atoms must be totally symmetric with re-
spect to the C3v symmetry operations. Therefore, it is limited
to the following form (see Appendix A for details):

H = S2
z (r)[h‖q̃‖(r) + h⊥q̃⊥(r)]

+
2∑

i, j=1

heg,i j

2
Qi(r) · q̃ j (r) +

2∑
i=1

DiQi(r) · ω̃(r), (2)

where we defined the spin vectors

Q1(r) = ({Sy(r), Sz(r)},−{Sz(r), Sx(r)}), (3)

Q2(r) = ({Sx(r), Sy(r)}, [Sx2(r) − Sy2(r)]), (4)

with the anticommutator defined by {A, B} = AB + BA and
the atom displacement vectors

q̃‖(r) = 1

2
√

2 a

∑
d

d̂zuz(r + d ), (5)

q̃⊥(r) = 1

2
√

2 a

∑
d

[d̂xux(r + d ) + d̂yuy(r + d )], (6)

q̃1(r) = 1

4
√

2 a

∑
d

[d̂yuz(r + d ) + d̂zuy(r + d ),

− d̂zux(r + d ) − d̂xuz(r + d )], (7)

q̃2(r) = 1

4
√

2 a

∑
d

[d̂xuy(r + d ) + d̂yux(r + d ),

d̂xux(r + d ) − d̂yuy(r + d )], (8)

ω̃(r) = 1

4
√

2 a

∑
d

[−d̂yuz(r + d ) + d̂zuy(r + d ),

− d̂zux(r + d ) + d̂xuz(r + d )]. (9)

d̂i is the unit vector of the nearest-neighbor atoms, and the
expression d̂iu j (r + d ) corresponds to the spatial derivative in
the long wavelength limit as

lim
a→0

∑
d

1

2
√

2 a
d̂iu j (r + d ) = ∂iu j (r), (10)

where we consider a fcc lattice with a lattice constant of the
conventional cell a. The operators S2

z , q̃‖, and q̃⊥ belong to
the A1 irreducible representation (irrep), while Q1, Q2, q̃1,
q̃2, and ω̃ belong to the Eg irrep. Hence, they can be coupled
with the same irrep, resulting in the Hamiltonian (2). h‖, ⊥, eg

are the coupling constants between the spin and symmetric
deformations q̃, and Di are the coupling constants of the
antisymmetric deformation ω̃. In the long wavelength limit,
coupling to q̃ reduces to the spin-strain coupling, and coupling
to ω̃ becomes the spin-rotational deformation coupling [17].
Note that D1 coincides with the spin anisotropy energy D in
the anisotropy Hamiltonian HS = DS2

z and can be derived by

considering the tilting of the anisotropy axis due to rotational
lattice deformations [17,19].

III. PHONON-MEDIATED SPIN-SPIN INTERACTION

A. Formalism

We consider two identical spins, S1 and S2, located at
r1 and r2, respectively. The two spins are described by the
Hamiltonians H1 and H2, respectively, and we evaluate their
cross term in the second-order perturbation expansion. The
thermodynamic potential of interest is given by

Fω = − 1

β

∫ β

0
dτ1dτ2〈Tτ H1(τ1)H2(τ2)〉, (11)

where β is the reciprocal of temperature, τ1 and τ2 are imag-
inary times, Tτ is the time-ordering operator, and 〈· · · 〉 is the
grand-canonical ensemble average evaluated in the phonon
Hamiltonian.

Let us introduce the phonon displacement as

u(r) =
√

1

2ρV

∑
q

eqeiq·r
√

ωq
aq + H.c., (12)

where ωq, eq, and aq are, respectively, the frequency, polar-
ization vector, and annihilation operator of the phonon with
q = {q, λ} (q is the wave vector and λ is the polarization). V
is the volume of the lattice, and ρ is the mass density.

B. Debye approximation

In this section, we outline the calculation for the phonon-
mediated spin-spin interaction by considering only the D1

term in Eq. (2) in the long wavelength limit. The D1 term in
the long wavelength limit is given by

Hω = D(εzx−{Sz, Sx} − εyz−{Sy, Sz}), (13)

where εi j− = (∂iu j − ∂ jui )/2 is the rotational deformation
evaluated at the spin site.

For simplicity, we first adopt the dispersion and polariza-
tion vectors for an isotropic elastic medium. The polarization
vector is taken to be real and orthonormal, eq1 × eq2 = eq3,
with the longitudinal mode parallel to the wave vector, eq3 ‖ q.
The energy dispersion consists of two degenerate transverse
modes ωq1 = ωq2 ≡ ωq⊥ and one longitudinal mode ωq3.
Phonon dispersion is taken to be linear, with ωq⊥ = c⊥|q| and
ωq3 = c‖|q|. The two spins are assumed to be located along
the z axis as r1 − r2 = rzẑ. Then, the spin-spin interaction can
be evaluated by the summation

Fω = D2

4ρV

∑
q

cos(qzrz )

−ω2
q⊥

[
(ŷ × q)2

{
Sz

1, Sx
1

}{
Sz

2, Sx
2

}
+ (x̂ × q)2

{
Sy

1, Sz
1

}{
Sy

2, Sz
2

}]
, (14)

where we dropped the term with the odd integrand propor-
tional to (ŷ × q) · (x̂ × q). Considering a spherical domain of
integration, |q| < qD, with qD being the Debye cutoff wave
number qD ∼ (4π2ρi )1/3 (ρi is the lattice point density), the
spin-spin interaction takes the form

Fω = J (rz )
({

Sz
1, Sx

1

}{
Sz

2, Sx
2

} + {
Sy

1, Sz
1

}{
Sy

2, Sz
2

})
, (15)
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FIG. 1. Dispersion relation and density of states (DOS) of the
fcc lattice phonon.

and the coupling constant is given by

J (rz ) = D2

8π2ρc2
⊥

rzqD cos(rzqD) − 2 sin(rzqD) + Si(rzqD)

r3
z

,

(16)

where Si(x) ≡ ∫ x
0 dt sin(t )/t is the sine integral function. The

interaction is an even function of rz (as it should be since the
interaction must be invariant under the exchange of S1 and S2).
Not unlike in the RKKY interaction, we have a long-range
oscillatory spin-spin interaction with wavelength (qD)−1. It
appears that the most long-range interaction is of order r−2,
which would be remarkable since other long-range interac-
tions, such as the magnetic dipole-dipole interaction, are of
order r−3. Like in Ref. [1], we have two oscillating terms of
the forms cos(rzqD) and sin(rzqD) and one term proportional
to r−3 without much oscillation for large r/a. Sugihara’s pro-
cedure of deeming the oscillating terms unimportant, in which
case J (rz ) is always positive, is not well justified because the
trigonometric functions could be of order unity at the lattice
points. Also, the explicit dependence on the Debye wave
number suggests that the shape of the Brillouin zone could
be important—we must abandon the Debye approximation.

C. fcc crystal

Let us consider a fcc crystal with only the nearest-neighbor
interaction present. The eigenvalue equation for lattice vibra-
tions in the conventional cell frame is given by

ω2

3c2
‖

e = Dqe, (17)

where the matrix element of Dq is

Di j
q =

{
2 − cos

( qia
2

) ∑
m 
=i cos

( qma
2

)
if i = j,

sin
( qia

2

)
sin

( q j a
2

)
if i 
= j.

(18)

The lattice constant, which is the side length of the con-
ventional cell, is taken to be 1, and c‖ is the longitudinal
sound velocity in the [111] direction. The obtained dispersion
relation and density of states are shown in Fig. 1.

In the fcc lattice, the variation in the lattice displacement
must be written in wave number space as∑

d

1

2
√

2 a
d̂iu j = i

vi

a
u j, (19)

where the vector vi is given by

vi = sin
(qia

2

)∑
j 
=i

cos
(q ja

2

)
, (20)

which coincides with Eq. (10) in the long wavelength limit.
We are now equipped to calculate the spin-spin interaction in
fcc crystals.

Let us write the contribution from phonons as

− 1

β

∫
dτ1dτ2〈Tτ εi j±(r1, τ1)εkl±′ (r2, τ2)〉

≡ 〈εi j±(r1)εkl±′ (r2)〉ph, (21)

where εi j±(r) = ∑
d [d̂iu j (r) ± d̂ jui(r)]/(4

√
2 a). They sat-

isfy the properties 〈εi j±(r1)εkl±′ (r2)〉ph = 〈εi j±(r2)εkl±′ (r1)〉ph

and 〈εi j±(r1)εkl±′ (r2)〉ph = 〈εkl±′ (r1)εi j±(r2)〉ph. The tensors
εi j+ and εi j− become the strain and rotational deforma-
tion tensors, εi j± → (∂iu j ± ∂ jui )/2, respectively, in the long
wavelength limit. Note that the position r of the spin is discrete
and must be on the fcc lattice sites. We will suppress the r
dependence hereafter.

Let us again consider only the D1 term in Eq. (2) to illus-
trate the calculation. The spin-spin interactions for r1 − r2 =
rzẑ can be written as

Fω = J (rz )
({

Sz
1, Sx

1

}{
Sz

2, Sx
2

} + {
Sy

1, Sz
1

}{
Sy

2, Sz
2

})
, (22)

where

J (rz ) = D2〈εyz−(r1)εyz−(r2)〉ph. (23)

Note that 〈εyz−εyz−〉ph = 〈εzx−εzx−〉ph and 〈εyz−εzx−〉ph = 0
by symmetry. Using the Newton-Cotes formulas for
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FIG. 2. Plot of the numerical calculation for h̃yz−yz− ≡
3ρa3c2

‖ 〈εyz−(r1)εyz−(r2)〉ph as a function of distance in log-log scale
(orange) and a line of best fit. We see that the distance dependence is
of the form r−3

z . Since the current model is based on the spin-strain
coupling, the theory is applicable only to distances � a, and the
fitting is done for points greater than 20a. The inset plots h̃yz−yz−
evaluated in the Debye approximation [Eq. (16)], where we have
qDa = (4π )2/3 and c‖ 
 2c⊥.
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TABLE I. All independent phonon-induced spin-spin coupling
parameters. The dimensionless parameters are defined as h̃i j±kl±′ =
3ρa3c2

‖〈εi j±εkl±′ 〉ph. Parameters have a distance dependence of r−3
z .

Numerical fitting was done for spins separated by distance >20a.

Parameter Value [in units of (rz/a)−3]

h̃zz+zz+ 2.0360
h̃zz+xx+ −0.5254
h̃xx+xx+ −0.03557
h̃xx+yy+ 0.23117
h̃xx+zx+ −0.16449
h̃xx+zx− 0.26372
h̃zx+zx+ −0.8239
h̃zx+zx− 1.0944
h̃zx−zx− −0.2985

numeric integration, we plot the nondimensionalized
〈εyz−(r1)εyz−(r2)〉ph in Fig. 2, together with a line of best
fit. We see that 〈εyz−(r1)εyz−(r2)〉ph is a long-range interaction
of the form 1/r3

z . We also observe that the oscillatory behavior
that was present in Eq. (16) is gone (see inset in Fig. 2). This
is because we evaluate 〈εyz−(r1)εyz−(r2)〉ph only on the lattice
points; unphysical oscillation with the wavelength dependent
on the Brillouin zone boundary appears between the lattice
points. The 1/r2

z term in Eq. (16) vanishes, and the sign of the
analytical result differs from the numerical calculation if one
chooses to follow Sugihara’s procedure and consider only
the sine integral term in Eq. (16) (see Table I for all fitting
constants). This can be understood if one requires Eq. (16) to
be invariant under translation by a reciprocal lattice vector,
qD → qD + G. The only term that can fulfill this requirement
is the second term, which is inversely proportional to r3

and may be positive as well as negative, in accordance with
our numeric result. The integrand of 〈εyz−(r1)εyz−(r2)〉ph is
plotted in Fig. 3 as a function of wave number from � to L
for some values of rz.

Let us now consider the spin-spin interaction in a general
C3v system [Eq. (2)] due to phonons described by Eq. (17),

F = Ja1S2
z (r1)S2

z (r2) +
2∑

i, j

Jeg,i jQi(r1) · Q j (r2) (24)

FIG. 3. Nondimensionalized integrand of 〈εyz−(r1)εyz−(r2)〉ph as
a function of wave number, plotted from � to L. The number of nodes
increases as the distance between the spins increases.

for r1 − r2 = rzez, where Ja1, eg are effective spin-spin cou-
pling constants due to phonons and Jeg,12 = Jeg,21 follows
from inversion symmetry. The above equation is the only
form allowed by symmetry. Qi belongs to the E irreducible
representation of C3v (see Appendix A); hence, Qi · Q j is
totally symmetric. The coefficients are given in terms of the
microscopic coupling constants as

Ja1 = 〈Az(r1)Az(r2)〉ph, (25)

Jeg,i j = 〈Ai(r1) · A j (r2)〉ph, (26)

where Az and Ai are defined by quadratic moments of the
phonon field, which can be coupled with the spins as

Az = h‖q̃‖ + h⊥q̃⊥, (27)

Ai = Diω̃ +
2∑

j=1

heg,i j

2
q̃ j . (28)

In terms of these moments, the spin-lattice Hamiltonian (2)
reduces to

H = Sz2Az +
2∑

i=1

Qi · Ai. (29)

From numerical fitting, we obtain the mutually independent
values in Table I. We see that all parameters have a distance
dependence of r−3

z .

D. Diamond NV centers

Finally, let us focus on NV centers in diamond. Since
a NV center has C3v symmetry, the spin-phonon coupling
is given by Eq. (2). The symmetric coupling constants, h‖,
h⊥, and heg,i j , for NV centers in diamond are substituted
by the spin-strain coupling found in Refs. [15,16],
and the antisymmetric coupling constant is given by
D1 = 2.87 GHz. The term with D2 is dropped because
it stems from a higher-order magnetic anisotropy [20].
Here, we use the spin-strain coupling constants obtained
from first-principles calculations by Udvarhelyi et al. [15],
h‖ = 2.3 ± 0.2 GHz, h⊥ = −6.42 ± 0.09 GHz, heg,12 =
−2.60 ± 0.08 GHz, heg,11 = −2.83 ± 0.07 GHz, heg,22 =
5.7 ± 0.2 GHz, and heg,21 = 19.66 ± 0.09 GHz. Other param-
eters are given by c‖ = 19 039 m s−1 [21], a = 0.357 nm [22],
and ρ = 3520 kg m−3 [23]. Note that our approximation is
applicable only to distances much greater than a because
the parameters are based on uniform spin-strain coupling.
Also, optical phonons are dropped. We can now estimate the
spin-spin coupling via phonons in diamond NV centers:

Ja1 = 220 ± 10 (rz/a)−3 Hz, (30)

Jeg,22 = −272 ± 2 (rz/a)−3 Hz, (31)

Jeg,11 = −41 ± 1 (rz/a)−3 Hz, (32)

Jeg,12 = 144 ± 1 (rz/a)−3 Hz. (33)

A positive Ja1 prefers smaller Sz for both spins, unless one
spin is orthogonal to z; in this case the other spin does not
change energy regardless of its direction. A negative Jeg,22
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implies that the two spins prefer to be parallel or antiparallel
to each other in the xy plane. A negative Jeg,11 prefers both
spins to be parallel or antiparallel to each other while being
tilted from the z axis by π/4 or 3π/4. Finally, a nonzero
Jeg,12 is reflective of the threefold rotational symmetry, and a
positive Jeg,12 means that the two spins prefer to be parallel
or antiparallel to each other, with a tilt from the z axis by
π/3 or 2π/3 and azimuthal angle 2πn/3 or (2n + 1)π/3,
n ∈ {0, 1, 2}, respectively.

The interaction also gives rise to attractive and repulsive
interactions between the color centers. Unlike point defects
without spin which have a fixed sign of interaction [24,25],
interaction between color centers can be both attractive and
repulsive, depending on the spin orientation. For example,
when both spins between the spins point in the z direction,
the two color centers repel each other, and when the two spins
point in the x direction, the two spins attract each other.

1. Comparison with dipole-dipole interaction

Let us compare the magnitude of the phonon-induced
spin-spin interaction with magnetic dipole-dipole interaction.
Magnetic dipole-dipole interaction is given by

Hdip−dip = −μ0γ
2h̄2

4π |r|3 [3(S1 · r̂)(S2 · r̂) − S1 · S2], (34)

where μ0 is the vacuum permeability, μ0 = 2αh/(e2c) (α is
the fine-structure constant), and γ = gμB/h̄ is the gyromag-
netic ratio, with μB = eh̄/(2m) being the Bohr magneton.
Then, the magnetic dipole-dipole energy can be estimated as

Hdip−dip 
 Jdip[3(S1 · r̂)(S2 · r̂) − S1 · S2], (35)

with Jdip 
 −1 × 109 (rz/a)−3 Hz. Therefore, since both
phonon-mediated spin-spin interaction and magnetic dipole-
dipole interactions have a distance dependence of 1/r3

z ,
spin-spin interaction in diamond is dominated by the
magnetic dipole-dipole interaction. Nevertheless, it is
the largest quadrupole-quadrupole interaction. Since the
phonon-mediated spin-spin interaction coupling constant J ∝
(D or h‖, ⊥, eg)2ρ−1c−2, where c is the elastic wave velocity,
one can expect large phonon-mediated spin-spin interactions
in materials with large spin-phonon interaction, low elastic
wave velocity, and low mass density.

2. Energy level scheme

Finally, let us discuss the energy level scheme of the two
spins. The eigenenergies of the two spins are

ωEu = D + Jdip − Jeg11, (36)

ω′
Eg

= 1

2

[
3D + Jdip + Ja1 + Jeg11

−
√

(D + 3Jdip + Ja1 − Jeg11)2 + 16J2
eg12

]
, (37)

ωEg = 1

2

[
3D + Jdip + Ja1 + Jeg11

+
√

(D + 3Jdip + Ja1 − Jeg11)2 + 16J2
eg12

]
, (38)

ωA1u = 2D + Ja1 − 2(Jdip + Jeg22), (39)

FIG. 4. There are nine energy levels for a two spin-1 system.
On the left are the energy levels when only magnetic anisotropy
energy D is present. In this case, the energies 2D and D are fourfold
degenerate, and the ground state energy is nondegenerate. With the
introduction of the magnetic dipole energy and phonon-induced spin-
spin interaction, the fourfold-degenerate energy levels split into three
twofold-degenerate levels and two nondegenerate levels.

ω′
A1g

= D − Jdip + 1

2
Ja1 + Jeg22

−
√(

D − Jdip + 1
2 Ja1 + Jeg22

)2 + 2(Jdip + Jeg11)2,

(40)

ωA1g = D − Jdip + 1

2
Ja1 + Jeg22

+
√(

D − Jdip + 1
2 Ja1 + Jeg22

)2 + 2(Jdip + Jeg11)2,

(41)

where ωEu , ω′
Eg

, and ωEg are twofold degenerate and ωA1u ,
ω′

A1g
, and ωA1g are not (see Fig. 4). Under an applied magnetic

field in the z direction, all twofold degeneracies are resolved,
while the nondegenerate energy levels (ωA1u , ω′

A1g
and ωA1g)

are immune.
By symmetry arguments, one can show that

under an applied magnetic field of the form H =
(H⊥ cos θ, H⊥ sin θ, Hz ), The six energy states corresponding
to ω′

Eg
, ωEg , ω′

A1g
, and ωA1g states show a 3θ dependence be-

cause of the coupling constant Jeg12, while the remaining three
states corresponding to ωA1u and ωEu are not dependent on θ .

E. Surface acoustic wave mediated spin-spin interaction

So far, we have investigated phonons in three-dimensional
bulk materials without considering surface effects. However,
realistic experimental setups often have color centers em-
bedded near the surface of the diamond substrate [26–28].
Therefore, let us consider the surface acoustic wave mediated
spin-spin interaction.

The Rayleigh waves are quantized as

uR(r) =
√

1

2ρV

∑
q⊥

eR
q⊥

eiq⊥·r√
ωR

q⊥

aR
q⊥

+ H.c., (42)

where ωR
q⊥

, eR
q⊥

, and aR
q⊥

are the frequency, polarization vector,
and annihilation operator of the Rayleigh wave, respectively.
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We assume the medium is located in half-space x < 0, and
q⊥ = (qy, qz ) is the wave number parallel to the surface [29].
Note that the inner product is normalized as

∫ 0
−∞ dx (eR

q⊥
)∗ ·

eR
q⊥

= 1, where

eRx
q⊥

= γ

√
q⊥
Kσ

[
eκ�x − 2

1 + η2
eκt x

]
,

eRy
q⊥ = i

qy

q⊥

√
q⊥
Kσ

[
eκ�x − 2ηγ

1 + η2
eκt x

]
,

eRz
q⊥

= i
qz

q⊥

√
q⊥
Kσ

[
eκ�x − 2ηγ

1 + η2
eκt x

]
, (43)

|q⊥| = q⊥, and the phase is chosen so that (eR
q⊥

)∗ = eR
−q⊥

. The
inverse penetration depths of the surface acoustic wave are
given by

κ� = γ q⊥ =
√

q2
⊥ − (

ωR
q⊥

/c‖
)2

,

κt = ηq⊥ =
√

q2
⊥ − (

ωR
q⊥/c⊥

)2
(44)

and c‖ and c⊥ are the bulk longitudinal and transverse wave
velocities, respectively. The normalization constant Kσ is
given by

Kσ = (γ − η)(γ − η + 2η2γ )

2η2γ
. (45)

The dispersion relation of the surface acoustic wave can be
obtained from the relation [30](

q2
⊥ + κ2

t

)2 = 4q2
⊥κtκ�, (46)

which is given by ωR
q⊥

= vRq⊥. Following the procedures in
Secs. III A and III B and assuming S1 and S2 are placed at
(rx, 0, 0) and (rx, 0, rz ), respectively, with rx < 0, we have a
surface acoustic wave mediated spin-spin interaction given by

− 1

β

∫ β

0
dτ1dτ2〈Tτ H1(τ1)H2(τ2)〉R (47)

= [Sz(r1)]2[Sz(r2)]2Jzz(r1 − r2)

+ {
[Sz(r1)]2Q2

1(r2)JzQ2
1
(r1 − r2) + r1 ↔ r2

}
+ {

[Sz(r1)]2Q2
2(r2)JzQ2

2
(r1 − r2) + r1 ↔ r2

}
+ Q2

1(r1)Q2
1(r2)JQ2

1Q2
1
(r1 − r2)

+ {Q2
1(r1)Q2

2(r2)JQ2
1Q2

2
(r1 − r2) + r1 ↔ r2

}
+ Q2

2(r1)Q2
2(r2)JQ2

2Q2
2
(r1 − r2)

+ Q1
1(r1)Q1

1(r2)JQ1
1Q1

1
(r1 − r2)

+ {Q1
1(r1)Q1

2(r2)JQ1
1Q1

2
(r1 − r2) + r1 ↔ r2

}
+ Q1

2(r1)Q1
2(r2)JQ1

2Q1
2
(r1 − r2), (48)

where the average is now taken in the surface acoustic wave
phonon Hamiltonian. More terms appear compared to the bulk
result because the system now has only mirror symmetry in
the y direction. Therefore, the only requirement by symmetry
is that Q1

i does not have any cross terms with Q2
j and S2

z for
any i, j. The coefficients in the shallow limit |x| � |r1 − r2|
are given in Appendix B.

TABLE II. Numerical values of Eqs. (B1)–(B9) evaluated using
parameters from Refs. [15,21–23,31].

Parameter Value [in units of (rz/a)−3Hz]

Jzz(rz ) −1.99 × 102

JzQ2
1
(rz ) 1.82 × 101 − 3.80 × 101sgn(rz )

JzQ2
2
(rz ) −3.99 × 101

JQ2
1Q2

1
(rz ) 7.65 × 101

JQ2
1Q2

2
(rz ) 3.36 + 1.24 × 101sgn(rz )

JQ2
2Q2

2
(rz ) −7.37

JQ1
1Q1

1
(rz ) 4.62

JQ1
1Q1

2
(rz ) −3.21 × 101

JQ1
2Q1

2
(rz ) 2.23 × 102

Because of the exponential decay of the integrand, the in-
tegration converges without a Debye cutoff. The Debye cutoff
is extended to infinity, which is justified for |γ x/a| � 1 and
|ηx/a| � 1, where a is the lattice constant.

The surface acoustic wave mediated spin-spin interac-
tion in the shallow limit is proportional to 1/r3

z , similar to
the bulk phonon-mediated spin-spin interaction. Poisson’s
ratio σ for diamond is around 0.0691 [31]. Thus, from
the relation c⊥

c‖
=

√
1−2σ
2−2σ

, we have η = 0.46115 and γ =
0.79722. With the longitudinal sound velocity in diamond
c‖ = 19039 m s−1 [21], we obtain the velocity of the Rayleigh
wave vR = 11494 m s−1. Using this and Eqs. (B1)–(B9), the
numerical values of surface acoustic wave mediated spin-spin
interaction are given in Table II. We see that these values are
comparable to or smaller than the contributions from bulk
phonon-mediated spin-spin interaction. Note that the lower
symmetry at the surface gives rise to terms that are odd in
the orientation of the spins.

IV. CONCLUSION

In conclusion, we theoretically established a method to
calculate the phonon-mediated spin-spin interaction in lat-
tices. We first showed that the phonon-mediated spin-spin
interaction cannot be determined properly in the Debye ap-
proximation, as unphysical distance-dependent oscillations
appear. Next, we employed a fcc lattice to properly ac-
count for the Brillouin zone boundary and periodicity, where
we showed that all phonon-mediated spin-spin interactions
have a distance dependence of r−3. We also estimated the
phonon-mediated spin-spin interaction coupling in diamond
NV centers and gave the energy level scheme of two inter-
acting spin-1 systems, where we showed that the magnetic
dipole-dipole interaction and phonon-mediated spin-spin in-
teraction lift the fourfold degeneracy. Out of the nine energy
levels (of which three are twofold degenerate), we discussed
that six break the continuous rotational symmetry around the
z axis and show a 3θ dependence under an applied mag-
netic field due to the phonon-mediated spin-spin interaction.
Finally, we considered the surface acoustic wave medi-
ated spin-spin interaction and showed that it has a distance
dependence of r−3, similar to the bulk phonon-mediated spin-
spin interaction. We believe that a detailed understanding of
the effect of phonons on quantum spins is a crucial step
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TABLE III. Character table and basis of point group C3v . The quadratics of spin S and strain tensor ui j = ∂iu j are decomposed into the
irreducible representations.

Irrep E 2C3 3σv Basis SS ui j

A1 1 1 1 z Sz2 uzz, uxx + uyy

A2 1 1 −1 xy − yx – uxy − uyx

E 2 −1 0 (x, y) ({Sy, Sz},−{Sx, Sz}), (uyz + uzy, −uxz − uzx ), (uxy + uyx, uxx − uyy ),
({Sx, Sy}, Sx2 − Sy2), (−uyz + uzy, −uzx + uxz )

forward in the pursuit of quantum spin based precision mea-
surements and computation. Finally, we remark that phonons
in diamond also propagate in lower-dimensional systems such
as one-dimensional rods and two-dimensional sheets, where
we expect long-range phonon-mediated spin-spin coupling
that is dominant over magnetic dipole-dipole interaction.
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APPENDIX A: SYMMETRY CONSIDERATION ON
SPIN-PHONON COUPLING

In this Appendix, we confirm the validity of the Hamil-
tonians (2)–(9) and (24) through a symmetry analysis. We
identify six independent quadratic terms SiS j in the spin.
One of these terms is the identity

∑
i Si2 = S(S + 1). The re-

maining five terms are decomposed into A1 ⊕ 2E irreducible
representations of C3v , as detailed in Table III. Similarly, the
nine strain tensor components, ui j = ∂iu j , are decomposed
into 2A1 ⊕ A2 ⊕ 3E irreducible representations.

Now, let us find the invariant forms of spin-phonon cou-
pling. Both Sz2uzz and Sz2(uxx + uyy) terms can appear in the
Hamiltonian as they belong to the A1 irreducible representa-
tion as Sz2. The A1 irreducible representations also arise from
E × E , defined by two E irreducible representations,

Q1 = ({Sy, Sz},−{Sz, Sx}), (A1)

Q2 = ({Sx, Sy}, Sx2 − Sy2), (A2)

as introduced in the main text. The shear strains

q1 = 1
2 (uyz + uzy,−uxz − uzx ), (A3)

q2 = 1
2 (uxy + uyx, uxx − uyy) (A4)

and rotation

ω = 1
2 (uxz − uzx, uyz − uzy) (A5)

share the same irreducible representation E as Qi, making
their inner products with Qi, Qi · q j and Qi · ω, totally sym-
metric in the C3v point group and eligible for the Hamiltonian.

We should point out that q̃‖ and q̃⊥ (q̃i and ω̃) in the main
text belong to the A1 (E ) irreducible representation. Further-
more, upon taking the continuum limit, we find that they are
in agreement with the above formulas:

lim
a→0

q̃‖ = uzz, (A6)

lim
a→0

q̃⊥ = uxx + uyy, (A7)

lim
a→0

q̃1 = 1
2 (uyz + uzy,−uxz − uzx ) = q1, (A8)

lim
a→0

q̃2 = 1
2 (uxy + uyx, uxx − uyy) = q2, (A9)

lim
a→0

ω̃ = 1
2 (−uyz + uzy,−uxz − uzx ) = ω, (A10)

which are derived using Eq. (10). This confirms that Sz2q̃‖,
Sz2q̃⊥, Qi · q̃ j , and Qi · ω̃ are totally symmetric and can be
included in the Hamiltonian.

APPENDIX B: SURFACE ACOUSTIC WAVE MEDIATED SPIN-SPIN INTERACTION COEFFICIENTS

In this Appendix, we give the surface acoustic wave mediated spin-spin interaction coefficients in Eq. (48). The shallow limit
is taken to be |x| � |r1 − r2|, and only terms to the zeroth order in x are evaluated.

Jzz(rz ) → −1

2πρKσ

1

r3
z v

2
R

(γ 2 − 1)

[
h‖h⊥4

(
1 − 2ηγ

1

1 + η2

)
+ h2

⊥

(−(3 + 3η2 + γ 2 + η2γ 2 − 8γ η)

(1 + η2)

)]
, (B1)

JzQ2
1
(rz ) → −1

4πρKσ

1

v2
R

1

r3
z

1

(1 + η2)2

{
heg,12

2
[2h‖(1 + η2 − 2ηγ )(1 + η2 + γ 2 − 4ηγ + η2γ 2)

− h⊥(3 + 6η2 + 3η4 − 12ηγ − 12η3γ + 16η2γ 2 − 4ηγ 3 − 4η3γ 3 + γ 4 + 2η2γ 4 + η4γ 4)]

+ 2Dγ (1 − η2)(1 + η2 − 2ηγ )sgn(rz )(h‖ − h⊥)

}
, (B2)
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JzQ2
2
(rz ) → 1

−4πρKσ

1

r3
z v

2
R

1

(1 + η2)2

(
h‖heg,22(1 + η2 − 2ηγ )(1 + η2 − 4ηγ + γ 2 + η2γ 2)

− h⊥
heg,22

2
(3 + 6η2 + 3η4 − 12ηγ − 12η3γ + 16η2γ 2 − 4ηγ 3 − 4η3γ 3 + γ 4 + 2η2γ 4 + η4γ 4)

)
, (B3)

JQ2
1Q2

1
(rz ) → 1

4πρKσ r3
z v

2
R

1

(1 + η2)2

[
h2

eg,12

8
(1 + η2 − 4ηγ + γ 2 + η2γ 2)(−3 − 3η2 + 4ηγ + γ 2 + η2γ 2)

+ 4D2γ 2(1 − η2)2

]
, (B4)

JQ2
1Q2

2
(rz ) → 1

4πρKσ

1

r3
z v

2
R

1

(1 + η2)2

[
heg,12heg,22

8
(1 + η2 − 4ηγ + γ 2 + η2γ 2)(−3 − 3η2 + 4ηγ + γ 2 + η2γ 2)

+ sgn(rz )Dγ heg,22(1 − η2)(1 + η2 − 2ηγ )

]
, (B5)

JQ2
2Q2

2
(rz ) → 1

4πρKσ

1

r3
z v

2
R

h2
eg,22

8

(1 + η2 − 4ηγ + γ 2 + η2γ 2)(−3 − 3η2 + 4ηγ + γ 2 + η2γ 2)

(1 + η2)2
, (B6)

JQ1
1Q1

1
(rz ) → 1

4πρKσ

1

r3
z v

2
R

h2
eg,11

(
1 − 2ηγ

1 + η2

)2

, (B7)

JQ1
1Q1

2
(rz ) → 1

4πρKσ

1

r3
z v

2
R

heg,11heg,21

(
1 − 2ηγ

1 + η2

)2

, (B8)

JQ1
2Q1

2
(rz ) → 1

4πρKσ

1

r3
z v

2
R

h2
eg,21

(
1 − 2ηγ

1 + η2

)2

. (B9)
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