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Deep learning illuminates spin and lattice interaction in magnetic materials
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Atomistic simulations hold significant value in clarifying crucial phenomena such as phase transitions and
energy transport in materials science. Their success stems from the presence of potential energy functions capable
of accurately depicting the relationship between system energy and lattice changes. In magnetic materials,
two atomic scale degrees of freedom come into play: the lattice and the spin. However, accurately tracing the
simultaneous evolution of both lattice and spin in magnetic materials at an atomic scale is a substantial challenge.
This is largely due to the complexity involved in depicting the interaction energy precisely, and its influence on
lattice and spin-driving forces, such as atomic forces and magnetic torques, which continues to be a daunting
task in computational science. Addressing this deficit, we present DeepSPIN, a versatile approach that generates
high-precision predictive models of energy, atomic forces, and magnetic torques in magnetic systems. This is
achieved by integrating first-principles calculations of magnetic excited states with deep learning techniques via
active learning. We thoroughly explore the methodology, accuracy, and scalability of our proposed model in this
paper. Our technique adeptly connects first-principles computations and atomic-scale simulations of magnetic
materials. This synergy presents opportunities to utilize these calculations in devising and tackling theoretical
and practical obstacles concerning magnetic materials.
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I. INTRODUCTION

Spin-lattice coupling implies that the state of the spin or
lattice in a magnetic material system changes in response
to changes in the other. This interaction occurs not only
in materials with strong spin-orbital coupling (SOC) [1],
leading to exotic phenomena such as chirality [2], nonre-
ciprocity [3], superconductivity [4], and quantum criticality
[5] but also significantly affects fundamental physical proper-
ties, phase transformations [6,7], and transport properties [8]
in systems with weak SOC. Simulating this effect computa-
tionally is challenging, as it requires accounting for numerous
degrees of freedom, high accuracy, and large numbers of
simulated atoms. These demands exceed the capabilities of
existing first-principles methods, phase-field approaches, mi-
cromagnetism, and effective Hamiltonian simulations. Only
the recent development of lattice-spin dynamics has shown
promise in providing a comprehensive description of these
interactions [9–13].
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The computational framework for spin-lattice coupling
dynamics, originally proposed by Dudarev [14] and Ma
[9,10] and later enhanced by Tranchida’s implementation in
LAMMPS [12], faces a major challenge in accurately describ-
ing lattice-spin coupling energies. While machine learning
(ML) potentials have proven effective in lattice systems
achieving DFT-level accuracy, linear scaling, and broad ap-
plicability [15–19], this success has not been mirrored in
magnetic materials, despite pioneering efforts by researchers
like Nikolov [20], Shapeev [21], and so on [22,23]. Develop-
ing accurate ML potentials depends on three key factors: data,
model, and data-exploration strategy. However, the complex-
ity of spin interactions and spin-lattice coupling complicates
the creation of a comprehensive methodological framework.

First, ground-state-based DFT calculations are unsuitable
for generating training data because spin configurations are
directly tied to electron distributions, meaning changes in spin
states prevent the system from remaining in the ground state.
Moreover, temperature or even strain can alter both the spin
modulus and direction [24], even in collinear magnetic ma-
terials. Consequently, data limited to rotational directions or
modulus length changes in collinear configurations are over-
simplified for wide-range applications [20,21]. Additionally,
magnetic interactions vary across different materials, with
no consistent analytical expression for lattice and magnetic
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FIG. 1. Active learning diagram to obtain DeepSPIN models. (a) Iterative sampling of the potential energy surface in order of the
configuration’s energy scale. Each iteration consists of training DeepSPIN models from the current dataset, testing the models’ accuracy,
and exploring the configuration space for the next energy scale utilizing active learning. (b) Schematic diagram of constructing the DeepSPIN
model with pseudoatoms. i, m, and l are real atoms, α and β are pseudoatoms for example. The local environment matrix �i consists of the
coordinate information from all neighboring atoms and is mapped to atomic energy Ei by neural networks. [(c) and (d)] The comparisons of
energies predicted by DeepSPIN and labeled from DFT on NiO and BiFeO3, respectively. RMSE of predictions is also shown.

interactions, and the magnitude of SOC differing significantly.
As a result, manually constructed magnetic Hamiltonians lack
universality [20,22]. The energy scales associated with differ-
ent phenomena also vary widely, so random sampling fails to
accurately describe the potential energy surface (PES) that in-
cludes both fine-scale events like SOC and large-scale events
like atomic displacements. Finally, the complexity of mag-
netic configurations requires efficient network construction to
maximize linear scaling effects, while avoiding complex mul-
tilayer function nesting and manual constructions wherever
possible [25].

In this work, we address these challenges from three per-
spectives: data, model, and exploration strategy. To obtain
high-precision data for magnetic excited states, we em-
ployed a custom-designed self-adaptive constrained method
“DeltaSPIN” [26], which acts as a local effective field. By
introducing on-the-fly active learning for three special events
with different energy scales tailored for magnetic materials,
we created a cost-efficient dataset. Additionally, we utilized
a “pseudoatom” approach to map the connections between
lattice and spin configurations as interdependent features,
incorporating a training dataset and a modified loss func-
tion that includes magnetic torque. Therefore, in our deep

learning model, its accuracy in terms of energy, atomic forces,
and magnetic torques has, for the first time, to the best
of our knowledge, enabled the study of phase transitions
and transport phenomena in magnetic materials and at their
interfaces.

We develop a high-precision model capable of accurately
describing the potential energy surface E (R,S ) correspond-
ing to arbitrary lattice configurations R and spin configu-
rations S . For each magnetic real atom i, we introduce an
associated massless “pseudoatom” ip [e.g., atoms α and β in
Fig. 1(b)] around it, representing the spin Si of atom i through
the Cartesian coordinates Rip of pseudoatom ip, i.e., Rip =
Ri + ηζi · Si. The distance between atom i and pseudoatom ip

is determined by the magnitude of spin Si, multiplied by a
scaling factor ηζi , ensuring appropriate distance. ηζi varies for
different element classes. We enumerate all atom indices j sat-
isfying ‖ri j‖ < rc (regardless of whether atom j is a real atom
or a pseudoatom) to generate a neighbor list �(i) for each real
atom i, where ri j = R j − Ri represents the relative coordinate
vector and rc is the cutoff radius. Following the DeepPot-SE
scheme [27,28], we denote the cardinality of �(i) as Ni and
construct the local environment matrix �i ∈ RNi×4 for each
real atom i, where each row d i j contains the local coordinate
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information of the neighboring atom j,

d i j =
{

s(ri j )

ri j
,

s(ri j )xi j

r2
i j

,
s(ri j )yi j

r2
i j

,
s(ri j )zi j

r2
i j

}
. (1)

Here ri j = ‖ri j‖, xi j , yi j , and zi j are the three components
of ri j . The smooth factor s(ri j ) is used to ensure the numerical
continuity at the cutoff boundary. It is noteworthy that �i

naturally encompasses three different types of interactions in
magnetic systems: lattice-lattice interaction, manifested as the
positional relationship between atom i and its neighboring
real atoms [e.g., d im in Fig. 1(b)]; lattice-spin interaction,
represented by the position relationship between atom i and
its neighboring pseudoatoms [e.g., d iβ in Fig. 1(b)]; and
spin-spin interaction, expressed by the position relationship
between the pseudoatom ip and its neighboring pseudoatoms
[e.g., d iα and d iβ in Fig. 1(b)].

Next, we adopt a deep neural network [29] to take each �i

as input and output the corresponding local atomic energy Ei.
The neural network comprises two parts [27]: the embedding
network, which is a specially designed network that encodes
�i into high-dimensional feature vectors preserving the sys-
tem’s translational, rotational, and permutation symmetries;
and the fitting network, which is a fully connected residual
network [30] that maps the obtained feature vectors to Ei. The
network parameters corresponding to each element type are
independent of each other and shared among all atoms belong-
ing to that type. The total energy E of the system is expressed
as the sum of atomic energies Ei for all N real atoms, i.e.,
E = ∑N

i Ei, thereby preserving the extensive character.
The atomic force Fi can be analytically expressed as the

derivative of E with respect to the atomic position Ri and
expanded by the chain rule, as shown in Eq. (2), where �r (i)
represents all neighboring real atoms of atom i. Since the
position Ri and the corresponding pseudoatom position Rip

jointly affect E j , we introduce the coefficient δi to distinguish
the magnetism of atoms, i.e., δi = 1 for magnetic atoms and
δi = 0 otherwise. Similarly, the magnetic torque ωi can be
expressed as the derivative of E with respect to the spin Si, as
shown in Eq. (3). Here Si affects E j through the pseudoatom
position Rip . In this way, both atomic forces and magnetic
torques are influenced by real and pseudo atoms,

Fi = − ∂E
∂Ri

= −
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k

∂Ek

∂�k
· ∂�k
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= −
∑
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+
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{
∂E j
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· ∂d ji

∂R j
+ δi · ∂E j
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∂R j

}
, (2)
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= −
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k
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∂Si

=
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⎫⎬
⎭ · ηζi . (3)

To efficiently train the neural network, we design the loss
function in the form of Eq. (4), where 
 represents the

FIG. 2. Profiles of high dimensional potential energy surface
(PES). (a) Three-dimensional PES of NiO constructed with respect
to diverse physical events, varying colors represent different energy
scale relative to the ground state. (b) Illustrations of three pertubative
events as D, C, and R. (c) Projections of PES along each axis, offer-
ing the quantitative assessment of energy from different pertubations.

difference between the DeepSPIN prediction and the label, N
and Ns represent the number of real atoms and pseudoatoms
respectively, and pE , pF , and pω are adjustable weights con-
trolling the contributions of atomic energy, atomic forces, and
magnetic torques in the loss function, respectively. We employ
the Adam optimizer [31] to minimize the loss function, ensur-
ing accurate predictions for each component and achieving
faster training speed,

L(pE , pF , pω )

= pE

(

E
N

)2

+ pF
3N

N∑
i

‖
Fi‖2 + pω

3Ns

Ns∑
i

‖
ωi‖2.

(4)

Moreover, to obtain high-precision labels, we perform first-
principles calculations on noncollinear magnetic configura-
tions using the DeltaSpin scheme [26]. DeltaSpin optimizes
the Lagrangian function L[ρ; {λi, Si, S∗

i }] = EKS[ρ] − ∑
i λi ·

(Si[ρ] − S∗
i ), which can lead to the errors of magnetic mo-

ments and energy converging to δS = 10−5 µB and δE =
10−9 eV, respectively. In this approach, magnetic torque ωi

can be obtained using a method similar to the Hellman-
Feynman scheme [32], i.e., ωi = −δL/δS∗

i = −λi.
Using an active learning strategy [33,34], we explore the

configuration space of lattice and spin from the magnetic
ground state, constructing the PES [shown in Fig. 2(a)]. These
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events perturb real atom positions (displacement, D), change
spin orientations (canting, C), or simultaneously rotate all
spins (rotation, R). Figure 2(b) visually demonstrates these
in a primitive cell of NiO, where D is limited to position
changes along the Ni-Ni line with one Ni atom stationary, and
the C axis reflects angle changes after fixing one Ni atom’s
spin and perturbing the other’s. Iterative sampling and model
training enrich the dataset, filtering configurations based on
certain thresholds. Model parameters are tuned iteratively,
gradually increasing upper limits for physical events (see the
Supplemental Material [35]).

We highlight the efficacy of DeepSPIN method through
studies on two antiferromagnetic insulating materials: NiO
and BiFeO3. NiO exhibits stable antiferromagnetic order
with minimal magnetic anisotropy [47–49]. In contrast,
BiFeO3 is a multiferroic system characterized by pronounced
Dzyaloshinskii-Moriya (DM) interactions, embodying a com-
plex interplay between oxygen octahedral rotations and
subdued ferromagnetic moments [50–53]. Figures 1(c) and
1(d) depict a compelling agreement between the energies
predicted by the DeepSPIN model and those derived from
DFT for excited states. Notably, the distribution of average
relative atomic energy spans four orders of magnitude from
10−4 eV to 10−1 eV, represented by varying colors, under-
scoring the model’s impressive accuracy. In Fig. 2(c), we
present the delineated potential energy surface profiles for
three unique physical events. This visualization allows for nu-
anced evaluations of energy associated with various excitation
modes. Figures 3(c) and 3(d) further showcase the model’s
proficiency in predicting atomic forces and magnetic torques,
registering RMSE values of 5.9 meV/µB and 7.7 meV/Å,
respectively. The precise torque predictions can be seamlessly
integrated into frameworks like time-dependent DFT [54,55]
or Landau-Lifshitz-Gilbert equations [56], serving as primary
drivers for spin evolution.

The DeepSPIN model can also reveal the influence of
spin-lattice interaction on the dynamic properties of magnetic
systems, such as phonon spectra and magnon spectra [57–59].
Figures 3(a) and 3(b) illustrate the impact of varying magnetic
configuration on lattice dynamics. When the magnetic con-
figuration of NiO changes from the antiferromagnetic ground
state (G-state) to mutually orthogonal excited states (R-state),
as shown in Fig. 3(c), acoustic branches of the phonon spec-
trum remain nearly unchanged, while the frequencies of the
optical branches undergo significant variations with magni-
tude close to 3 meV. This reflects the distinct interactions
between magnetic Ni atoms within or between the {111} plane
as well as the superexchange interaction along the Ni-O-Ni
chain [48]. Moreover, the impact of lattice configurations
on spin dynamics can be also revealed (see Fig. S4 in the
Supplemental Material [35]). When −3% uniform compres-
sive strain is applied to R3c BiFeO3, the magnon frequency
increases significantly, indicating enhanced magnetic inter-
actions and greater stability of the antiferromagnetic order.
The comparison of the spectra obtained from DeepSPIN with
DFT calculations highlights the accuracy of the DeepSPIN
model.

DeepSPIN demonstrates superior generalizability in var-
ious application scenarios. We construct a high-angle NiO
grain boundary system (�5) with mirror-symmetric atomic

FIG. 3. Validating predictions of spin-lattice coupling via lattice
dynamics analysis. [(a) and (b)] The comparisons of NiO phonon
spectra of G-state (red) and R-state (blue) configuration, obtained
from DFT and DeepSPIN, respectively. (c) Illustrations of G-state
and R-state, representing in-plane spin rotation of Ni atoms. [(d) and
(e)] Comparisons of atomic forces and magnetic torques predicted
by DeepSPIN and labeled from DFT, respectively. RMSE is shown.

distribution on both sides of the grain boundary (310) [60]. All
Ni atoms are initially set to antiferromagnetic ground state.
The system contains 11,328 atoms in total and has dimensions
of 8, 1.6, and 7.7 nm along three directions, exceeding the
affordable scale of first-principles calculations. Figures 4(a)
and 4(b) illustrate the optimization results of the spin config-
uration by the DeepSPIN model. The Ni atoms maintain the
〈112〉 antiferromagnetic order away from the grain boundary
but exhibit highly irregular distorted configurations near the
boundary, resulting in local net magnetic moments, consis-
tent with previous studies [61]. Additionally, we apply the
nudge elastic band method [62,63] to calculate the 180◦ po-
larization switching process of R3c BiFeO3 along the [111]
direction [64]. As shown in Fig. 4(c), DeepSPIN model not
only successfully obtains the energy barrier for polarization
switching but also accurately predicts the energy of the dis-
torted structures along the switching trajectory [65]. This
indicates DeepSPIN is effectively capable of capturing the
complex spin-lattice interaction involving Bi displacements
and FeO6 oxygen octahedral distortions, and even potentially
can address dynamic magnetoelectricity [66].

In conclusion, we propose a flexible approach to derive
spin-lattice coupling models, which facilitates the construc-
tion of deep neural networks for magnetic materials’ energy,
atomic forces, and magnetic torques. This method out-
performs other electronic and mesoscale techniques when
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FIG. 4. Predictions of spin-lattice coupling in complex crystal structures. (a) The optimized spin configuration within �5 symmetric NiO
grain boundary (left side) and the crystal structure obtained from high-resolution electron microscopy [60] (right side). (b) Enlarged view
of the local Ni spin distribution on the grain boundaries. Varying colors represent the magnitude of the y axis ([112]) component. Red and
blue correspond to the maximum values in the [112] and [1̄1̄2̄] directions, respectively. (c) Energy barrier derived from DFT and DeepSPIN
for the 180◦ polarization switching trajectory in BiFeO3 with varying polarization P and fixed magnetization S. The modulus of P gradually
diminishes to 0 and then increases inversely.

dealing with various magnetic and crystal structures, espe-
cially those exhibiting significant irregularities in lattice and
spin arrangements. DeepSPIN notably maintains high accu-
racy even when the average atomic energy reaches 10−4 eV,
atomic forces below 10 meV/Å, and magnetic torques below
10 meV/µB. Although the “curse of dimensionality” requires
a relatively large dataset in configuration space to achieve
the aforementioned accuracy, this difficulty can be mitigated
by the active learning scheme. Through integrating Deep-
SPIN with atomic-scale spin-lattice dynamics techniques, we
are now equipped to address various phenomena, such as

paramagnetic states, phonon-magnon interactions, and even
quantum critical phenomena in magnetic materials when
quantum thermobath is applied.
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