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Altermagnetic topological insulator and the selection rules
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Altermangetism is newly identified as the third fundamental class of collinear magnetism with zero net
magnetization while hosting spin-split bands which break the time-reversal symmetry and Kramers degeneracy.
Here, we propose a k · p model for a two-dimensional altermagnetic lattice, in which instead of neglecting
them, the spin-orbit couplings play the role of driving the system into a topological insulating region. We term
this topological phase as an altermagnetic topological insulator, as opposed to an antiferromagnetic topological
insulator such as MnBi2Te4. A spin Chern number is attributed as the topological invariant. We also derive the
selection rules for optical conductivity measurements based on our minimal model, with which the elliptically
polarized lights will serve as powerful probes to detect altermagnetism and excite individual spin degrees
of freedom of altermagnetic compounds through light-induced anomalous Hall effects and longitudinal spin
currents.
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I. INTRODUCTION

Altermagnetic (AM) materials [1–4] are antiferromagnetic
(AFM) but different from conventional AFM compounds
whose Kramers degeneracy is conserved even though the
time-reversal symmetry (T ) is broken. The alternately ar-
ranged sublattices in AM compounds having opposite magne-
tization are related by a crystal-rotation symmetry operation
[2,3] and host alternately spin-split bands in the momentum
space. This property makes the AM materials very promising
in application to spintronics [2]. Specifically, when combined
with the valley degrees of freedom (DOF), the spin then would
possess a much longer coherence time, which makes the
AM materials very suitable in application to quantum com-
putations. Such AM compounds are the so-called C-paired
spin-valley locking materials [5].

As a newly identified class of fundamental collinear mag-
netism, altermagnetism has attracted much attention recently.
After its establishment, there have been many theoretic studies
[6–39]. Many interesting phenomena such as the anomalous
Hall effect [22,40–42], anisotropic crystal thermal Hall ef-
fects [43], etc., have been associated with the AM materials.
On the experimental side, nonrelativistic spin splitting has
been observed by angle-resolved photoemission spectroscopy
(ARPES) measurements [44–48]. However, the relativistic
spin-orbit coupling (SOC) effects in AM materials are in gen-
eral not essential for the alternately spin splitting of the energy
bands since it is mainly induced by an internal Zeeman field
but not SOC. But this does not mean that SOC plays no role
in those kinds of materials. Instead, it may lead to interesting
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physics such as topological superconductivity [10]. On the
other hand, some AM materials are naturally doublet systems,
hence, they are very suitable in applications to spintronics,
quantum computations, etc. However, doublet quantum DOF
are degenerate in energy as required by symmetry. Then, the
methods of how to trigger the coupled sublattice-spin DOF
are essential in utilizing these AM materials. A naive idea
is to lower the symmetry, thus breaking the degeneracy of
the coupled sublattice-spin DOF, leaving one of the flavors
easily accessible [5]. Regarding this, the lowering operations
are expected to be reversible so that the access is repeatable.
However, such requirements are not easy to fulfill in real
implementations.

In this paper, we first develop a theoretical k · p model
for a two-dimensional AM lattice at the Brillouin zone (BZ)
center starting from a symmetry analysis. By tuning the
strength of SOC, the lattice would transit into a quantum
spin Hall (QSH) insulator state while having no Kramers
degeneracy for a general k point in the BZ. Thus, it is differ-
ent from an antiferromagnetic topological insulator [49–53].
We call this topological state emerging in the AM material
as an altermagnetic topological insulator (AMTI). By ana-
lyzing the Chern number for each spin part of the model,
we demonstrate that a spin Chern number [54] can be de-
fined as the topological invariant. We then derive the optical
selection rules. Additionally equipped with these rules, one
can easily identify the altermagnetism and trigger the spin
excitations in an AM material through light irradiation, which
are not easy tasks in experiments provided that no such se-
lection rules exist. In addition, we demonstrate that there
exist light-induced anomalous Hall effects and longitudinal
spin currents. These properties not only make the AM ma-
terials easily accessible to experiments and suitable to be
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FIG. 1. Schematic of the model 2D altermagnetic lattice. Some
essential symmetry operations are illustrated, where σv/d is the mirror
plane.

applied in spintronics, but also fascinating by themselves in
physics.

II. k · p MODEL

We consider a two-dimensional lattice which lies on an xy
plane and consists of three atoms (see Fig. 1). Two magnetic
atoms lie at the edge center and the paramagnetic atom lies
at the corner within a unit cell. This lattice has been adopted
frequently in recent works (see Refs. [5,11,18]). The magnetic
atoms can be 3d transition metals, while the paramagnetic
atom may be a heavy element such as Te to give sizable SOC.
The local magnetic moments of the two magnetic atoms are
opposite and directed perpendicular to the atomic plane, or the
z axis (see Fig. 1). Paramagnetic atoms are essential in setting
the altermagnetism, in that they prevent any trivial symmetry
operation that exchanges the two alternated sublattices.

We then analyze the symmetry. Before invoking the
altermagnetism, the proper wallpaper point group of the non-
magnetic lattice is C4v . We focus on the � point of the BZ,
where we are going to derive our k · p model. The � point
has full point group symmetry C4v . Under the crystal fields
brought by the lattice, the fivefold degenerate d orbitals would
split according to the irreducible representations of C4v . There
are three nondegenerate dz2 (A1), dxy(B2), dx2−y2 (B1) orbitals
and a doublet [dxz, dyz](E ) orbital. Similarly, the p orbitals
would split into a nondegenerate pz(A1) orbital and a doublet
[px, py](E ) orbital. Ignoring the mixing between the p-d or-
bitals, we can pick up two different combinations over them
to give the Hamiltonian terms linear in k: (1) dxy, px, py and
(2) pz, dxz, dyz.

We then restore the altermagnetism. Without SOC, the
local magnetic moments are free to rotate in real space,
so the spin space group is more suitable for describing
the symmetry [3,55–57]. Provided that the two magnetic
atoms have opposite magnetic moments, the altermagnetism
is well established. However, when SOC is included, we
should restrict the symmetry operations to the magnetic
group, which is only a small portion of the full spin space
group. The local moments then can only be taken along the
out-of-plane direction if it is necessary that the number of
symmetry operations does not change. Restricted by this set-
ting [39], half of the point group symmetries still leave the
magnetic lattice invariant, while the other half need to be
combined with T to give the proper symmetry operations.
The magnetic group is C4v (C2v ). Considering the alternated

spin splittings of the energy bands brought by the effective
Zeeman field, the basis for a minima four-band model can
be taken as (1) dxy↑, 1√

2
(px + ipy)↑, dxy↓, 1√

2
(px − ipy)↓ and

(2) pz↑, 1√
2
(dxz + idyz )↑, pz↓, 1√

2
(dxz − idyz )↓, and all other

higher-energy bases are assumed to be integrated out. Un-
der such bases, the two-dimensional (2D) inversion operator
C2z has the matrix form σ0 ⊗ τz, the σd mirror symme-
try −iσy ⊗ τ0, the {T |C4z} symmetry −iσyK ⊗ τ0 and k · p,
and the {T |σv} mirror symmetry is σ0 ⊗ τx(y)K. The k · p
Hamiltonian that fulfills these symmetry constraints is read
as

H (k) = ε0(k)I4×4 +
⎛
⎝M(k) Ak− 0

Ak+ −M(k) 0
0 0 kx ↔ ky

⎞
⎠, (1)

with ε0(k) = C − D(k2
x + A2

2k2
y ), M(k) = M − B(k2

x +
A2

2k2
y ), k± = kx ± iA2ky, where A, A2, B,C, D, M are

constants. In arriving at the Hamiltonian, information of
the chemical potential, on-site energies, effective Zeeman (or
Kondo-like) couplings, and the atomic SOC are condensed
into C and the mass term M. When tuning SOC, the M
changes. Note that in our model the anisotropic parameter A2

is the same for both the linear and quadratic terms; this is in
general not the case for real materials, so we wrote it to be so
only for convenience in the derivations. We also omit the ε0

term since it is not important in the following discussions.
The Hamiltonian (1) is quite similar to the Bernevig-

Hughes-Zhang (BHZ) model for 2D QSH [58]. One differ-
ence is that in our model, the linear terms are anisotropic
with A2 �= 1. The other difference is that the lower block is no
longer a T counterpart of the upper block but instead an alter-
nated term. In spite of these two differences, the two models
have quite similar properties. Typical band structures of our
model are shown in Fig. 2. As we can see in Fig. 2(a), the
spin-up and spin-down bands are alternatively dispersed with
respect to the � point and become degenerate along the mirror
line �-M. A gap is opened by the mass term M, and depending
on the value of M, the model may or may not be a topological
insulator. The alternated properties can be better viewed in the
3D band structures as shown in Fig. 2(b). To demonstrate the
band anisotropy introduced by A2, we further plot the constant
energy contour in Fig. 2(c), from which we can clearly find
that the spin-up (spin-down) valley is an ellipse with the long
side along the x (y) direction, namely, the bands are highly
anisotropic. With the Hamiltonian at hand, we then study the
topological properties and the optical selection rules.

III. TOPOLOGICAL PROPERTIES

In our model Hamiltonian (1), we can see that the spin-up
and spin-down parts are not coupled, even with SOC. As
a result, we can calculate the Chern number C or the Hall
conductivity for each spin part with

σxy = e2

h̄
C = −e2

h̄

1

2π

∫∫
dkxdky f (k)�xy(k), (2)

�xy(k) = A2A2d3 + 2BA2
(
d2 − d2

3

)
2d3

, (3)
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FIG. 2. Band structures, edge states, and phase diagram. (a) Bands along the high-symmetry path of the k · p model, where the parameters
are taken as A = −1, A2 = 2, B = −2, M = −0.05. (b) 3D band structures, where the spin is indicated by black arrows. (c) Constant energy
contour of the bands, taken at E = 0.5. (d) Helical edge states, calculated by directly casting the k · p into a pseudolattice, with parameters taken
as A = −1, A2 = 1.3, B = −1, M = −0.2. (e) Phase diagram of the pseudolattice model of the spin-up parts, where the model is topologically
nontrivial when M < 0 and |M| > 4A2

2. The phase boundaries at |M| = 4A2
2 are indicated by black lines, and the other parameters are taken as

A = −1, B = A.

where d1 = Akx, d2 = AA2ky, d3 = M(k), d =√
d2

1 + d2
2 + d2

3 for the spin-up part. f (k) is the Fermi-Dirac
function and �xy(k) is the Berry curvature. Neglecting the
quadratic terms at low energy, the Chern number is given by
C = sgn(M)

2 , which is a half integer but not an integer since we
integrate over a noncompact space [58]. We may understand
the results by looking at the gap-closing-and-reopening
transition, where M goes from positive to negative, so the
Chern number changes by an integer. At the start, the lattice
is trivial with C = 0, and by tuning the SOC or the M,
the topological transition happens with a nontrival Chern
number [58]. The spin-down part can be obtained by noting
that �yx = −�xy, therefore, the total Chern number is zero.
However, the spin Chern number [54] Cs = (C↑ − C↓)/2 = 1
is nontrivial, which indicates that there are chiral edge
states for each spin part, similar to the QSH [58,59]. It
is easy to check for the existence of chiral edge states.
Following Ref. [58], for the spin-up (spin-down) part, we
pick a boundary between a low-energy Dirac Hamiltonian
with positive mass and one with negative mass. Searching
the zero-energy solution, we have E = Akx (−AA2kx ) for

the edge states when the boundary is parallel to the x axis
and E = AA2ky (−Aky) when the boundary is parallel to
the y axis. To be more concrete, we put the k · p model
into a pseudolattice and numerically calculate the edge
states and the Chern number of the spin-up part, so the spin
Hall conductivity then is σs = Cse/(2π ), where the results
are shown in Figs. 2(d) and 2(e). We can see clearly from
Fig. 2(d) that there exist helical edge states, a characteristic
of the QSH effect. In Fig. 2(e), we plot the phase diagram
of the pseudolattice model with respect to the SOC (M) and
anisotropy factors (A2), from which we find a phase boundary
at M = 0 and |M| = 4A2

2. When M or A2 was tuned across
the phase boundary, a topological phase transition happens,
consistent with the results of the k · p model.

We thus obtain a 2D topological insulator which does
not have Kramers degeneracy for a general k point. Also,
a spin Chern number can be endowed as the topological
invariant. The SOC are essential in driving the topological
transition which cannot be neglect in this system. Being AM,
which is different from antiferromagnetic topological insula-
tors, we therefore call it an altermagentic topological insulator
(AMTI).
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FIG. 3. Schematic of the optical selection rules, light-induced
anomalous Hall effect, and longitudinal spin current. (a) Elliptically
polarized light σ−(+) would couple dominantly to the spin-up (spin-
down) part and the excite out spin-up (spin-down) electron (solid
circles) and hole (open circles) carriers on the sample. (b) Light-
induced anomalous Hall effect and longitudinal spin current: The top
(bottom) panel is for the σ−(+) elliptically polarized light.

IV. SELECTION RULES

To overcome the difficulties of triggering the individual
spin DOF of a AM compound, in this section we propose that
similar to the T -paired spin-valley-locking materials group-
VI dichalcogenides [5,60], one can use elliptically polarized
light to excite the single sublattice-spin DOF of the doublet
system of our model. The coupling strength to the optical field
is Pα (k) = m0〈uv (k)| 1

h̄
∂Ĥ
∂kα

|uc(k)〉, α = x, y. For the transition
near the � point, we neglect the quadratic term. The coupling
strength with optical fields of σ± elliptical polarization then is
given by

|A2Px ± iPy|2 = m2
0A2A2

2

h̄2

(
1 ∓ M√

M2 + A2|k+|2

)2

(4)

for the spin-up part, and

|Px ± iA2Py|2 = m2
0A2A2

2

h̄2

(
1 ± M√

M2 + A2|k−|2

)2

(5)

for the spin-down part. If setting A2 = 1, Eqs. (4) and (5)
reduce to the results for group-VI dichalcogenides [60]. How-
ever, in group-VI dichalcogenides, the two valleys are well
separated in BZ [60], while in our model they merge into one
at the � point. Second, in our model, A2 not only gives rise to
altermagnetism but also leads to additional anisotropy. Near
the BZ center, M � k2, therefore, the interband transitions
couple dominantly to the σ− = A2Px − iPy (σ+ = Px + iA2Py)
elliptically polarized light for the spin-up (down) part, as
illustrated in Fig. 3(a). In the limited case where A2 = 0
or ∞, the interband transitions would couple exclusively to
linearly polarized light with y(x) linearity for the spin-up
(spin-down) part. These selection rules are a generalization of

those proposed in Ref. [60]. The anisotropic property also has
physical effects. As shown in Fig. 3(b), if we use σ− (σ+) light
to irradiate the sample to excite the hole and electron carriers,
which are then dissociated by an in-plane electric field E, the
leading longitudinal spin current signal would be obtained if
measured along x(y). The excited charge carriers will also
acquire opposite transverse velocities because the conduction
bands and valence bands have opposite Berry curvature, so
they will move to the two opposite boundaries of the sample,
leading to anomalous Hall currents. Such measurements can
point to the existence of altermagnetism if one can determine
the spin polarization of the signals, regardless if the compound
is topological trivial or nontrivial, and also provide an easy
and cheap way to trigger the individual spin DOF of the
altermagnetic materials, which is essential for applications.

V. CONCLUSIONS

To conclude, we developed a k · p model for a 2D AM
lattice starting from a symmetry analysis. With this model we
show that by tuning the SOC, the AM material may become
topological nontrivial with QSH effects such as a conventional
QSH insulator while breaking the Kramers degeneracy for a
general point in BZ [58,59]. A spin Chern number was as-
sociated as the topological invariant. We further demonstrate
that there exist selection rules for elliptically polarized light of
our model, which make light irradiation a cheap and powerful
method in probing and tuning the AM materials. In addition,
we show that there are light-induced anomalous Hall effects
and longitudinal spin currents of upon shining the sample
with a particular polarized elliptical light. These interesting
effects of the AM materials have great potential applications
in spintronics [2,3] and sensors [61] and deserve attention in
theory. We can see that by coupling the band topology to the
altermagnetism, more fascinating physics and phenomena are
possible for AM materials. We finally remark that our model
can be applied to a Ti2Te2O single layer [62].
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