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Giant phonon-skyrmion coupling in ferromagnet/heavy metal heterostructures
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The strong impact of the strain-induced Dzyaloshinskii-Moriya interaction (SIDMI) on the magnetization
dynamics of skyrmions in nanomagnetic structures is demonstrated. The effects of SIDMI are characterized
by skyrmion equations (SEs) of motion and magnetoelastic (ME) equations. The study is performed on a
model system of MgO/CoFe/Pt stacked on a piezoelectric substrate. The results demonstrate a major nonlinear
amplification in both the first- and higher-harmonic magnitudes of the skyrmion breathing mode due to SIDMI.
Remarkably, this enhancement can trigger a skyrmion collapse, enabling its deletion with ultraweak strain-
induced excitations. The SIDMI effect is shown to be much more significant than the conventional ME effect.
These findings open different avenues for the efficient manipulation of nanomagnetic structures through strain.
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I. INTRODUCTION

Spintronics and straintronics play crucial roles in achiev-
ing low-energy consumption [1–3], high-density data storage
[4], wave computing [5], neuromorphic computing [6], and
related applications in emerging electronics platforms. These
platforms demand a comprehensive understanding of the non-
linear dynamics of spatially inhomogeneous magnetization
states.

Ferromagnetic (FM) materials epitaxially grown in het-
erostructures experience proximity effects at their interfaces,
leading to changes in the free energy. In FM/heavy metal
(HM) structures, strong spin-orbit coupling can induce a
Dzyaloshinskii-Moriya (DM) antisymmetric exchange in-
teraction [7,8], stabilizing helical magnetic orders. An
interfacial DM interaction (DMI) in FM/HM bilayers is typ-
ically stronger than that in bulk chiral ferromagnets [9,10].
The interplay between exchange interactions, DMI, surface
anisotropy, magnetocrystalline anisotropy, dipole-dipole in-
teractions, and magnetoelastic (ME) interactions can give rise
to nontrivial topological magnetic orders, such as skyrmions.
Skyrmions can be driven by a dynamic field resulting in a
breathing mode (BM) [11,12]. The skyrmion phase may be
stabilized with tensile strains in the chiral-lattice insulator
Cu2OSeO3 with a cubic crystal structure [13]. Ferroelec-
tric/ferromagnetic hybrid wires were shown to serve for
skyrmion creation and transport [14]. It was shown [15]
that skyrmion motion may be induced by voltage-controlled
in-plane strain gradients. The creation and deletion of a
skyrmion with strains of 0.1%–1% was demonstrated [16].
The breathing modes of skyrmion crystals were shown to be
induced by ac electric fields in Cu2OSeO3 [17]. A recent
experimental study [18] showed that uniaxial strains may
lead to the anisotropy of DMI and significantly affect the
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equilibrium magnetization states. Reference [19] explained
that the variability in the DMI coefficient is primarily as-
sociated with strain-induced alterations in the interatomic
distances on the FM/HM interface. This opens ways of ma-
nipulating magnetization in nanomagnetic structures by strain
and phonon coupling.

Here, we show that strain-induced DMI (SIDMI) leads to
giant nonlinear effects on the skyrmion dynamics, including
enhanced higher-harmonic generation and skyrmion collapse
by ultralow strains of only 0.01% in the 1.8–2 GHz frequency
range. We derive a SIDMI form based on all strain com-
ponents and show that all of them play an important role.
We use skyrmion equations (SEs) of motion and a coupled
system of ME equations to characterize the dynamic effects.
We consider an MgO/CoFe/Pt trilayer epitaxially grown on a
piezoelectric substrate [Fig. 1(a)] with a bcc lattice. Virtually
any realistic piezoelectric substrate can be used for experi-
mental implementations since only weak strains are required.
As an example, one may use Pb(Nb2/3Zn1/3)O3-PbTiO3

(PZN-PT) [20]. The piezoelectric substrate generates GHz
elastic longitudinal waves εzz(t ) that propagate to the trilayer
and generate the dynamics of skyrmions. We consider all
boundaries of the trilayer to be elastically open, allowing all
faces of the nanoheterostructure to absorb elastic excitations,
thus eliminating possible elastic resonances and focusing on
the strong SIDMI effects on the skyrmion dynamics. The
initial stabilization of the skyrmion is performed by applying
a weak magnetic field of Hz = 105 A/m.

II. STRAIN-DRIVEN SKYRMION DYNAMICS

A. Strain-induced DMI

To describe the SIDMI, we formulate the quantum spin
energy operator, i.e., Hamiltonian,

ĤD =
∑
〈i, j〉

Di j[mi×m j]. (1)
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FIG. 1. (a) A single skyrmion formed in a CoFe layer in
the MgO/CoFe/Pt structure grown on a piezoelectric substrate.
(b) Atomic triangle of indirect exchange on the CoFe/Pt interface.
Crystallographic axes coincide with the Cartesian coordinates.

This Hamiltonian describes the indirect exchange between
neighboring spins mediated by an impurity with a large spin-
orbit coupling (SOC). The spatially dependent vector Di j

between two spins mi and m j can be decomposed into scalar
and vector components [21] as the product Di j = V Ri j =
xDx

i j + yDy
i j + zDz

i j , where V is a constant and

Ri j = sin[kF (Ri + Rj + Ri j ) + πZd/10]

×ei · e j[ei × e j]/(RiRjRi j ) (2)

represents the vectors connecting the SOC center and FM
atoms on the interface, Ri is the length between the SOC
center and FM atoms, Ri j is the distance between the ferro-
magnetic atoms, k f is the wave vector on the Fermi surface,
and Zd is the number of d electrons. The SIDMI components
can be derived from the geometry of the bcc lattice, which
defines the vector product of the directional cosines lying in
the x-z plane.

Using the four-neighbor model and symmetry principles,
one can show that the DMI vector Dz

i j = 0 for a perfectly
matched FM/HM epitaxial interface [22]. After summing up
the contributions of the nearest neighbors we can derive a
macroscopic relation of SIDMI:

WDMI(ε) = Dx(εyy, εzz )(mx∂mz/∂x − mz∂mx/∂x)

+ Dy(εxx, εzz )(my∂mz/∂y − mz∂my/∂y). (3)

Here, Di(ε) = D0 + ηi jε j j + ηizεzz represents the strain-
dependent anisotropic components of the DMI vector and
ηi j = ∂Di/∂ε j j is introduced as a DMI strain sensitivity ten-
sor. The tensor components can be derived by expressing
the vector product eie j[ei×e j] defining the orientation of Di j

and Ri j = a0(1 + εmm) via in-plain strain components εii and
the out-of-plane component εzz, with a0 the lattice constant
[Fig. 1(b)]. Vector Di j points normal to the plane of an atomic
triangle FM1-HM-FM2. For example, an in-plane strain com-
ponent εxx only alters the distance between the atoms in the
x direction in the triangle, defining Dy, which is normal to
the x-z plane. Realistic values of ηi j typically fall within
the range of hundreds of mJ/m2 [18]. Particularly, we use
ηxz = ηyz = ηiz = 0.5 J/m2 and ηxy = ηyx = 0.35 J/m2 in the
following results.

The elastically induced skyrmion dynamics can be de-
scribed by the Landau-Lifshitz-Gilbert (LLG) equation m,

∂m
∂t

= − γμ0

1 + α2
([Heff×m] + α[m×[m×Heff]]). (4)

The total effective field Heff = −(μ0Ms)−1∂W/∂m acting
on the magnetization is a sum of contributions resulting
from the exchange coupling Wex that includes a second-order
expansion term, DMI WDMI(ε), bulklike magnetocrystalline
anisotropy Wan, perpendicular anisotropy Wpa, Zeeman energy
WZ, dipole-dipole interactions Wdm, and the magnetoelastic
energy Wme(ε) given by [23]

Wme = B1
[(

m2
x − 1

3

)
εxx + (

m2
y − 1

3

)
εyy + (

m2
z − 1

3

)
εzz

]
+ B2(mxmyεxy + mymzεyz + mzmxεzx ). (5)

The LLG equation can be solved directly and it can also
include the ME coupling involving elastodynamics equations.

B. Skyrmion dynamics via a mean-field model

To obtain a quantitative understanding of the changes
occurring in BM due to SIDMI we first develop a mean-
field skyrmion model, in which we exclude Wdm and shear
stresses. The Lagrangian that establishes a canonical conju-
gate relationship between the generalized momentum and the
generalized coordinate for the undamped LLG (4) with α = 0
is given by [12]

L = Ms

γ

∫ λ

0

∫ 2π

0
	̇(cos 
 + 1)rdrdφ − E , (6)

where 	,
 are spin projections in a spherical coordinate
system. The magnetization precesses around its equilibrium
given for the topological charge Q = 1 in the polar co-
ordinates x = r cos φ, y = r sin φ, mx = f (r, λ) cos (φ + β ),
my = f (r, λ) sin (φ + β ), mz = (λ2 − r2)/(λ2 + r2), where
f (r, λ) = 2λr/(r2 + λ2), λ is the skyrmion radius, and β is
the chirality angle. For the Néel-type skyrmion, occurring in
the considered system, β = 0 at equilibrium. The total energy
E of the system is an integral of the macroscopic energy
density W ,

E =
∫ λ

0

∫ 2π

0
W rdrdφ. (7)

Using a set of Euler-Lagrange equations for L(λ, β, β̇ ), one
can derive dynamic equations for λ(t ) and β(t ),

∂λ

∂t
= C1D(t ) sin β, (8)

∂β

∂t
+ Gβ = C1D(t ) cos β

λ
+ C2

λ4
+ C3εzz(t ) + C4. (9)

The given parameters are D(t ) = D0 + ηizεzz(t ), artificial
damping G, C1 = −γ /Ms(1 + ln 4), C2 = −C1a2

0A, C3 =
4B1C1(ln 8 − 2)/3, and C4 = −C1[Ks(36 − 48 ln 2)/t f +
K1(48 ln 2 − 31) + 4HzMsμ0(ln 64 − 3)]/12 with magnetoe-
lastic constant B1, exchange constant A, surface anisotropy,
and magnetocrystalline constants Ks and K1, and Zeeman
term HzMsμ0.

Equations (8) and (9) describe the dynamics of the
skyrmion’s BM driven by elastic longitudinal deformations
in the z direction, typically generated by a piezoelectric sub-
strate. In practice, we can introduce in-plane strains εxx and
εyy into these equations as static perturbations. However, εzz

is considered as a plane wave, which is possible only in the
absence of local free surfaces, which means εxx = εyy = 0.
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FIG. 2. (a) BM spectra [Fourier transform of λ(t )] as a function
of the driving frequency of an elastic wave with ηiz = 0.5 J/m2 and
ηiz = 0, and (b) response magnitudes λ1, λ2, and λ3 with/without
SIDMI as functions of frequency obtained via the HBM.

Equations (8) and (9) can be solved numerically by finite-
difference time-domain methodology, in which all differential
operators are discretized by the second-order differences, and
the solution at a set of time steps is found my marching on in
time.

All the following results were obtained using the fol-
lowing material parameters, which are based on experimen-
tal data: ηiz = 0.5 J/m2, ηii = 0.35 J/m2, Hz = 105 A/m,
K1 = −1560.6 J/m3 [24], K2 = 0, Ms = 16×105 A/m [25],
α = 0.01, A = 2.5×10−11 J/m [25], D0 = 2.26×10−3 J/m2

[25], Ks = 1.18×10−3 J/m2 [25], B1 = −20.18×106 J/m3

[24], B2 = −15.27×106 J/m3 [24], cCoFe
11 = 259×109 Pa,

cCoFe
12 = 154×109 Pa, cCoFe

44 = 131×109 Pa, ρCoFe = 8290
kg/m3, cMg

11 = 259×109 Pa [26], cMgO
12 = 95.4×109 Pa [26],

cMgO
44 = 153×109 Pa [26], ρMgO = 3470 kg/m3 [26], cPt

11 =
303×109 Pa, cPt

12 = 220×109 Pa, cPt
44 = 54×109 Pa, ρPt =

21 447 kg/m3. Here, c11, c12, and c44 are elastic tensor compo-
nents for cubic symmetry and ρ is a density.

Figure 2(a) shows the skyrmion radius spectra for the case
with/without SIDMI. The spectra were obtained via a numer-
ical solution of Eqs. (8) and (9) for εzz = ε0 sin 2πνt . In this
scenario, projections of the DMI vector are also time depen-
dent since Di = D0 + ηizεzz, which generates a change in the
natural frequency of the system. It is evident that SIDMI leads
to a major increase of the linear and nonlinear excitation of
the BM as compared to the case without considering SIDMI.
The enhanced excitation includes an increase of the response
magnitude and higher harmonic generation.

To interpret this strong linear and nonlinear excitation, we
expand Eqs. (8) and (9) around the equilibrium λ0 and β0

including terms up to the second order. Being interested in the
steady-state periodic solutions, we use the harmonic balance
method (HBM), in which we seek the solution in the form

of harmonics, i.e., Fourier series: λ = λ0 + ∑
n λneiωnt , β =

β0 + ∑
n βneiωnt for the elastic perturbations εzz = ε0eiω1t ,

where ωn = nω and n is the harmonic number. After the sub-
stitution of this solution representation into the second-order
approximated equations we obtain the system for kth iteration
of nth modes,

iωnλ
k
n − C1D0β

k
n = ε0C1ηizβ

k−1
n−1 (1 − δ1,n), (10)

iωnβ
k
n + Gβk

n + Rλk
n = ε0

(
C1ηiz

λ0
+ C3

)
δ1,n

− C1D0

2λ0

∑
m

βk−1
n−mβk−1

m

+ F
∑

m

λk−1
n−mλk−1

m ,

− ε0C1ηiz

λ2
0

λk−1
n−1(1 − δ1,n), (11)

where β0 = 0 for the Néel-type skyrmions and λ0 can be
found from the equilibrium conditions λ̇ = 0 and β̇ = 0, R =
4C2/λ

5
0 + C1D0/λ

2
0 and F = 10C2/λ

6
0 + C1D0/λ

3
0, and for the

chosen parameters it is λ0 = 4.86 nm.
From Eq. (11), we can make two important conclusions.

First, the excitation of the n = 1 harmonic, i.e., the linear term
proportional to δ1,n, is dominated by the SIDMI rather than
by the classical ME effect because, typically, |C1ηiz/C3λ0| ≈
102. Second, the higher-harmonic terms, i.e., the terms with
n > 1 proportional to (1 − δ1,n), are dominated by SIDMI
because they originate from nonzero ηiz. The solution of the
HBM agrees with the time-domain solutions of Eqs. (8) and
(9), including the results of Fig. 2(a). The HBM allows obtain-
ing the magnitudes of the first and higher harmonics as shown
in Fig. 2(b). We find that all the harmonics are excited much
stronger when SIDMI is present.

C. Skyrmion dynamics via magnetoelasticity

Equations (8) and (9) account for the inverse magnetostric-
tion effect with the magnetization influenced by deformations.
However, it is more realistic to simultaneously solve ME
equations, i.e., coupled equations, in which the wave elastic
equation is solved together with the damped LLG equa-
tion including the demagnetization energy (Wdm) [27,28].
Such a three-dimensional (3D) model also allows introducing
nonzero ηxy = ηyx = 0.35 J/m2. The elastodynamic equa-
tion (12) for the velocities vi = ∂ui/∂t and stresses σi j =
ci jklεkl in anisotropic crystals describes the relationship be-
tween the displacement u and external forces, where the strain
tensor components are given by εi j = (∂ui/∂ j + ∂u j/∂i)/2
[29],

ρ
∂vi

∂t
+ βvi = ∇ j

(
σi j + σ me

i j

) + fi,

∂σi j

∂t
= ci jkl

1

2

(
∂vk

∂l
+ ∂vl

∂k

)
, (12)

with open boundary conditions ∂vi/∂i = ±(c11ρ)−1/2∂σii/∂i
and ∂v j/∂i = ±(c44ρ)−1/2∂σi j/∂i. Here, σ me

i j = ∂Wme/∂εi j is
the magnetostriction stress tensor, ρ is the density, β is the
damping constant, and fi is the force density. This system of
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FIG. 3. BM spectra obtained via ME equations and SEs for the
elastic wave driving frequency of 5 GHz and amplitude of 0.03% of
deformations.

ME first-order differential equations is solved using a leapfrog
scheme [30–32].

We start ME simulations by initially distributing a single
skyrmion within a 2D CoFe layer. The LLG equation is solved
only in the 2D CoFe region, while the elastic equations in-
volve a 3D trilayer system comprising MgO (6.3 nm)/CoFe
(0.7 nm)/Pt (6.3 nm) with each layer divided into a grid
of cells. Specifically, we use a grid size of 64×64×19 cells

FIG. 4. The ratios between the magnitudes of the n = 2 to n = 1
harmonics as a function of the elastic wave amplitude of (a) 1.75 GHz
and (b) 0.01% of deformations. The inset in (b) shows the ratio of the
real-space BM amplitudes for ηiz = 0.5 (with SIDMI) and ηiz = 0
(without SIDMI).

in the x, y, and z dimensions, respectively, with the cell
sizes dx = dy = 1.5 nm, dz = 0.7 nm. The cell characteristic
size is less than the exchange length because λ ∼ lex. The
skyrmion creates its deformation field (Fig. 3). We simulate
the transducer influence via introducing a force density fz =
ε0c11 sin (2πνt )/dz at the bottom layer of MgO. This allows
keeping this boundary open, which is equivalent to the case,
in which elastic waves propagate into the trilayer from the
substrate.

As the skyrmion forms within the CoFe layer it induces
strain fields due to the magnetostriction effect, resulting in
deformations at a scale of approximately 10−3%.

Figure 3 compares the BM spectra, i.e., the dependence
of the Fourier transform of the 〈mz〉 versus the frequency,
obtained via two approaches: SE and ME for the ε0 = 0.0003
with ν = 5 GHz. It is evident that ME and SE results show a
greatly enhanced first- and higher-harmonic excitations. ME
also shows a stronger nonlinear excitation even in the case of
ηiz = 0.

Figure 4 shows the ratio of the second- and first-harmonic
magnitudes as a function of the driving excitation amplitude
and frequency. For the half of the resonance frequency of
1.75 GHz, this ratio is maximal and reaches 80% at the
amplitude of the phonon wave εzz of only 0.02%, which
is around 420% enhancement. For frequencies greater than
10 GHz, the second-harmonic magnitude is about 3%−5%
of the excitation, which is still around 30 times stronger than

FIG. 5. Collapse of the skyrmion induced by 0.01% of εzz strains
at resonance frequency 3.6 GHz with ηiz = 0.5 J/m2, ηxy = 0.35
J/m2. The top left figure shows the evolution of 〈mz〉 starting from
the equilibrium state. The 3D plots illustrate spatial distributions of
mz at 0.91, 1.01, and 1.12 ns. The bottom slice plot illustrates the
equilibrium εzz distribution obtained due to ME coupling.
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in the case of no SIDMI with only 0.1% second-harmonic
magnitude.

The skyrmion BM response driven by SIDMI can become
so strong that the skyrmion can be completely destroyed.
Figure 5 demonstrates the collapse of the skyrmion induced
by only 0.01% of ε0 at 3.6 GHz. For the fixed amplitude of
0.01%, we find that the skyrmion is destroyed in the range of
3.2–3.9 GHz.

III. SUMMARY

We explored giant phonon-skyrmion coupling due to the
interactions between the skyrmion’s BM and time-dependent
SIDMI. To analyze the BM, we used SEs of motion as well
as coupled ME equations. SEs allow for a simplified analysis,
which is further elucidated by via the HBM. Such an analy-
sis shows that SIDMI plays a crucial role in the skyrmion’s
BM dynamics. ME equations demonstrate realistic operation,
verifying the fundamental findings of the SEs. The results
showed that SIDMI leads to a major enhancement of the
skyrmion’s BM dynamics. The enhancement includes major
increases of the first- and higher-harmonic magnitudes of the
BM, which reach the levels of more than 400% as compared

to no SIDMI. The enhanced dynamics can be so strong that
it can lead to the skyrmion collapse, so that skyrmions can
be deleted with a weak strain-induced excitation. This giant
SIDMI effects open possibilities for an efficient manipulation
of skyrmions, and, more generally, efficient manipulation of
nanomagnetic structures by strain, offering opportunities for
electronics applications.
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