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Microwave susceptibility analysis of ultrafast moment dynamics in a multicore
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Room-temperature magnetization dynamics of multicore magnetic nanoparticles often account for intrinsic
dipolar magnetism to behave as a single macrospin at low-frequency regime. Either magnetic particle imaging or
hyperthermia benefits from the resulting superparamagnetism in terms of nonlinear magnetization response and
relaxation losses at frequencies where the rotation of magnetic moments dominates over Brownian motion for a
given sinusoidal field. For this situation, spontaneous thermal relaxation (in the absence of external fields) of each
composing particle moment within the cluster is critical to define effective Néel time constant and may intersect
with ferromagnetic resonance (FMR) at GHz range. Here, we performed broadband AC susceptometry on both
immobilized single-core and multicore iron-oxide nanoparticles up to 26.5 GHz under DC bias fields. For each
solid sample, we confirmed FMR frequency, where large single-core nanoparticle systems demonstrated typical
resonance blueshift as DC field increased. Interestingly, high DC field induced the secondary satellite peak in the
imaginary part of AC susceptibility spectra for the case of multicore nanoparticle systems. We further highlighted
that a synchronous precession of the polarized macrospins under nonuniform effective fields was responsible for
splitting FMR peaks at nearby microwave frequencies. Upon curve fitting of the field-dependent FMR frequency
spectra, the Landau-Lifshitz-Gilbert-Kittel model later elaborates on the complex moment dynamics of multicore
nanoparticle systems in correlation with distribution functions.

DOI: 10.1103/PhysRevB.110.064421

I. INTRODUCTION

Biocompatible iron-oxide particles with diameters of a few
nanometers can form a single magnetic domain that behaves
as a giant moment, or macrospin, due to the unidirectional
arrangement of atomic spins. If these particles possess uni-
axial anisotropy, their magnetic moments may flip randomly
across the easy axis at room temperature when thermal agi-
tation overcomes the anisotropic energy barrier [1,2]. During
particle synthesis, controlling either nucleation or growth ther-
mally and stoichiometrically can produce superparamagnetic
nanoparticles and their superstructures (e.g., nanoflowers) [3].
For biomedical applications such as magnetic hyperthermia
[4,5], surface modification of particles is necessary to facil-
itate steric and electrostatic stabilization in a liquid medium
[6]; however, this may potentially lead to secondary particle
clustering [7]. Despite this, multicore magnetic nanoparticles
exhibit excellent nonlinear magnetization properties suitable
for magnetic particle imaging [8,9].
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Multicore magnetic nanoparticles, which are aggregates
of small superparamagnetic cores, exhibit room-temperature
superparamagnetism [10]. To discuss this unique magnetiza-
tion response in thermal equilibrium, the Langevin function
emphasizes the ratio of the Zeeman magnetopotential to
thermal energy, where the particle moments and their dis-
tribution significantly affect the linearity of the curve for
given external magnetic fields. Moreover, the time necessary
for multicore nanoparticles to minimize magnetopotential
generally correlates with magnetization reversal due to the
rotations of both the hydrodynamic volumes and the com-
posing magnetic moments. The Brownian alignment of the
easy axis positively contributes to low-frequency magnetiza-
tion dynamics, whereas rotational friction may immobilize
clusters undergoing high-frequency relaxation [11]. Although
the coexistence of Brownian and Néel relaxations compli-
cates the analysis of magnetization dynamics [12], it can
be simplified by considering only the behavior of mag-
netic moments as the dominant mechanism in solidified
aggregates [13].

The Néel relaxation time (τN ) of core particles with small
anisotropic energy is principally faster than Brownian rota-
tion of the aggregates. In the Néel-Arrhenius model, τN =
τ0 exp(σ ), the characteristic relaxation time τ0 is often as-
sumed to be between 10−9 and 10−10 s, with σ representing
the ratio of anisotropy energy to thermal energy. However,
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thermal relaxation also depends on the decay time of the
Larmor precession with a damping factor α, where an exter-
nal magnetic field drives the moments to perform gyroscopic
rotation around the effective field (Heff ) with an angular
frequency of ω0 = γ Heff for Heff = |Heff |. These fast mag-
netization dynamics (M) can be further described by the
Landau-Lifshitz-Gilbert (LLG) equation

dM
dt

= −γ M × Heff + α

Ms
M × dM

dt
, (1)

where γ is gyromagnetic ratio and Ms is the saturation
magnetization [14]. When sinusoidal fields with frequency
ω0/2π are applied, magnetic moments resonate as they
absorb microwave power, a phenomenon known as ferro-
magnetic resonance (FMR) [15]. Characterizing both the
Néel relaxation and the FMR spectra of multicore magnetic
nanoparticles is crucial for biomedical applications.

The spectral magnetization response of magnetic nanopar-
ticles is often analyzed using AC susceptometry, which
measures the frequency dependence of the complex mag-
netic susceptibility χ (ω) = χ ′(ω) − iχ ′′(ω). The real part,
χ ′, indicates the magnetization component in the direction of
the applied AC magnetic field, whereas the imaginary part,
χ ′′, represents the phase difference between the magnetiza-
tion and the field. Due to the different characteristics of the
longitudinal (χ‖) and transverse (χ⊥) magnetic susceptibility
spectra relative to the easy axis of magnetization, relaxation
and FMR can be observed as a collective magnetization re-
sponse in terms of χ (ω) = (χ‖ + 2χ⊥)/3 [16]. For a small
σ , the magnetic moment is significantly affected by thermal
disturbances, so the relaxation and resonance phenomena may
coexist at nearby frequencies [17]. Meanwhile, a large σ

results in moment rigidity (i.e., thermally blocked moment
dynamics) with a longer relaxation time. Similarly, multicore
nanoparticles can be treated as a single entity with a large
effective core whose size is determined by the internal acti-
vation energy [18]. Because the dipole interactions and the
effective anisotropy field of the core particles are substantial
at nanosecond timescales [19,20], FMR should be further
distinguished from Néel relaxation when employing a DC bias
field to adjust the energy barrier.

The microwave-frequency magnetization response is an
important property of multicore magnetic nanoparticles; how-
ever, experimental studies are lacking. In this study, we
performed broadband AC susceptometry to demonstrate the
different moment behaviors of an immobilized multicore
nanoparticle system compared to a typical single-core system.
We began with theoretical reviews of the Néel relaxation and
FMR of magnetic nanoparticles as the basis for our method-
ology for measuring GHz AC susceptibility of nanoparticle
samples. We then correlated the static field dependence of
the complex susceptibility spectra with the moment relaxation
and FMR characteristics while considering the distribution
functions. Here, we applied the Debye and LLG-Kittel mod-
els to numerically fit the susceptibility spectra attributed to
relaxation and resonance phenomena, respectively. This paper
highlights how the moment dynamics of multicore nanopar-
ticles changes under a polarizing DC field, revealing unique
dual-mode FMR frequency spectra.

II. MOMENT RELAXATION AND RESONANCE

A. Thermal relaxation

Under an external AC field (HAC) relative to the anisotropy
field (Ha), the magnetic moment (m) of an immobilized
nanoparticle tends to oscillate in the direction of the effective
field [Fig. 1(a)]. A monodomain nanoparticle typically fol-
lows the Debye equation to describe its relaxation behavior,
as shown in Eq. (2) [21]:

χ‖(ω) = χ‖,0
1 + iωτ

. (2)

Both the equilibrium susceptibility (χ‖,0) and the effective
relaxation time (τ ) depend on the field amplitude. For an
elliptical ferromagnetic nanoparticle with uniaxial anisotropy,
the Stoner-Wohlfarth model emphasizes the hysteresis in the
magnetization response corresponding to minimized internal
energy as a function of the angle between the magnetiza-
tion and the applied field relative to the easy axis [22]. In
the case of spherical nanoparticles with small anisotropy,
thermal-energy-augmented random torques activate sponta-
neous moment relaxation, where the time constant τ ≈ τN

can be estimated from Brown’s eigenfunctions, as shown in
Eq. (3) [23,24]:

τN =
⎧⎨
⎩

τ0
√

π

2
√

σ
exp σ, σ � 1

τ0σ
(
1 − 2

5σ + 48
875σ 2

)−1
, σ � 1.

(3)

In Eq. (3), σ = KuVm/(kBT ) considers the particle volume
(Vm) and ambient temperature (T ) as critical parameters for
observing superparamagnetism, whereas Ku and kB are the
anisotropy and Boltzmann constants, respectively.

In the absence of external fields, the magnetic moments of
noninteracting superparamagnetic nanoparticles freely rotate
at the Néel relaxation frequency fN = (2πτN )−1, random-
izing the magnetization vectors. As illustrated in panel
(i) of Fig. 1(a), the normalized AC susceptibility spectra
[χ‖(ω)/χ‖,0] of the Debye model describe that very low AC
fields with a frequency f � fN allow the moments to oscillate
their vectors across the field direction without a phase differ-
ence. When f approaches fN , moment relaxation has a time
lag relative to the magnetic field and a decreased oscillation
amplitude, as shown in panel (ii) of Fig. 1(a). For f = fN , χ ′′

‖
is maximized and equals χ ′

‖, resulting in a phase difference
ϕ = tan−1( f / fN ) = π/4 [panel (iii) of Fig. 1(a)]. This creates
the largest relaxation loss, which is typically used for mag-
netic hyperthermia. Furthermore, when f > fN , the moments
are unable to fully rotate during the observation time, thereby
reducing the apparent magnetic susceptibility [panel (iv) of
Fig. 1(a)]. In the GHz range, the Larmor precession eventually
becomes significant to define moment dynamics [25,26].

B. Magnetic resonance

Three-dimensional gyroscopic motion of magnetic
moments occurs at the Larmor frequency. When an additional
DC field (HDC) is applied, the parallel alignment of moments
leads to FMR, depending on the field intensity. This resonance
mode causes magnetic moments to precess around Heff

direction, which is the resultant vector of anisotropy and the
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FIG. 1. Moment dynamics of an elliptical ferromagnetic nanoparticle involving (a) Debye relaxation and (b) LLG-Kittel resonance
behaviors. Complex (parallel) susceptibility spectra χ‖ of the Debye relaxation model has positive values for both the real (χ ′

‖) and imaginary
(χ ′′

‖ ) parts normalized to the equilibrium susceptibility χ‖,0. Panels (i)–(iv) illustrate moment oscillation at different frequencies relative to
the Néel relaxation frequency fN = 3 MHz with phase delay ϕ = 0, π/6, π/4, and π/3, respectively. Under sinusoidal excitation HAC and
anisotropy field Ha that create an effective field Heff , particle moment m reorients its vector to minimize magnetopotential energy. In terms of
the scalar quantity, apparent magnetization M relative to its quasistatic value M0 at arbitrary temperature decreases with increasing frequency of
the applied field H with amplitude H0. FMR behavior results in the complex (perpendicular) susceptibility spectra χ⊥ with negative real parts
(χ ′

⊥) and positive imaginary parts (χ ′′
⊥) normalized to χ⊥,0 = αγ Ms. For α = 0.1 and ω0/(2π ) = 3 GHz, panels (v)–(x) depict the moment

precession, where ϕ of M/M0 relative to H/H0 equals π/6, π/4, π/3, π/2, 3π/4, and 5π/6, respectively.

DC bias fields. As shown in Fig. 1(b), the resonance character-
istics of the frequency-dependent perpendicular susceptibility
can be expressed using the LLG-Kittel model in Eq. (4) [27]:

χ⊥(ω) = γ Ms(ω0 + iαω)

ω2
0 − ω2(1 + α2) + 2iαω0ω

. (4)

At f < fr [panels (v)–(vii) of Fig. 1(b)], χ ′
⊥ initially has a

nonzero value, allowing a slight moment rotation under HAC

perpendicular to Heff . As f increases, the magnetic moments
precess, and the resulting oscillatory magnetization response
lags behind HAC with a phase difference ϕ. A large precession
angle maximizes χ ′

⊥ at ϕ = π/4 [panel (vi) in Fig. 1(b)].
Despite the large values of ϕ and χ⊥ = (χ ′2

⊥ + χ ′′2
⊥ )1/2, χ ′

⊥

decreases to zero at the FMR frequency fr =
ω0/(2π

√
1 − α2).

Unlike Debye relaxation, FMR behavior results in ϕ =
π/2 to maximize χ ′′

⊥, as the absorbed microwave power en-
ergizes the moment precession [panel (viii) of Fig. 1(b)].
Therefore, the amplified magnetization response peaks at f =
fr . During the relaxation process at any frequency, χ ′

‖ is
always a non-negative value with 0 � ϕ � π/2. In contrast,
moment precession allows ϕ to exceed π/2 for f > fr , where
the in-phase component of the magnetization has a direction
opposite to that of HAC [panel (ix) of Fig. 1(b)]. This situation
leads to negative χ ′

⊥. For f � fr , the moment dynamics later
converge in the direction of Heff with χ⊥ = 0 owing to the
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damping term in Eq. (1) [28]. From Fig. 1, we expect overlap-
ping relaxation and FMR frequency spectra for the magnetic
nanoparticle system at HDC = 0. The effects of single-core
and multicore structures should be observable when random
fields due to thermal agitation are trivial in comparison to the
magnetopotential at large HDC.

III. MATERIALS AND METHODS

A. Sample preparation

To test our hypothesis, we prepared four polydisperse
iron-oxide nanoparticle samples with an equivalent iron con-
centration of 46 mgFe mL−1 to investigate their magnetic
moment dynamics in the microwave range, namely, samples
S0, S1, S2, and S3. As a reference for analytical compari-
son, we used sample S0 (M300, Sigma Hi-Chemical, Japan)
consisting of magnetite nanoparticles coated with sodium α-
olefin sulfonate, and treated it as a single-core nanoparticle
system due to its large particle size, which is comparable to
its hydrodynamic volume. Sample S1 (Ferucarbotran, Meito-
Sangyo Co. Ltd., Japan) contains carboxydextran-coated
multicore maghemite nanoparticles with a broadened moment
distribution [29]. Ferucarbotran has been used as an active
pharmaceutical ingredient in Resovist® for magnetic reso-
nance imaging contrast agents. To estimate the cluster size,
we initially measured the room-temperature AC magnetic sus-
ceptibility of the liquid samples S0 and S1 below 10 MHz
(Appendix A). Then, we obtained hydrodynamic diameters
(Ds) of 30.5 and 58.5 nm from the Brownian relaxation time
τB = πηD3

s /(2kBT ), maximizing χ ′′(ω) at frequency fB =
(2πτB)−1. Here, the dynamic viscosities (η) of samples S0
and S1 are 1.35 and 1.28 mPas at T = 295 K, respectively.

Thermal relaxation can be blocked by a large anisotropy
barrier, depending on the particle size. Similarly, intrinsic
dipolar interactions lead to a longer τN [30]. To control this,
sample S1 was magnetically fractionated to obtain samples
S2 and S3, which have different moment distributions but
similar primary core sizes and hydrodynamic volumes. For
GHz-band AC susceptometry, all samples were solidified with
epoxy resin to ensure that the respective nanoparticles had a
random orientation. To prepare these samples, we uniformly
mixed epoxy resin (including hardener) with a nanoparticle
suspension at a volume ratio of 1:1. The mixture was allowed
to solidify at room temperature for more than 8 h before
sample cutting. The static magnetization characteristics of
the solid samples were measured using a vibrating-sample
magnetometer (VSM Model 3, Toei Industry Co. Ltd., Japan)
and fitted using a double-weighted Langevin function to ob-
tain the magnetic moment distribution of the primary and
secondary cores (Appendix B). The VSM employed a large
electromagnet system with a diameter of 0.6 m to produce a
uniform spatial distribution of static fields covering the sample
volume.

As shown in Fig. 2, sample S0 exhibits a broadening mo-
ment distribution with a single mode at 2.24 × 10−19 A m2 .
The equivalent (primary) core size can be estimated as Dp =
[6m̄p/(πMs)]1/3, where m̄p/Ms is the mean particle mo-
ment normalized by the saturation magnetization. In contrast,
sample S1 appears to have a bimodal moment distribution

FIG. 2. Numerical computation of static magnetization curve
(M/Ms) and magnetic moment distribution (ρm) of nanoparticle sam-
ples. Open circles indicate the VSM reading normalized to each
saturation magnetization (Ms). ρm (mp) is obtained by curve fitting
of M/Ms using the Langevin function (red lines). Black and blue
dashed lines indicate the primary and secondary moment distribu-
tions, respectively, with a total probability ratio of 1:1.

attributed to the core and cluster moments. Magnetic frac-
tionation allows sample S3 to have smaller secondary core
size than sample S2, which was associated with the different
values of m̄p in each secondary moment distribution. Table I
summarizes the physical properties of all samples, where
m̄p = ∑N

i=1 ρm,imp,i is obtained from the primary moment
distribution (Fig. 2). For a total number N of discretized
particle moments, ρm,i expresses the probability of the ith
moment such that

∑N
i=1 ρm,i = 0.5 in each subdistribution. In

Table I, Ms is treated as the volume magnetization by multi-
plying the VSM reading per unit mass (in A m2 kg−1) with a
mass density of 5150 and 4900 kg m−3 for the magnetite and
maghemite samples, respectively.

B. Nanoparticle model

Multicore nanostructures can be modeled as an assem-
bly of superparamagnetic nanoparticles densely packed into

TABLE I. Physical properties of nanoparticle samples extracted
from magnetization responses.

Main Ms m̄p Dp Ds

Sample content (kA m−1) (A m2 ) (nm) (nm) Dp

Ds

S0 Fe3O4 410.1 3.49 × 10−19 11.76 30.5 0.39
S1 γ Fe2O3 324.3 4.79 × 10−20 6.56 58.5 0.11
S2 γ Fe2O3 314.9 4.83 × 10−20 6.64 60.5 0.11
S3 γ Fe2O3 353.0 3.35 × 10−20 5.66 61.7 0.09
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FIG. 3. TEM images and nanoparticle models of samples S0 and
S1. Dp is the primary core diameter defined by the static magnetiza-
tion response, whereas Ds is the hydrodynamic diameter estimated
from the Brownian relaxation time of the particles. Based on the
ratio of Dp/Ds, samples S0 and S1 were modeled as single-core and
multicore nanoparticle systems, respectively. Red lines indicate the
clustered particles in sample S1, which are recognized as secondary
cores.

a cluster with rigid Brownian rotation in a liquid medium
[31]. Because of particle clustering, the primary and sec-
ondary cores in multicore nanoparticle systems are associated
with individual particles and clusters, respectively. As shown
in Fig. 3, transmission electron microscopy (TEM) images
confirm that the individual particle sizes of samples S0
and S1 are comparable to Dp in Table I, while also high-
lighting a broad particle-size distribution. The TEM images
identified large clustered particles in sample S1 and small
aggregates in sample S0. However, the high electrostatic re-
pulsion of the anionic surfactant in sample S0 should prevent
particle aggregation induced by the magnetic interactions
of the large particles [32]. In terms of colloidal properties,
Table I shows the small hydrodynamic diameter (Ds) of
sample S0 estimated using low-frequency AC susceptome-
try. The corresponding high ratio of Dp/Ds is a key factor
in treating sample S0 as a single-core nanoparticle system,
in addition to the single-mode moment distribution (Fig. 2).
A Dp/Ds ≈ 1 corresponds to ideal core-shell structures. In
contrast, Fig. 3 shows sample S1 as a model of multicore
nanoparticle system with small Dp/Ds. Magnetic fractiona-
tion did not significantly change Dp/Ds for samples S2 and S3
(Table I).

C. Broadband AC susceptometry

Similar to FMR spectroscopy [33], the AC magnetic sus-
ceptibilities of all solid samples were measured using a vector
network analyzer (VNA N5230A, Keysight Technologies,
USA) at frequencies ranging from 0.1 to 26.5 GHz at room
temperature. The intermediate-frequency bandwidth and
averaging factor were set to 500 Hz and 5, respectively. As
illustrated in Fig. 4, we used a shielded measurement fixture
of a short-circuited microstrip line (MSL) connected to the
VNA via subminiature type A (SMA) connector [34,35].

FIG. 4. Measurement fixture of microwave susceptibility with a
short-circuited microstrip line (MSL). The dimension and the posi-
tion of MSL have been optimized to maintain a 50 � impedance,
while an upper cover completes the fixture to suppress radiation
losses and external noises. The sample was positioned across the
signal line; thus, the probing HAC field was perpendicular to the
polarizing HDC field.

The nanoparticle samples were shaped into cuboids with
dimensions of 2.5 mm × 12 mm × 0.5 mm to fit into the
MSL jig and obtain a high signal-to-noise ratio. The amplitude
of the probing field (HAC) was approximately 0.7 µT/μ0,
where μ0 is the permeability of free space. An additional
DC magnetic field HDC was applied perpendicularly to HAC

(in parallel with the signal line of the MSL) while varying
its intensity at μ0HDC = 13, 27, 48, 120, 200, and 300 mT.
Permanent magnets with diameters of 20 mm were used to
adjust HDC, resulting in slight field inhomogeneity depending
on the distance between the sample and the magnets. The
standard error of HDC along the 12 mm lateral direction of the
sample was below 5 %. Nevertheless, HDC should be uniform
within the effective region of homogeneous HAC at a radius
of 2.5 mm relative to the MSL.

IV. RESULTS

A. DC field-dependent microwave susceptibility spectra

The DC fields applied to a typical single-core magnetic
nanoparticle system (i.e., sample S0) appear to change the
frequency-dependent complex susceptibility in the microwave
range, demonstrating two basic properties: the FMR fre-
quency shift and the symmetric dispersion of χ ′′(χ ′), as
shown in Fig. 5 (first-column panels). Anisotropy and dipolar
interactions contribute to the internal field (Hint), which trig-
gers intrinsic FMR in the presence of thermal disturbances.
At HDC = 0 and Heff ≈ Hint, the real part of susceptibil-
ity (χ ′) in sample S0 drops to 0 at the FMR frequency
fr = 2.40 GHz, whereas the imaginary part (χ ′′) maximizes
at the Larmor frequency f0 = 1.46 GHz. Similarly, intrinsic
FMR was also observed in samples S1, S2, and S3 (i.e.,
multicore nanoparticle systems), with fr and f0 values of
(1.78, 1.46), (1.71, 1.46), and (2.30, 1.17) GHz, respectively.
Theoretically, the FMR and Larmor frequencies should be
nearly identical to consider a small damping factor for the
moment precession. However, size-dependent relaxation also
contributes to broadening χ ′′ at low frequencies, creating an
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FIG. 5. DC field-dependent complex susceptibility (χ ) of the 2.5 mm × 12 mm × 0.5 mm solid samples S0, S1, S2, and S3 measured at
microwave frequencies ranging from 0.1 to 26.5 GHz. Red and blue circles denote the real (χ ′) and imaginary (χ ′′) parts of the susceptibility,
respectively. χ was probed under DC fields with varying magnitudes from HDC = 0 (first-row panels) up to HDC = 300 mT/μ0 (seventh-row
panels).

asymmetry in the susceptibility dispersion [36]. From Fig. 5
(first-row panels), we find that χ ′′ > 0 for f < 1 GHz is at-
tributable to moment relaxation.

Figure 5 further highlights that the characteristic fr and
f0 frequencies demonstrate a blueshift for larger HDC. For
HDC � 48 mT/μ0, the effects of moment relaxation on in-
creasing χ ′′ were still observable below 1 GHz. In the case
of sample S0, high DC fields with HDC � 200 mT/μ0 result
in a narrowing peak of χ ′′ and a more symmetric dispersion
of χ ′′(χ ′). Due to the large energy barrier that suppresses the
thermal relaxation of magnetic moments, f0 is close to fr at
HDC = 300 mT/μ0, enabling the estimation of α. Meanwhile,
the FMR frequency spectra of samples S1 and S2 at higher
DC field magnitudes of HDC � 200 mT/μ0 are relatively sim-
ilar. Although these samples exhibit a wide bimodal moment
distribution, their primary and secondary cores do not differ
significantly. Sample S1 has a lower fraction of large cluster
moments than does sample S2 (Fig. 2). This property may
be responsible for the different FMR frequency spectra at
HDC = 300 mT/μ0. In the case of sample S3, small cluster
moments appear to decrease χ ′ and χ ′′ values compared to
other multicore nanoparticle samples. From Fig. 2, we can
estimate the mean cluster moments of samples S1, S2, and

S3 as 5.75 × 10−19, 5.31 × 10−19, and 2.23 × 10−19 A m2 ,
respectively.

Unlike sample S0, which consists of single-core nanopar-
ticles, we observed two neighboring χ ′′ peaks in samples
S1, S2, and S3 at HDC = 300 mT/μ0. As shown in Fig. 5
(seventh-row panels), the first and second χ ′′ peaks for
these three samples were (10.18, 4.90), (9.40, 5.99), and
(10.08, 5.00) GHz, respectively. Despite different values of
f0, the first χ ′′ peak can be attributed to the intrinsic prop-
erties of iron-oxide cores. Sample S0 has a single χ ′′ peak at
f0 = 9.21 GHz, which is relatively close to those of the other
samples. Particle clustering further suggests that the second
χ ′′ peak at a lower frequency corresponds to the resonance
behavior of multicore structures at different effective fields
due to magnetic interactions [27]. The demagnetization field
distribution in the monodomain state of a cluster potentially
leads to inhomogeneous effective fields, which are responsible
for multimode FMR spectra [37].

B. Characteristics of FMR requency pectra

Figure 5(a) shows that the large core size of sam-
ple S0 leads to a higher magnetization response than the
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other samples in terms of the absolute susceptibility, χ =
(χ ′2 + χ ′′2)1/2. For HDC ⊥ HAC and HDC � HAC, the resul-
tant torque aligns the magnetic moments toward HDC. Thus,
the magnetization component parallel to HAC decreases pro-
portionally, particularly at f < 1 GHz, where nonresonant
moment relaxation occurs. As the energy barrier increases
under higher DC fields (e.g., above 120 mT/μ0), the polarized
moments begin to precess around the effective field when the
AC field frequency matches the Larmor frequency ( f0). This
further increases the apparent magnetization response due to
the resonance mechanism [38].

When a static field is applied along the z axis and a mi-
crowave field along the x axis simultaneously [Fig. 1(b)],
spherical cores with the same axial demagnetizing factors
(Nx = Ny = Nz = 1

3 ) have f0 linearly dependent on the ex-
ternal static field, Hz = HDC + Ha [15]. Particle faceting and
elongation may further affect the anisotropy field (Ha) be-
cause the effective demagnetizing factor Neff = Nx − Nz =
Ny − Nz is nontrivial [39]. The magnitude of the anisotropy
field is often defined as Ha = 2Ku/(μ0Ms) for particles with
identical sizes and uniform orientations of the anisotropy axes,
whereas the effective field due to dipolar interactions (i.e., the
demagnetization field Hd ) is simplified to Neff Ms [20]. There-
fore, for regular ellipsoidal cores with Neff 	= 0, the Larmor
frequency is governed by

f0 = γμ0

2π

(
HDC + 2Ku

μ0Ms
+ Neff Ms

)
, (5)

where γ /(2π ) is equal to 28.02 GHz T−1.
To investigate whether magnetic interactions contributed

to the FMR frequency spectra, we used Eq. (5), assuming
spherical cores with Neff = 0 for samples S0 and S1. The cor-
responding Ms values are 410.1 and 324.3 kA m−1 (Table I),
while approximate values of the anisotropy constant (Ku) for
Fe3O4 and γ Fe2O3 cores are 16.1 and 8.2 kJ m−3, respectively
[40,41]. Sample S1 contains noncrystallized particle clusters,
so the Ku of the cores is apparently larger than that of the
clusters [41]. We then obtained Ha = 78.5 and 50.4 mT/μ0,
predicting the intrinsic FMR at f0 = 2.20 and 1.41 GHz for
samples S0 and S1, respectively. From Fig. 6(b), the measured
f0 appears to be inconsistent with the values calculated using
Eq. (5) for Neff = 0. This estimate is relatively close to the fr

value. The local fields within clusters that affect Heff deviate
f0 from the theoretical resonance model [27]. This result val-
idated the significant contribution of magnetic interactions to
the field-dependent FMR characteristics.

Figure 6(c) points out that the f0/ fr � 1 ratio at low
DC fields is a consequence of thermal relaxation, where the
magnetic moments of primary cores rotate incoherently in-
side their clusters. As the DC field increased, the thermal
relaxation of the polarized moments became insignificant.
Meanwhile, Fig. 6(c) also shows large values of  fFWHM/ f0

at HDC � 48 mT/μ0, indicating a broadening χ ′′( f ). Here,
 fFWHM is evaluated from the full width at half-maximum
of the measured χ ′′ peak as a function of frequency. The in-
trinsic FMR (at HDC = 0) of sample S0 demonstrates a larger
fFWHM/ f0 than that of the other samples, attributed to the
large Ku [41]. Under HDC � 120 mT/μ0, fFWHM/ f0 further
decreases for all samples as the FMR dominates over the

FIG. 6. (a) Microwave moment dynamics in terms of frequency-
dependent absolute susceptibility χ = (χ ′2 + χ ′′2)1/2, under various
DC magnetic fields. Open circles, squares, triangles, and diamonds
represent samples S0, S1, S2, and S3, respectively. (b) Field-
dependent Larmor frequency ( f0) maximizing χ ′′ (top panel) and
FMR frequency ( fr) inverting sign of χ ′ (bottom panel) at GHz
range. Dashed-dotted and dashed lines are values of Eq. (5) for
spherical magnetite and maghemite nanoparticles computed with Ku

equals 16.1 and 8.2 kJ m−3, respectively. (c) Field-dependent f0/ fr

and  fFWHM/ f0 ratios.  fFWHM is the full width at half-maximum of
the measured χ ′′ peak.

moment relaxation. Consequently, HDC � Ha + Hd results in
f0/ fr ≈ 1, considering only moment precession with a finite
damping constant.

C. Relaxation time constant of core particles

The Gilbert damping factor α of the samples can be es-
timated from the empirical relationship between f0 and fr

measured in a large DC field, as shown in Eq. (6) [42]:

α =
[

1 − ( f0/ fr )2

1 + ( f0/ fr )2

] 1
2

. (6)

From Fig. 6(c), we obtained α = 0.10 at 300 mT/μ0 for
sample S0, which is comparable to the reported value for
magnetite nanoparticles [16]. The other (maghemite) samples
have an identical α = 0.07. The characteristic time constant
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TABLE II. Magnetic properties of core particles related to Néel
relaxation.

τ0 τN fN

Sample α (ns) σ (ns) (MHz)

S0 0.10 0.72 3.36 10.10 15.8
S1 0.07 1.59 0.30 0.53 298.7
S2 0.07 1.54 0.31 0.54 295.2
S3 0.07 1.73 0.19 0.36 445.9

for thermal relaxation can then be approximated as τ0 =
Ms/(2αγ Ku), thereby obtaining τN according to Eq. (3). As
shown in Table II, fN = (2πτN )−1 for sample S0 should be far
below the measurement range of the microwave susceptibility
due to the large anisotropy energy, whereas samples S1, S2,
and S3 may have moment relaxation overlapping with the
intrinsic FMR.

For multicore nanoparticles, thermal relaxation in a field-
free environment mainly derives τN from the intrinsic dipolar
magnetism, where the magnetic moment of each primary
core interacts as a single macrospin equivalent to the cluster
moment within an activation diameter [29,30]. The resulting
effective core size is sufficiently large to exhibit a linear de-
crease of χ ′

‖ as a function of ln( f ) (Appendix A). However,
fast relaxation of primary cores should increase imaginary
susceptibility at microwave frequencies because the core size
is expected to be a few nanometers [8,30,41].

The calculated relaxation frequencies of samples S1, S2,
and S3 are above 0.29 GHz (Table II). However, Fig. 5 shows
no χ ′′ peak for f < 1 GHz in the microwave susceptibility
measurement at zero DC field. Thermal disturbance increases
the effective damping of the moment dynamics and later
causes a decrease in the amplitude of the gyroscopic motion
[43,44]. This situation can be avoided by applying a large
DC field such that the moment precession dominantly con-
tributes to the apparent magnetization response. An external
DC field reduces the absolute susceptibility attributed to Néel
relaxation with a shorter time constant [40]. For instance, at
HDC = 300 mT/μ0, χ at 1 GHz decreases by more than half
its original value in the absence of a DC field. Moreover,
for f = fr � fN , thermal relaxation is negligible, allowing
moment precession to maximize χ [Fig. 6(a)].

V. DISCUSSION

In terms of the complex magnetic susceptibility, we hy-
pothesized that the microwave magnetization response of a
multicore nanoparticle system collectively takes either mo-
ment relaxation or precession to describe the intrinsic FMR
in the absence of external DC fields (Fig. 5). Upon applying
a sufficiently high DC field, two neighboring χ ′′ peaks in
the susceptibility spectra indicate that anisotropy and dipolar
interactions remain significant, yielding inhomogeneous local
fields within the multicore superstructures. This observation is
similar to the multimode resonance associated with different
demagnetization field distributions at the center and edges of
the structures [37,45,46]. As an alternative to micromagnetic
modeling, we discuss the microwave susceptibility spectra
with the distribution functions of magnetic nanoparticles.

A. Distributive damping factors, resonance frequencies,
and internal fields

To fit the measurement results shown in Fig. 5, we
empirically generalized frequency-dependent microwave sus-
ceptibility into χ (ω) = c‖χ‖(ω) + c⊥χ⊥(ω), where c‖ and c⊥
are arbitrary constants related to the significance of relaxation
and precession in defining moment dynamics. Theoretically,
c‖ and c⊥ are 1

3 and 2
3 , respectively, for monodisperse parti-

cles [47]. However, the size and moment distributions of the
particles vary with the relaxation time, damping factor, and
internal fields. Therefore, we adopted Eq. (2) to define the real
and imaginary parts of the parallel susceptibility attributed to
the Néel relaxation as follows:

χ ′
‖(ω) =

2∑
j=1

N∑
i=1

a jρm,i jmp,i

1 + (ωτN,i j )2
+ a0 (7)

and

χ ′′
‖ (ω) =

2∑
j=1

N∑
i=1

a jρm,i jmp,iωτN,i j

1 + (ωτN,i j )2
, (8)

respectively. a0 in Eq. (7) is an arbitrary constant that lim-
its the high-frequency susceptibility, whereas a j represents
the fraction of moment relaxation in the primary and sec-
ondary cores. Equations (7) and (8) explore τN,i j (σi j, HDC)
for each moment mp,i. In this case, τN,i j (σi j, 0) satisfies the
low-frequency susceptibility spectra obtained by substitut-
ing the anisotropy-to-thermal energy ratio σi into Eq. (3)
(see Appendix A). We used the empirical relationship (1 +
1.97ξ 3.18)−0.5 to approximate τN,i j (σi j, HDC)/τN,i j (σi j, 0) for
ξ denoting static magnetopotential as m̄pHDC/(kBT ) [40].

To describe the change in the FMR frequency spectra for
HDC ⊥ HAC, the real and imaginary components of perpen-
dicular susceptibility are governed by Eq. (4) as follows:

χ ′
⊥(ω) = γ

2∑
j=1

N∑
i=1

b jρm,i jmp,i
[
ω2

0,i j − ω2
(
1 − α2

i

)]
[
ω2

0,i j − ω2
(
1 + α2

i

)]2 + 4α2
i ω

2
0,i jω

2

(9)

and

χ ′′
⊥(ω) = γ

2∑
j=1

N∑
i=1

b jαiρm,i jmp,i
[
ω2

0,i j + ω2
(
1 + α2

i

)]
[
ω2

0,i j − ω2
(
1 + α2

i

)]2 + 4α2
i ω

2
0,i jω

2
,

(10)

respectively. The damping factor αi is specific to each value
of mp,i. Here, Eqs. (9) and (10) show that ω0,i j = γ (HDC +
Hint,i j ) depends on the core and cluster moments with different
ρm,i j values for each jth subdistribution of multicore nanopar-
ticles (Fig. 2). The magnitude of the internal field (Hint)
also changes with increasing DC field. The dual χ ′′ ≈ χ ′′

⊥
peaks at neighboring frequencies are approached by Eq. (10),
where the resonance intensities attributed to ω0 distribu-
tions of the individual cores and clusters are weighted by bj

proportionally.
Figure 7(a) demonstrates the curve fitting of χ (ω) for

HDC = 0 and 300 mT/μ0. This further proves that χ‖(ω)
due to Néel relaxation can significantly increase χ (ω) at
f < 1 GHz in the absence of an external DC field, whereas
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FIG. 7. (a) Curve fitting of FMR frequency spectra at μ0HDC = 0 and 300 mT using Eqs. (7)–(10). Solid lines represent the χ ′ and χ ′′ values
calculated by including thermal relaxation to fit the measurement data (open circles). Dashed-dotted lines are the values computed using the
LLG-Kittel model only. (b) Distribution functions of damping factor, resonance frequency, and internal field to estimate susceptibility spectra
under HDC = 0 (solid lines) and 300 mT/μ0 (dashed lines). Inset figures of ᾱ, f̄r , and H̄int are the mean values of distributive damping factors,
resonance frequencies, and internal fields, respectively.

a high HDC results in χ (ω) ≈ χ⊥(ω). At f < 0.5 GHz, the
fluctuating χ (ω) values are attributable to measurement noise.
From numerical analysis using Eqs. (9) and (10), we obtain
the log-normal distributions of α, fr , and Hint for each HDC

as shown in Fig. 7(b). For example, in sample S0, α ini-
tially varies from 0.0 to 0.5 at HDC = 0 and has a narrower

distribution at 300 mT/μ0 [first-column panels of Fig. 7(b)].
However, the mean value of the damping factors (ᾱ) was
relatively constant at 0.078, which was more accurate than the
value obtained from the graphical analysis of the measure-
ment data (Table II). Meanwhile, fr = f0(1 − α2)−0.5 ≈ f0

is distributed within the measured FMR bandwidth. Because
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FIG. 8. Dual-mode FMR frequency spectra of multicore
nanoparticle system due to an inhomogeneous distribution of local
demagnetization field under HDC = 300 mT/μ0. Da is an activation
diameter where the primary core particles behave collectively as a
single macrospin with large magnetic moment.

we plotted the mean resonance frequency ( f̄r) as a function
of HDC, we can estimate Ha to be 41.23 mT/μ0 for sample
S0. In terms of the Hint distribution, Ha can be treated as
the minimum value of the field-dependent mean internal field
H̄int (HDC).

For samples S1, S2, and S3, a bimodal distribution of mag-
netic moments was adopted to fit the FMR frequency spectra
using Eqs. (9) and (10). This curve fitting provided the differ-
ent properties of α, fr , and Hint distributions for the cores and
clusters [Fig. 7(b)]. For the three samples, ᾱ of the core parti-
cles is independent of HDC with a constant value of 0.041. The
corresponding fr distribution at 300 mT/μ0 appears broader
than that of sample S0 because the cluster structures affect
the Hint distribution in terms of the demagnetization fields.
The third-row panels in Fig. 7(b) show that the distributed Hint

of the clusters is negative at 300 mT/μ0, where Hint opposes
the direction of HDC. The local reduction in the effective field
inside the cluster structures further correlates with a lower fr .
Therefore, unlike sample S0 with a single χ ′′ peak, samples
S1, S2, and S3 demonstrate dual-mode FMR frequency spec-
tra at high DC field.

B. Dual-mode FMR frequency spectra
of multicore nanoparticles

The inhomogeneous demagnetization field distribution un-
der high DC field can create local regions with different
effective field magnitudes (Heff ), resulting in multimode FMR
frequency spectra with fr ∝ Heff . Similarly, we observed two
neighboring fr values for multicore nanoparticles, in which
secondary fr appeared to be dependent on the cluster moments
(mc), as shown by samples S2 and S3 (Fig. 8). To support
our findings, we assume a spherical activation volume for
the secondary cores with a diameter of Da = [6mc/(πMs)]1/3,
where the magnetic moments of the primary core particles

are collaterally aligned in the direction of HDC and behave
collectively as a single macrospin. Here, Da is approximately
14.76 and 10.64 nm for samples S2 and S3, respectively. For
Dp < Da < Ds, Fig. 8 illustrates that mc > mp yields demag-
netization fields outside the area of Da, which can potentially
reduce Heff in a finite area within Ds. For relatively similar Ds,
the large mc of sample S2 proportionally creates a demagne-
tized area and splits the FMR frequency spectra, with larger
χ ′′ of the secondary mode than that of sample S3.

Multicore magnetic nanoparticles obtained by hydrody-
namic particle clustering are typically nonspherical and have
complex structures, complicating their field-dependent mag-
netization dynamics (Fig. 3). Our work shows a physical
phenomenon in which a high DC field induces dual-mode
FMR frequency spectra in multicore nanoparticle systems,
emphasizing discretized areas inside clusters with distinc-
tive Heff due to an inhomogeneous demagnetization field
distribution. Although micromagnetic modeling of multicore
nanoparticle systems is necessary to further validate this hy-
pothesis, a simple field simulation of a spherical nanoparticle
highlighted opposite demagnetization fields near the particle
(Fig. 8). In addition to computational studies, more detailed
FMR experiments may provide valuable insights into the ul-
trafast moment dynamics in multicore nanoparticle system for
biomedical applications.

VI. CONCLUSION

We measured the DC field-dependent microwave sus-
ceptibility to characterize the fast moment dynamics of
single-core and multicore magnetic nanoparticle systems in
correlation with the FMR frequency spectra. Four samples
with an iron concentration of 46 mgFe mL−1 were solidi-
fied with epoxy resin and shaped into cuboids of 2.5 mm ×
12 mm × 0.5 mm. This configuration allowed Néel relax-
ation to initially define the low-frequency magnetization
response. Above 0.1 GHz, we observed that FMR mainly
contributed to the apparent complex susceptibility spectra,
although thermal relaxation was not trivial below 1 GHz.
While both phenomena resulted in a collective magnetization
response, the introduction of external DC fields led to a unique
FMR shift. Single-core nanoparticle system exhibited a uni-
tary FMR frequency that shifted to higher frequencies with
increasing DC fields, whereas multicore nanoparticle system
showed a secondary peak of imaginary susceptibility close to
the intrinsic FMR frequency, particularly at 300 mT.

We numerically fitted the dual-mode FMR frequency spec-
tra of multicore nanoparticles using the LLG-Kittel equation,
considering the moment distribution and its correlation with
the damping factor and the Larmor frequency. We modeled
a computation in which the first satellite FMR peak was
attributed to secondary cores with a broad distribution of
gyroscopic parameters, whereas the latter peak corresponded
to the moment precession of the primary cores. The results
affirm a possible mechanism by which nonuniform effective
fields experienced by multicore magnetic nanoparticles lead
to local synchronous moment precession below the Larmor
frequency of a typical spin gyration in an individual core.
Understanding these characteristics encourages an in-depth
investigation of how the morphology of such nanostructures
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FIG. 9. Low-frequency complex (parallel) susceptibility of all
samples with 46 mgFe mL−1 iron concentration. The real (χ ′

‖) and
imaginary (χ ′′

‖ ) parts are depicted in red and blue colors. (a) χ ′
‖ and

χ ′′
‖ of liquid (first row) and solid (second row) samples for S0 and

S1. Vertical dashed line indicates the Brownian relaxation frequency
( fB). (b) χ ′

‖ and χ ′′
‖ of solid samples for S2 and S3. No observable

χ ′′
‖ peak indicates the Néel relaxation should be above 10 MHz.

Transparent solid lines represent the values calculated using Eqs. (7)
and (8).

contributes to high-frequency magnetic losses, particularly in
microwave-assisted hyperthermia applications.
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APPENDIX A: LOW-FREQUENCY COMPLEX
MAGNETIC SUSCEPTIBILITY

In order to characterize the relaxation behavior of the
samples, an extended low-frequency susceptibility (χ‖) was
measured by a frequency response analyzer (FRA51615, NF
Corporation, Japan) ranging from 100 Hz to 10 MHz. We ap-
plied an AC magnetic field (HAC) with magnitude μ0HAC =
0.1 mT to the liquid and solid samples, in which a pickup
coil was aligned concentrically to the excitation coil [48]. As
shown in the first-row panels of Fig. 9(a), we identified χ ′′

‖
for both liquid samples S0 and S1 maximized at the Brown-
ian relaxation frequency fB = 10.7 and 1.6 kHz, respectively.
The corresponding hydrodynamic diameters (Ds) are equal to
30.5 and 58.5 nm, while considering the medium viscosity of
1.35 and 1.28 mPa s at T = 295 K. Samples S2 and S3 were
supposed to have a similar Ds with sample S1 [30].

The magnetization in the liquid samples significantly
decreases at high frequencies since large friction forces in-
hibit Brownian rotation, resulting in an incomplete easy-axis

FIG. 10. DC field-dependent specific magnetization properties
of 2.5 mm × 12 mm × 0.5 mm solid samples with 46 mgFe mL−1

iron concentration measured by VSM at room temperature. No coer-
civity was observed in all samples. The inset further emphasizes the
nonlinearity of M/Ms, which is a normalized magnetization relative
to each saturation value.

relaxation [11]. This situation reduces the disparity in magne-
tization response between the solid and liquid samples, where
the Néel relaxation becomes dominant. For solid samples
S0 and S1 with randomly oriented easy axes, χ ′

‖ decreases
linearly with increasing ln( f ), while χ ′′

‖ shows no peak across
the measurement frequency [second-row panels of Fig. 9(a)].
We obtained similar results for the case of solid samples S2
and S3. Figure 9(b) further highlights a significant suscepti-
bility difference between these samples, which is attributable
to the proportion of secondary cores (with large moments) in
each sample.

APPENDIX B: STATIC MAGNETIZATION RESPONSE

The total mass (including epoxy resin) for samples S0, S1,
S2, and S3 was 15.5, 14.0, 15.6, and 14.4 mg. respectively,
whereas the iron content was prepared at 0.69 mg. Despite
having different values of saturation magnetization Ms, all
samples exhibited superparamagnetism at room temperature
as shown in Fig. 10. For this case, the magnetization M
nonlinearly increases at higher HDC static fields, accounting
for the sum of each composing magnetic moment mp over
sample volume ν [49]. Based on the nonlinearity of M/Ms,
the inset in Fig. 10 further indicates the smaller core sizes
of samples S1, S2, and S3 as compared to sample S0. Here,
monodomain nanoparticles with large core sizes may easily
align their magnetic moments at low external DC field as they
have large anisotropy energy. For instance, M/Ms of sample
S0 reaches 0.75 at 100 kA m−1, whereas the other samples
show M/Ms < 0.66 for the same HDC. Therefore, the nonlin-
ear field dependence of M/Ms becomes a fundamental feature
for assessing size polydispersity in a magnetic nanoparticle
system.

In general, multicore magnetic nanoparticles demonstrate
a bimodal moment distribution to account for the individual
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moments and their resultant for the clustered particles,
which have been identified using inverse methods of
the field-dependent magnetization curve [29]. As a
straightforward analysis, we applied a double-weighted
Langevin function (L):

L(mp, HDC) = coth
(μ0mpHDC

kBT

)
− kBT

μ0mpHDC
, (B1)

to fit M(HDC) as shown in Eq. (B2):

M(HDC) = 1

2ν

2∑
j=1

[ ∫
ρm, jmpL(mp, HDC)dmp

]
. (B2)

Here, ρm,1 and ρm,2 are the probability density functions
of magnetic moments attributed to the primary and
secondary cores, respectively with a proportional 1:1 ratio.
Equation (B3) notes the log-normal distribution of magnetic
moment mp as follows:

ρm(mp) = 1√
2πsmmp

exp

[
− ln2(mp/mm)

2s2
m

]
, (B3)

where sm is the standard deviation of ln(mp), mm and
mm exp(s2

m/2) are the median and the mean values of mp,
respectively [50,51]. We computed Eqs. (B1) to (B3) with
least-squares method to obtain ρm (mp) for each sample and
summarized the results in Fig. 2.
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