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Influence of the magnetic inertia on the self-oscillation in spin-orbit torque-driven tripartite
antiferromagnets with a 120◦ rotation symmetry
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Tripartite antiferromagnets (AFMs) with a 120◦ spin order, exhibiting unconventional transport properties,
facilitate detecting AFM states. This inspires some studies on terahertz self-oscillations in these spin structures.
However, self-oscillations under the influence of magnetic inertia, which comes out in the ultrafast dynamics,
have not yet been unveiled. Here, resorting to the symmetry and numeric results, an effective analytic theory,
which allows for a detailed analytic treatment, is developed to describe the self-oscillation triggered by a spin-
orbit torque. Then, the phase boundaries of self-oscillation are determined, and it is found that the magnetic
inertia wipes out the upper threshold, extending the useful frequency range. Furthermore, the precession holds
almost in-plane with increasing current, resulting in a large-amplitude steady oscillation. Finally, the effect of
Dzyaloshinsky-Moriya interaction on the tunable range of self-oscillation is discussed briefly. In virtue of the
wide frequency tunability granted by the inertia and the unique features of the tripartite AFMs, this study may
provide a significant contribution to the spintronic terahertz applications.
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I. INTRODUCTION

Coherent precession of magnetization driven by spin
torques is a common dynamics in various magnets, from
which the nano-oscillators of electromagnetic waves can be
envisioned. In ferromagnets (FMs), the characteristic fre-
quency of this precession is determined by the energy scales
of the anisotropy or the applied field, having the order of a
few gigahertz. By contrast, the precession in antiferromagnets
(AFMs) is principally propelled by the strong intersublattice
exchange interaction because of the relative tilting between
the sublattice magnetic moments. In view of the energy scale
of exchange interaction, the AFM precessional frequency is
generally in the terahertz (THz) regime.

According to its dynamic feature, the precession of mag-
netization can be classified into linear and nonlinear types.
In the linear regime, the magnetic moments precess around
a well-defined equilibrium direction with a small cone angle,
bringing about the small-amplitude magnetic oscillation. Usu-
ally, to keep a steady linear oscillation, a periodic stimulation
is required. Under an increasing antidamping spin torque,
which causes the amplitude of linear oscillation to grow expo-
nentially, a self-oscillation emerges beyond the instability of
linear modes. AFM self-oscillation is a periodic precession of
magnetization triggered by the nonperiodic spin torques. It is
the exchange field that drives this nonlinear oscillation in the
promise of a balance between the antidamping spin torque and
the intrinsic magnetic damping. For self-oscillation, the large
amplitude owing to the large cone angle of precession leads to
the large power. Therefore, AFM self-oscillation is not only
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a fundamental issue on the nonlinear magnetic dynamics but
also practically important for THz applications.

At present, the studies on THz self-oscillation of magne-
tization have mostly focused on the collinear AFMs [1–9],
whereas the self-oscillations of noncollinear AFMs are rarely
investigated [10–13]; neither has the effect of magnetic iner-
tia been involved. There are a kind of tripartite noncollinear
AFMs, in which the neighboring spins in a triangular struc-
ture make a 120◦ angle. Such spin structure, existing in
some antiperovskite and hexagonal manganese compounds,
displays large anomalous Hall effects [14], by which different
noncollinear configurations can be distinguished. Specially,
the spin-torque-driven switching [15–18] and oscillation of
the AFM order may induce changing of the anomalous
Hall conductivity, and thus be detected by this effect. For
these noncollinear AFMs, besides brief mentions of the mag-
netization oscillation in Refs. [15,18], the thresholds and
frequencies of oscillation have been explored analytically
[10]. Furthermore, Lund et al. [12] proved that a gapless
self-oscillation can be achieved through changing the chiral-
ity of ground state by the Dzyaloshinskii-Moriya interaction
(DMI). Hu et al. [13] emphasized the key role of magnetic
anisotropy in the emerging of oscillating states. A detection
scheme [11] was also proposed to extract the THz oscillations
as time-varying voltage signals.

Although the few works above [10–13] demonstrate some
fascinating properties of the self-oscillations in noncollinear
AFMs, a major question is that there exists an upper limit
of the frequency, restricting the available frequency range.
To settle this matter, one can resort to the magnetic in-
ertia [19], which may help in preserving the large-angle
precession once it has begun. In the Landau-Lifshitz-Gilbert
(LLG) phenomenology, the magnetic inertia is introduced
as a higher-order term in the dynamic equation. The
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FIG. 1. A schematic of the heterostructure: A trisublattice AFM
film is adjacent to a heavy metal layer. je and js are the electric and
spin currents. ep denotes the spin polarization.

inertial LLG equation can be derived from various theories or
models, such as the classical mechanics [20–22], the nonequi-
librium thermodynamics [23], the breathing Fermi surface
model [24,25], the Dirac theory [26,27], the retardation ef-
fect [28], first principles [29], the Langevin equation [30],
and the nonequilibrium Green’s function [31]. Except these
efforts on the mechanism of magnetic inertia, a few experi-
ments [32–34] evidence the spin nutation, which is a typical
inertial effect. Moreover, intensive theoretical research has
been spurred on different inertial effects, such as the nutation
resonances in FMs [35–42] and AFMs [43–45], the nutational
auto-oscillation in FMs [46], the inertial spin waves [47–52],
and the nutational switching [53–56].

In this work, the inertial self-oscillations triggered by a
damping-like spin-orbit torque (SOT) will be investigated in
the tripartite noncollinear AFMs with a 120◦ spin order, to
describe which a minimal model is employed in the formalism
of three interacting macrospins [57–61].

The paper is structured as follows. The model and method
are introduced in Sec. II, supplemented with Appendix A.
In Sec. III, the phase boundaries of self-oscillation are de-
fined by the linear stability analysis and the energy-averaging
technique, supplemented with Appendixes B, C, and D. The
influence of inertia is also explored in term of the frequency
and amplitude of self-oscillation. In Sec. IV, the role of DMI
on the lower threshold is discussed. Finally, some discussions
and summaries are presented in Secs. V and VI.

II. MODEL AND METHOD

The considered model is the tripartite AFM film with a
120◦ spin order adjacent to a current-driven heavy metal (HM)
layer, as shown in Fig. 1. The AFM dynamics is modeled
by three exchange-coupled inertial Landau-Lifshitz-Gilbert
(LLG) equations including the SOTs [62],

dmi

dt
= mi × dE

dmi
+ αmi × dmi

dt
+ ηmi × d2mi

dt2
+ τ i, (1)

where mi is the unit vector of magnetization in three sub-
lattices marked by i = 1, 2, 3. α is the Gilbert constant of
damping. η is the inertial relaxation time ranging from fs to ps,
as predicted in the ab initio calculation [63] and the nutation
experiments [32–34].

Here, the inhomogeneous exchange contribution is ig-
nored. So, one can focus on the coherent magnetic dynamics
within the framework of a macrospin model, which is a rea-
sonably good approximation for a small-size sample. Then,
including the exchange interaction, the magnetocrystalline
anisotropy, and the DMI, the magnetic energy reads [57–61],

E = ωE

∑
〈i j〉

mi · m j − ωA

∑
i

(
mi · ei

A

)2

+ ωD

∑
〈i j〉

eD · (mi × m j ), (2)

where the symbol 〈i j〉 indicates the sum over the pairs (i, j) =
(1, 2), (2, 3), and (3, 1). eD is the unit DM vector, assumed to
lie normal to the film plane. ei

A represents the unit vector along
the easy axis of the ith sublattice, and is written as

ei
A = cos

[
(i − 1)

2π

3

]
ex + sin

[
(i − 1)

2π

3

]
ey. (3)

All the terms in Eq. (2) have been rescaled to have the dimen-
sion of frequency. ωE = γ0HE , ωD = γ0HD, and ωA = γ0HA,
with HE , HD, and HA being the effective fields due to the in-
tersublattice exchange coupling, the DMI, and the anisotropy.
γ0 = gμ0μB/h̄ is the gyromagnetic ratio with g being the
Landé g factor, μ0 the vacuum susceptibility, μB the Bohr
magneton, and h̄ the reduced Plank constant.

In Eq. (2), the magnetic energy is defined on the one-layer
lattice. In fact, the anisotropy might depend on the crystal
plane. For example, in Mn3Sn [60,61], the triangular spin
structures form an ABAB stacking sequence. The directions
of easy axes in the adjacent triangular structures are different.
So, the complete magnetic energy should involve two triangu-
lar spin structures. However, in the SOT scheme considered
(see Fig. 1), the spin polarization is perpendicular to the easy
axes of both triangular structures which are parallel, resulting
in similar dynamics driven by the SOT. Thus, this single-layer
formalism, adopted in a large number of literature [57–61],
can decipher the main features of magnetization dynamics.
Furthermore, this minimal model enables an exhaustive an-
alytic investigation.

The last term in Eq. (1) is the SOTs, generated by the spin
transfer between the local magnetic moments and the spin
currents produced in the HM layer. Including the damping-
like and fieldlike terms, the SOTs are expressed as

τi = −ωT mi × (mi × ep) − βωT (mi × ep), (4)

where ep is the spin polarization along the film normal, as
indicated in Fig. 1. β denotes the ratio of the fieldlike SOT to
the damping-like one. In the unit of frequency, the strength of
SOTs reads

ωT = μB

eMsd
ξ je, (5)

with d being the thickness of the AFM layer, e the element
charge, Ms the sublattice saturation magnetization, and je the
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electric current density. ξ is the SOT efficiency which equals
Tintθsh [64,65], with θsh being the spin Hall angle [62], and Tint

the spin transparency [66] of the HM-AFM interface.
First of all, Eq. (1) is solved numerically by the solver

ode45 of Matlab (see Appendix A for details). The arrays
of components of m1, m2, and m3 are obtained at a time se-
quence for varying ωT and η. From these data, the evolutions
of m1, m2, and m3 are plotted directly, and the frequency and
amplitude are also extracted indirectly.

The evolutions of m1, m2, and m3 (see, for examples,
Fig. 5 in Appendix A) show that the AFM ground state
evolves into a steady oscillation around the z axis with θ1 =
θ2 = θ3 and φ2 − φ1 = φ3 − φ2 = 2π/3 for the righthanded
ground state, and −2π/3 for the lefthanded one. Here,
(θi, φi ) are the polar and azimuthal angles, defined by mi =
(sin θi cos φi, sin θi sin φi, cos θi ). Consequently, the magne-
tization dynamics is reduced to the rigid rotation of a spin
frame with a definite precessional angle. Namely, the dy-
namics of self-oscillation is captured by the ansatz θ1 = θ2 =
θ3 = θ , as well as φ1 = φ(t ), φ2 = φ(t ) ± 2π/3, and φ3 =
φ(t ) ± 4π/3. Upon substitution into Eq. (1), and defining
n = (sin θ cos φ, sin θ sin φ, cos θ ), this ansatz results in the
following effective equation of motion:

dn
dt

= n × dEn

dn
+ αn × dn

dt
+ ηn × d2n

dt2
+ τn, (6)

where the reduced magnetic energy reads

En = 1
2 (3ωE −

√
3ωD)(n · ez )2 − ωA(n · ex )2, (7)

and the effective SOTs are

τn = −ωT [n × (n × ez ) + βn × ez]. (8)

From Eq. (7), it can be seen that the equivalent system of n is
a ferromagnet-like film with a hard axis normal to the film and
an easy axis along the x direction. The easy-plane anisotropy
arises from the intersublattice exchange and the DMI. The
addition of DMI to the magnetic energy just gives rise to a re-
definition of the exchange parameter (ωE → ωE − √

3/3ωD)
for this single-vector equation. In general, ωE � ωA or ωD.
So, this easy-plane anisotropy is much stronger than the easy-
axis one.

Based on this reduced dynamic system governed by
Eqs. (6)–(8), the phase boundaries of self-oscillation will be
built by the stability analysis of equilibrium states and the
averaging technique for the oscillation in the next section. For
simplicity, the following discussions are limited to the case
neglecting the field-like SOT.

III. PHASE DIAGRAM AND SELF-OSCILLATION

The phase boundaries of self-oscillation can be prelimi-
narily defined by the stability analysis of equilibrium states.
In the regions without stable equilibria, the self-oscillation
happens possibly. This can be checked by solving Eq. (1)
numerically. In addition, the thresholds of self-oscillation can
be obtained by a method averaging the energy over preces-
sional orbits, which has successfully been applied on the
spin-torque-triggered self-oscillation in FM [67–70] and AFM
[7,8,10]. Combining these analytic methods and the numeric

calculations, a phase diagram will be constructed in the pa-
rameter plane spanned by the SOT strength ωT and the inertial
relaxation time η. Given the similar results for positive and
negative ωT , the discussions are restricted to positive ωT here-
after.

A. Boundary between ferromagnetic state and self-oscillation

As demonstrated in a previous work [10], the FM states
mi = ±ez (i.e., n = ±ez) are equilibria under a strong SOT.
Here, for definition, mi = ez is chosen, which may maintain
for positive ωT , as derived in Appendix B 2. Using linear
stability analysis, it can be derived that (see Appendixes B 1
and B 2 for details of the derivation), in the experimentally
reachable parameter regime, the stability conditions of FM
state are η < η− and ω−

T < ωT < ω+
T , where

η− = (1 + α2)
3ω′

E + ωA

2ω2
A

⎡⎣1−
√

1− 1

1 + α2

(
ωA

3ω′
E + ωA

)2
⎤⎦,

(9)

and

ω±
T = α

2η

⎡⎣1 ±
√

1 − 4η

(
3ω′

E + ωA − ηω2
A

1 + α2

)⎤⎦, (10)

with ω′
E = ωE − √

3/3ωD.

B. Boundary between tilted antiferromagnetic
state and self-oscillation

In the ground state without SOT, m1, m2, and m3 prefer
to lie up along each easy axis, forming two degenerate 120◦
configuration (see the panel denoted by AFM in Fig. 2). The
SOT tilts m1, m2, and m3 away from each easy axis, but
remains in the 120◦ configuration, as schematically shown in
the panel denoted by tilted AFM in Fig. 2. As demonstrated in
Appendix C 1, these two tilted AFM states are formulated as

mi = cos (φ0 − �i )ex + sin (φ0 − �i )ey, (11)

where �i = (i − 1)3π/2, and the tilted angle reads

φ0 = −1

2
arcsin

ωT

ωA
or π − 1

2
arcsin

ωT

ωA
. (12)

From Eq. (12), one can see that these solutions exist stably
when |ωT | < ωA (see details in Appendix C 2). However, the
evolutions of m1, m2, and m3 indicate that the tilted AFM
state becomes unstable not at ωT = ωA. As shown in Figs. 5(a)
and 5(b), the instability occurs at ωT = 0.210 THz, which
is obviously less than ωA (0.258 THz). This means that the
linear stability analysis is incapable of defining the instability
of tilted AFM states.

To solve this question, it is convenient to resort to the av-
eraging technique [67–69], by which, one can derive analytic
expressions for the current that generates and sustains self-
oscillations through averaging the energy over precessional
orbits under the assumption of the weak damping and SOT.
Additionally, this method can be utilized to calculate the lower
threshold of self-oscillation [8,10,70]. By this method, the
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FIG. 2. Phase diagram in the parameter plane controlled by the SOT strength ωT and the inertial relaxation time η. The boundaries are
plotted according to Eqs. (10) and (13). The parameters used are α = 0.01, ωE = 34.9 THz, and ωA = 0.258 THz, derived from the magnetic
parameters of Mn3Sn described in Ref. [60]. The DMI strength is taken as ωD = 0.059 THz, smaller than ωA/(2

√
3). These parameters are

adopted for all figures throughout this paper unless specified otherwise. The markings of a, b, c, d, e, and f are picked up to see the evolutions
of m1, m2, and m3 in Fig. 5 of Appendix A. Four states are depicted schematically in the right, where e1

A, e2
A, and e3

A denote the easy axes of
three sublattices.

lower threshold of self-oscillation is derived in Appendix D,
which reads

ωl
T = 2

π

√
3ω′

E + 2ωA

3ω′
E

(ωA +
√

6α

√
ωAω′

E ). (13)

In the calculation of Eq. (13), the inertial term is ignored,
which brings about the nutation on top of the precession.
Although some closed-form analytic solutions have been de-
rived for nutation of magnetization [40], it is particularly
challenging to accomplish the curvilinear integral in Eq. (D3).
Nevertheless, the inertial term is proportional to the square
of frequency, and is relatively small at the lower threshold
of self-oscillation due to the lower frequency. Therefore, a
significant albeit approximate analytic formula [Eq. (13)] is
achieved. Moreover, it can be found that Eq. (13) agrees well
with the numeric results for small η [see the dotted line in
Fig. 2 and the insets in Figs. 3(a) and 3(b)], and is slightly

larger than the numeric values for larger η, as indicated in the
insets of Figs. 3(c) and 3(d).

C. Influence of inertia

To corroborate above analytic results and illustrate the
influence of inertia, Eqs. (10) and (13) are plotted in Fig. 2,
in which the tilted AFM state, the self-oscillation, and the
FM state can be discerned in the η-ωT control plane. The
numeric results are also shown for the phase boundaries, ver-
ifying the analytic predictions with good agreement. To test
the behaviors of the three phases, several sets of parameters
are picked up near the phase boundaries, as marked by the
crosses in Fig. 2. The corresponding evolutions of m1, m2,
and m3 are plotted in Fig. 5 of Appendix A. These exemplary
plots confirm the division of phase regions.

Inspection of Fig. 2 reveals that there exist three distinct
dynamic regimes with varying η. In the absence of iner-
tia (η = 0), the tilted AFM state becomes unstable with ωT
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FIG. 3. The (a), (c) frequencies and (b), (d) amplitudes of self-oscillations as functions of the SOT strength ωT for different inertial
relaxation time η. The upper panels (a) and (b) correspond to the case η < η−, and the lower panels (c) and (d) correspond to η > η−. The
insets show the magnified views around the lower threshold ωl

T of self-oscillation. In the insets of (a) and (b), ωl
T agrees well with the numeric

results. In the insets of (c) and (d), ωl
T is slightly larger than the numeric values. Markers are numeric results and lines are analytic expressions.

beyond ωl
T . When ωl

T < ωT < ω−
T , the system enters the self-

oscillation state (see the panel denoted by self-oscillation in
Fig. 2). When ωT > ω−

T , the FM state (see the panel denoted
by FM in Fig. 2) always exists. Note that ω+

T approaches infin-
ity when η = 0. Here, the upper threshold of self-oscillations
limits a useful frequency range. This case is a recurrence of the
result in Ref. [10]. For weak inertia (0 < η < η−), the tilted
AFM state, the self-oscillation, and the FM state emerge in
turn with increasing ωT , similar to the case η = 0. However,
the self-oscillation revives after ωT > ω+

T . It is noteworthy
that the region of FM state shrinks with η increasing and dis-
appears at η = η−. When η > η−, the self-oscillation always
exists after the instability of tilted AFM state (ωT > ωl

T ).
These arguments indicate that the inertia expands the range

of self-oscillation. Especially, there is no upper threshold of
ωT for slightly large η, in sharp contrast with the case without
the magnetic inertia.

It should be noted that a small inertial relaxation time
(η− ≈ 2.4 fs) dramatically changes the dynamic feature of
AFMs driven by the SOT. This is not surprising if consid-
ering the ultrafast dynamics of AFM and the dependance of
the magnetic inertia on the frequency. The inertial term in
Eq. (1) involves the second-order derivative of mi. So, the
inertial torque (∝ηω2) strongly depends on the characteristic
frequency of the magnetic dynamics. Given the very high
frequencies of antiferromagnetic precession, it can be justified
that the inertial effect in AFMs is remarkable even for small
η. Recently, several theoretic works [43,45] also reported that
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the magnetic inertia with such small η (≈1 fs) results in the
nutation resonance.

D. Frequency and amplitude

Figure 3 shows the dependencies of the frequency and
amplitude on ωT . The amplitude is represented by the in-plane
component of mi, i.e., (1 − m2

iz )1/2, which is almost identical
for the three sublattices and positively associated with the
precessional angle.

Below ωl
T , the frequency displayed in the insets of

Figs. 3(a) and 3(c) belongs to the nutational oscillation on top
of the tilted AFM state. In the leading order, the frequencies
are analytically written as (see details in Appendix C 3)

f ±
AFM =

√
1 + ηω̃E ±

√
(1 + ηω̃E )2 − 8η2ω̃Aω̃E

2
√

2πη
, (14)

where ω̃E = 3ω′
E + ωA + 3ω̃A, with ω̃A = (ω2

A − ω2
T )1/2. For

η = 0, f +
AFM is infinity and the nutation no longer exists.

Meanwhile, f −
AFM becomes [2ω̃A(3ω′

E + ωA + ω̃A)]1/2, which
is just the precessional resonance frequency without inertia.
The amplitude of linear mode is small and not shown here.
The numeric calculations [the insets of Figs. 3(b) and 3(d)]
exhibit the value of (1 − m2

iz )1/2 ≈ 1 for tilted AFM states.
In this region (ωT < ωl

T ), the results are qualitatively iden-
tical for varying η. However, for ωT > ωl

T the scenarios are
different for η < η− and η > η−, which must be considered
separately.

First, for η < η−, the self-oscillation breaks off with ωT

between ω−
T and ω+

T , and the FM state arises instead, as
illustrated in Figs. 2, 3(a), and 3(b). So, in this interval, the
plotted frequencies belong to the linear modes around FM
states, which reads (see details in Appendix B 3),

f ±
FM =

√
1 − 2ηωA − 6ηω′

E ±
√

(1 − 2ηωA)2 − 12ηω′
E

2
√

2πη
.

(15)

In the limit of η → 0, f +
FM approaches infinity, meaning the

inertial mode dies away. At the same time, f −
FM approaches

[3ω′
E (2ωA + 3ω′

E )]1/2, which is just the precessional reso-
nance frequency without inertia. In Fig. 3(a), one can observe
that a good agreement between the numerical simulation and
the analytic formulaes is obtained for the frequencies of linear
modes. When increasing ωT , at ωT = α/(2η) [also marked by
the circles in Figs. 6(a)–6(c)], there exists a jump from f −

FM to
f +
FM according to the numeric results. The reason maybe lies

in that the attenuation of precession is slower than nutation
for ωT < α/(2η) but faster for ωT > α/(2η), as shown in
Figs. 6(a)–6(c). To promote the accuracy of numeric calcula-
tion, it needs a steady oscillation after a long-time evolution.
So, the data of slow-decay oscillation are adopted to calculate
the frequency. This leads to the jump of dispersion in virtue of
inversely changing of χ (attenuation factor) for precessional
and nutational modes [see Figs. 6(a)–6(c)].

In the self-oscillation regions (ωl
T < ωT < ω−

T and ωT >

ω+
T ), the frequency increases with ωT almost linearly ac-

cording to a universal leading-order formula for AFM

self-oscillations,

f = 1

2π

ωT

α
. (16)

Equation (16) can be derived from the reduced dynamic equa-
tion (6) by omitting ωA. This approximation is reasonable
because ωE � ωA. Equation (16) well reproduces the values
of frequencies estimated from the numerical simulation, as
shown in Fig. 3(a). In fact, different forms of Eq. (16) have
been obtained by various methods for bipartite [1,3–7,9,10]
and noncollinear AFMs [11–13].

As displayed in Fig. 3(b), in the interval ωl
T < ωT < ω−

T ,
the amplitude decreases with ωT , and so does the precessional
angle. At ω−

T , the precessional angle vanishes and the self-
oscillation ceases. All mi keep along the z direction until
ωT > ω+

T . In this interval (ω−
T < ωT < ω+

T ), the system is in
the FM state. The in-plane component of mi is zero. Here, the
amplitude of linear mode is too small to be shown. Beyond
ω+

T , the precessional cone reopens with an increasing cone
angle. The amplitude increases quickly and nearly saturates
to the maximum for large ωT . In this case, mi rotates almost
in the x-y plane.

Second, for η > η−, the FM state no longer appears, as
illustrated in Figs. 2, 3(c), and 3(d). With ωT beyond ωl

T , the
self-oscillation always exists, with its frequency continuously
increasing with ωT as Eq. (16). After a quick decrease, the
amplitude increases gradually, then approaches a saturation
for larger ωT .

Finally, the influence of inertia on the frequency and am-
plitude is briefly discussed. Comparing the f -ωT relations
for different η shown in Figs. 3(a) and 3(c), it can be found
that, although the inertia cannot affect the dependence of the
frequency on the SOT strength, it expand the range of self-
oscillation greatly. In theory, the frequency increases with the
current without an upper limit, facilitating a wide-range linear
control of the THz oscillator. With η increasing, the range of
FM state is shrunk and disappears when η > η−. Additionally,
Figs. 3(b) and 3(d) reveal that, for larger η, the amplitude
increases more easily with ωT increasing, suggesting that the
inertia favors an in-plane precession.

IV. EFFECT OF DZYALOSHINSKII-MORIYA
INTERACTION

The DMI considerably affects the static configuration
in the absence of SOT. In the magnetic energy [Eq. (2)],
the anisotropy and DMI energies are overwhelmed by the
exchange energy, which results in an in-plane 120◦ con-
figuration, achieving a minimal exchange energy −3ωE/2.
Specifically, m1, m2, and m3 lie in the x-y plane and are at
an angle of 120◦ with respect to each other. Only consider-
ing the exchange energy, there are two kinds of degenerate
configurations: m1, m2, and m3 rotate in the righthanded or
lefthanded direction. Namely, φ2 − φ1 = φ3 − φ2 = ±120◦,
with φi being the angle between mi and the positive x
direction. Including the anisotropy energy, the degeneracy
is lifted. For the righthanded configuration with a lowest
energy −3ωA, mi is aligned along the easy axis ei

A, i.e.,
(φ1, φ2, φ3) = (0, 120◦, 240◦) or (180◦, 300◦, 60◦), with the
angle taking the remainder divided by 360. For the lefthanded
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configuration, the anisotropy energy is −3ωA/2 for arbitrary
rotation of the 120◦ structure. By the principle of minimal
energy, the righthanded configuration with mi along each easy
axis is the ground state when involving the exchange and
anisotropy. If taking the DMI into account, the case becomes
more interesting. The DMI energy is (3

√
3/2)ωD for any

righthanded configurations, and −(3
√

3/2)ωD for lefthanded
ones. From above analysis, the total energy of righthanded
configuration is

ER = − 3
2ωE − 3ωA + 3

2

√
3ωD, (17)

while, the energy of lefthanded configuration is

EL = − 3
2ωE − 3

2ωA − 3
2

√
3ωD. (18)

Comparing ER with EL, it can be inferred that the double-
degenerate righthanded configuration is preferred energeti-
cally for ωD < ωA/(2

√
3). On the other hand, the infinitely

degenerate lefthanded configuration [71] is favored for ωD >

ωA/(2
√

3).
In the effective theory described by Eqs. (6)–(8), the

DMI just redefines the exchange energy. In view of ωE �
ωD, the DMI plays a minimal role for the properties of
self-oscillations. However, the DMI determines the static con-
figuration without a SOT, influencing the lower threshold
of self-oscillations. Above discussions focus on the region
ωD < ωA/(2

√
3), in which m1, m2, and m3 possess definite

directions statically. When applying the current, to pull mi

from a definite direction to a precession, the SOT must over-
come a barrier, resulting in a finite lower threshold [Eq. (13)].
In contrast, if ωD > ωA/(2

√
3), the static configuration is

infinitely degenerate, so that the 120◦ lefthanded structure
rotates freely in the x-y plane in spite of the anisotropy of
each sublattice. Therefore, a tiny current can trigger a self-
oscillation, meaning a zero lower threshold. This result can be
verified by checking the evolutions of mi. In Ref. [12], this
static configuration is referred to as the gapless phase. Here, a
more detailed illustration is given from the standpoint of the
static energetics and degeneracy.

V. DISCUSSION

First, to provide an intuitive picture of the self-oscillation,
several dominating torques are schematically depicted on a
unit magnetic sphere, as shown in Fig. 4. Generally, the mag-
netic inertia prompts fast nutational oscillations superimposed
on the relatively slow precession. A lot of studies have been
performed for the nutation in the linear regime [35–45]. In the
nonlinear regime, the sum of two exchange torques exerted
on mi propels a lefthanded rotation, for which the damping
torque drags mi tilting away from the precessional axis. For a
steady large-angle precession, the damping torque is canceled
by the damping-like SOT. In a previous work [9] on a uniaxial
collinear AFM, the purely time harmonic self-oscillation is
produced in virtue of the rotation symmetry of the magnetic
structure and the SOT scheme. This results in that the inertial
torque is along the tangential direction of the orbit traced
by the tip of mi. So, it only propels the precession and no
nutation occurs. Here, due to the small in-plane anisotropy,
the precessional orbit slightly deviates from the circle
around the spin polarization. Thus, the inertial torque deviates

inertial torque

dampinglike SOT

damping torque

exchange torque 1

exchange torque 2

total exchange torques

FIG. 4. Schematic view of the main torques born by m1. The
same features persist for m2 and m3. The parameters chosen in the
plot do not exactly represent a real system, just for demonstration
purposes.

from the tangential of orbit, but still lies in the tangent plane
of sphere because it is perpendicular to mi. The tangential
component of the inertial torque impels the precession, just
like the exchange torque. Meanwhile, the perpendicular com-
ponent forces mi nodding up and down, generating a nutation
on top of a large-angle precession, similar to the picture
displayed in Fig. 1 of Ref. [19]. It is the tangential com-
ponent of the inertial torque strengthens the driving torque
of precession, postponing even erasing the upper limit of
self-oscillation.

Second, the fieldlike SOT is not included in above cal-
culations. Like a variable magnetic field, the fieldlike SOT
modifies the precessional orbit and shifts the frequency of
self-oscillation. However, it does not compete with the Gilbert
damping and thus does not trigger a self-oscillation. For the
tilted AFM state, the fieldlike SOT pulls mi up from the film
plane with a small angle owing to the strong exchange cou-
pling. It modifies the thresholds and the frequency by a factor
1 + αβ, analogous to the results taking no account of the
magnetic inertia [10]. In general, αβ � 1, resulting in very
small influences. Therefore, the fieldlike SOT only slightly
affects the calculations quantitatively, but makes the analytic
formulas complex. It is reasonable to ignore the fieldlike SOT
from the qualitative point of view.

Finally, to ease the analytic description, the SOT strength
is scaled into the frequency dimension, defined by Eq. (5).
Then, the corresponding current density can be calculated by
je = 1/(Tintθsh )(eMsd/μB)ωT . It follows that, a thinner AFM
layer and/or a heavy metal with larger spin Hall angle will
scale down the required current density for self-oscillations.
In addition, choosing the materials with lower saturation mag-
netization and improving the interface spin transparency also
favor decreasing the current.

VI. SUMMARY

In this paper, the role of magnetic inertia is explored on the
self-oscillations triggered by the damping-like SOT in the thin
AFM films with a 120◦ spin order. Motivated by the numeric
simulation and enforced by the symmetry-allowed relations
among m1, m2, and m3, the coupled magnetic dynamics of
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three sublattices is mapped onto a single-vector equation with
biaxial anisotropy. The main advantage of this effective the-
ory is its considerable simplicity compared with the three
exchange-coupled LLG equations. Specifically, it allows for a
detailed analytic treatment, which highlights the key physical
features of self-oscillation.

By comparing the self-oscillations with and without a
magnetic inertia in terms of the thresholds, frequencies and
amplitudes, it is shown that the simulation and analytics of
the inertial LLG equation predict a wider frequency window
of self-oscillation than the LLG one. For relatively large in-
ertial relaxation time, the frequency of self-oscillation can
be continuously linearly adjusted by the current beyond the
instability of AFM state, meanwhile, maintaining a large
amplitude. In addition, relatively large DMI also enlarges
the tunable range of self-oscillation by removing the lower
threshold. Combining the favorable tunability endowed by
the magnetic inertia and the unique transport features of
120◦-order tripartite AFMs, these results may open new op-
portunities for the development of THz theory and technique.
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APPENDIX A: EVOLUTIONS OF m1, m2, AND m3

In this Appendix, the evolutions of m1, m2, and m3 are
calculated and visualized for different parameters, which can
not only verify the phase boundary obtained by the analytic
calculations but also justify the effective model presented in
Sec. II. In view of the unit-sphere constraint |mi| = 1, it is
convenient to describe mi by means of spherical coordinates
θi and φi, defined by mi = (sin θi cos φi, sin θi sin φi, cos θi ).
First the vectorial LLG equation (1) is written in terms of
θi and φi by utilizing the time derivatives of mi in spherical
coordinates,

dmi

dt
= dθi

dt
eθ

i + dφi

dt
sin θie

φ
i , (A1)

d2mi

dt2
= −

[(
dθi

dt

)2

+
(

dφi

dt

)2

sin2 θi

]
er

i

+
[

d2θi

dt2
−

(
dφi

dt

)2

sin θi cos θi

]
eθ

i

+
(

d2φi

dt2
sin θi + 2

dθi

dt

dφi

dt
cos θi

)
eφ

i , (A2)

where {er
i , eθ

i , eφ
i } form the local spherical coordinate systems

associated with mi, with er
i aligned with mi and eθ (φ)

i pointing
in the direction of increasing θi (φi). Because of the iner-
tial term, the LLG equation (1) are second-order differential
equation. Then, in terms of the variables θi, φi, dθi/dt (�θ

i ),
and dφi/dt (�φ

i ), Eq. (1) can be further converted into a

system of first-order differential equations as follows:

dθi

dt
= �θ

i , (A3)

dφi

dt
= �

φ
i , (A4)

d�θ
i

dt
= 1

η

{ − α�θ
i + �

φ
i sin θi + η

(
�

φ
i

)2
sin θi cos θi

+ ωE sin θi(cos θ j + cos θk )

− ωE cos θi[sin θ j cos(φi − φ j ) + sin θk cos(φi − φk )]

+ ωD cos θi[sin θ j sin(φi − φ j ) − sin θk sin(φi − φk )]

+ ωA sin 2θi cos2(φi − �i )
}
, (A5)

d�
φ
i

dt
= 1

η sin θi

{ − �θ
i − α�

φ
i sin θi − 2η�θ

i �
φ
i cos θi

+ ωE [sin θ j sin(φi − φ j ) + sin θk sin(φi − φk )]

+ ωD[sin θ j cos(φi − φ j ) − sin θk cos(φi − φk )]

− ωA sin θi sin[2(φi − �i )] − ωT sin θi
}
, (A6)

where �i = (i − 1)3π/2, and {i, j, k} = {1, 2, 3}, {2, 3, 1},
and {3, 1, 2}. By numerically integrating above 12-variable
first-order differential equations, the evolutions of m1, m2,
and m3 are plotted for the tilted AFM state, the FM state, and
the self-oscillations in Fig. 5, corresponding to the parameter
points a, b, c, d , e, and f marked in Fig. 2. In all these plots,
the evolutions start from the ground state without the SOT, i.e.,
θ1, θ2, θ3 = 0, φ1 = 0, φ2 = 2π/3, and φ3 = 4π/3 initially.
Besides, the initial angular velocities are set to zero (�θ

i = 0,
and �

φ
i = 0 initially).

APPENDIX B: STABILITY AND LINEAR OSCILLATION
OF FERROMAGNETIC STATE

1. Secular equation

To analyze the stability of FM states, Eq. (6) is linearized
in the vicinity of two FM equilibria, and assume n = ±ez +
nxex + nyey, with nx and ny being the responses to a small
perturbation. The general solutions for nx and ny are of the
oscillating form (nx, ny) = (δnx, δny )eλt with (δnx, δny) being
the amplitudes. Substituting this ansatz into Eq. (6) and re-
taining only the linear terms with respect to δnx and δny, a
linearized equation is obtained,(

λ ± ωT f (λ)
− f (λ) + 3ωA λ ± ωT

)(
δnx

δny

)
= 0, (B1)

where

f (λ) = ηλ2 + αλ − 3ω′
E , (B2)

with ω′
E = ωE − √

3/3ωD. To ensure a nontrivial solution, the
determinant of the coefficient matrix must be zero. So, one
gets the secular equation

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0, (B3)
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FIG. 5. Evolutions of m1, m2, and m3 for different states. The panels of first and second columns correspond to the tilted AFM state and
the self-oscillation near the phase boundary defined by ωl

T . The third and fourth columns correspond to the self-oscillation and the FM state
near the boundary ω−

T . The fifth and sixth columns correspond to the FM state and the self-oscillation near the boundary ω+
T . The insets show

magnified views of precessions. Six exemplary sets of parameters are picked up, as marked by the points a, b, c, d, e, and f in Fig. 2.

where

a0 = η2, (B4)

a1 = 2αη, (B5)

a2 = 1 + α2 − 2η(3ω′
E + ωA), (B6)

a3 = 2[±ωT − α(3ω′
E + ωA)], (B7)

a4 = ω2
T + 3ω′

E (3ω′
E + 2ωA). (B8)

2. Stability analysis

From the secular equation (B3), one can judge the stability
of FM states without solving it. If the real parts of all λ are
negative, perturbations decay in time, and the equilibrium is
stable. This can be decided by the Routh-Hurwitz criterion
[72–74]. Here, a series of determinants are defined:

�1 = a1, (B9)

�2 =
∣∣∣∣a1 a0

a3 a2

∣∣∣∣, (B10)

�3 =
∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣, (B11)

�4 = a4�3. (B12)

If all � are positive, the real parts of four roots of λ

are negative. Then, the equilibrium state is stable. Inserting
Eqs. (B5)–(B8) into Eqs. (B9)–(B12), the Routh-Hurwitz de-
terminants are explicitly expressed as

�1 = 2αη, (B13)

�2 = 2η2(ωc
T ∓ ωT

)
, (B14)

�3 = 4(1 + α2)η2(ω+
T ∓ ωT )(ωT ∓ ω−

T ), (B15)

�4 = a4�3, (B16)

where

ωc
T = α

η
[1 + α2 − η(3ω′

E + 2ωA)], (B17)

and

ω±
T = α

2η

⎡⎣1 ±
√

1 − 4η

(
3ω′

E + ωA − ηω2
A

1 + α2

)⎤⎦. (B18)

It is evident that �1 > 0 and a4 > 0 for any ωT . Hence, one
just need to judge the signs of �2 and �3. First, the condition
of �2 > 0 is |ωT | < ωc

T . Second, solving 1 − 4η[3ω′
E + ωA −

ηω2
A/(1 + α2)] = 0 yields

η± = (1 + α2)
3ω′

E + ωA

2ω2
A

×
⎡⎣1 ±

√
1 − 1

1 + α2

(
ωA

3ω′
E + ωA

)2
⎤⎦. (B19)

If η− < η < η+, ω±
T are complex conjugate. Thus, �3 < 0

for any ωT , and the FM state is always unstable. On the
other hand, if η < η− or η > η+, �3 > 0 demands ω−

T < |
ωT | < ω+

T .
For typical experimental parameters, ωE ≈ 1013 Hz, ωA ≈

1011 Hz, and α ≈ 0.01, it can be estimated that η+ ≈ 10−9 s,
which is far beyond the range of inertial relaxation time (from
fs to ps). So, only the critical value η− is considered below.
Under the premise of η < η−, it can be proved that ωc

T > ω+
T .

Thus, combining the conditions for �2 > 0 and �3 > 0, the
FM state m1, m2, m3 = ez is stable when η < η− and ω−

T <

ωT < ω+
T , On the other hand, the FM state m1, m2, m3 = −ez

is stable when η < η− and −ω+
T < ωT < −ω−

T .

3. Linear oscillations

To analyze the linear modes, λ = −χ + 2π i f is taken in
the secular equation (B3), with χ being the attenuation factor
and f the oscillating frequency. Even though Eq. (B3) can
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FIG. 6. The attenuation factor and the frequency of linear modes on top of the FM state as a function of the SOT strength ωT . The lines
are obtained by solving Eq. (B3). (a), (d) η = 1 ps. (b), (e) η = 1.5 ps. (c), (f) η = 2 ps.

be solved analytically, the expression is complicated. Then,
after solving it numerically, the dependence of χ and f on
ωT is plotted in Fig. 6 for three η, corresponding to those
in Fig. 3(a). It can be observed that the frequencies of both
precession and nutation are almost independent of ωT . In
contrast, the attenuation factor of precession increases with
ωT , and that of nutation decreases with ωT . Both lines of χ

meet at a point defined by (ωT , χ ) = (α/(2η), α/(2η)). This
can be obtained by assuming a set of roots λ±

1 = −χ ± iω1

and λ±
2 = −χ ± iω2, and equating the like orders of λ be-

tween Eq. (B3) and (λ − λ+
1 )(λ − λ−

1 )(λ − λ+
2 )(λ − λ−

2 ) = 0.
If ωT < ω−

T (ωT > ω+
T ), χ < 0, meaning the divergence of

the precession (nutation) mode. This is in line with the stable
condition of FM states derived in Sec. B 2.

Setting α = 0 and ωT = 0, the analytic solutions of
Eq. (B3) is simple, which are just the eigenfrequencies of
linear modes, i.e., Eq. (15) in the main text. f ±

FM in Eq. (15)
well reproduce the frequency curves in Figs. 6(d), 6(e),
and 6(f).

APPENDIX C: STABILITY AND LINEAR OSCILLATION
OF TILTED ANTIFERROMAGNETIC STATE

1. Secular equation

Besides the FM state, taking dmi/dt = 0 in Eq. (1)
also yields four tilted AFM states, mi = cos(φ0 − �i )ex +
sin(φ0 − �i )ey, where �i = (i − 1)3π/2, and

φ0 = 1

2

[
(P − 1)π + (−1)P arcsin

ωT

ωA

]
, (C1)

with P = 1, 2, 3, 4. These solutions reveal that the SOT ro-
tates the in-plane configuration of mi by an angle φ0. m1, m2,

and m3 still keep the 120◦ structure, leading to a compensation
of exchange torques for each sublattice magnetization. The
tilting from the easy axis allows the balance between the
SOT and the anisotropy torque for every magnetization. In
the effective formalism described by Eqs. (6)–(8), these tilted
AFM states are expressed as n = cos φ0ex + sin φ0ey.

To judge the stability of these equilibria, it is
convenient to adopt the spherical coordinates of n.
Introducing the polar and azimuthal angles (θ, φ) as
n = (sin θ cos φ, sin θ sin φ, cos θ ), Eqs. (6)–(8) are
transformed as

θ̇ + α sin θφ̇ + η(2 cos θ θ̇ φ̇ + sin θφ̈)

= −(ωA sin 2φ + ωT ) sin θ, (C2)

sin θφ̇ − αθ̇ + η(sin θ cos θφ̇2 − θ̈ )

= −(3ω′
E + 2ωA cos2 φ) sin θ cos θ, (C3)

where the overdot indicates the derivative with respect to the
time. Expressed by the spherical coordinates, the tilted AFM
states are described by (θ0, φ0) with θ0 = π/2 and φ0 being
Eq. (C1).

According to the procedure of linear stability analysis, it
can be assumed that θ = θ0 + θ ′ and φ = φ0 + φ′ with θ ′
and φ′ being the responses to a small perturbation and taking
the oscillating form (θ ′, φ′) ∝ eλt . Inserting this ansatz into
Eqs. (C2) and (C3), and keeping the linear terms of θ ′ and
φ′, one can obtain the linearized equations of the oscillating
modes. To ensure a nontrivial solution, λ must obey the secu-
lar equation,

b0λ
4 + b1λ

3 + b2λ
2 + b3λ + b4 = 0, (C4)
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where the coefficients are given as

b0 = η2, (C5)

b1 = 2αη, (C6)

b2 = 1 + α2 + η[3ω′
E + ωA − 3(−1)Pω̃A], (C7)

b3 = α(3ω′
E + ωA − 3(−1)Pω̃A), (C8)

b4 = 2[−(−1)P(3ω′
E + ωA) + ω̃A]ω̃A, (C9)

with ω̃A = (ω2
A − ω2

T )1/2.

2. Stability analysis

By the same procedure as Sec. B 2, the corresponding
Routh-Hurwitz determinants are obtained

�1 = 2αη, (C10)

�2 = 2αη(1 + α2) + αη2[3ω′
E + ωA − 3(−1)Pω̃A], (C11)

�3 = 2α2(1 + α2)η[3ω′
E + ωA − 3(−1)Pω̃A]

+ α2η2[3ω′
E + ωA + (−1)Pω̃A]2, (C12)

�4 = a4�3. (C13)

Definitely, �1 > 0. In view of ωE � ωA, �2 and �3 are
positive for P = 1, 2, 3, 4. From Eq. (C9), it is easy to infer
that a4 > 0 for P = 1, 3, meanwhile a4 < 0 for P = 2, 4.
Furthermore, from Eq. (C13), one has �4 > 0 for P = 1, 3,
and �4 < 0 for P = 2, 4. Therefore, for P = 1, 3, all � are
positive, and the corresponding solutions are stable. It must be
noted that the tilted AFM solutions exist only for |ωT | � ωA,
as observed from Eq. (C1).

3. Frequencies of linear oscillations

Except when used for stability analysis, the secular equa-
tion (C4) can also be directly solved by assuming λ = −χ +
2π i f , with χ being the attenuation factor and f the oscillating
frequency. For a complex quartic equation, the analytic roots
of χ and f are too complicated. However, after neglecting α,
one can get the eigenfrequencies approximately, i.e., Eq. (14)
in the main text. As comparing with numeric results in the
insets of Figs. 3(a) and 3(c), the approximate analytic results
largely capture the feature of dispersion.

APPENDIX D: LOWER THRESHOLD
OF SELF-OSCILLATION

From Sec. C 2, the tilted AFM states exist and are linearly
stable for a weak SOT (ωT � ωA). Nevertheless, this insta-
bility boundary does not agree with the numeric result [see
Figs. 5(a) and 5(b)]. Next, this boundary will be defined by
applying the averaging technique on the self-oscillation near
its lower threshold.

The analytic calculations are carried out by use of the
reduced equation [Eq. (6)], which represents the magnetic
dynamics of the three sublattices and is analytically tractable.
In view of the energetics of n, three kinds of fixed points

FIG. 7. Trajectory (solid curves) of n near the lower threshold of
self-oscillation with ωT = 0.21 THz, corresponding to the evolutions
of m1, m2, and m3 in Fig. 5(b). The dashed curves are the separatrices
corresponding to En = Esaddle.

are defined: two minima with n = ±ex and Emin = −ωA, two
maxima with n = ±ez and Emax = 3/2ω′

E , as well as two sad-
dles with n = ±ey and Esaddle = 0. As argued in Refs. [7,8,10],
the equal-energy trajectories are classified into two kinds: the
low-energy trajectories signified by Emin < En < Esaddle, and
the high-energy ones Esaddle < En < Emax. In addition, there
exist two separatrices (dashed curves in Figs. 7) at En =
Esaddle, dividing the low-energy and high-energy regions on
the spherical surface [8,10]. These two separatrices connect
the two saddles. By inserting En = Esaddle = 0 into Eq. (7),
and combining with the constraint n2

x + n2
y + n2

z = 1, the sep-
aratrices are parametrized as

nx =
√

3ωE

3ωE + 2ωA
cos ξ, (D1)

ny = sin ξ, (D2)

with ξ changing from 0 to 2π .
Considering the balance between the damping-like SOT

and the damping torque, it is possible to sustain a stable
self-oscillation only on the high-energy trajectories, which
are around ±ez, not ±ex. Therefore, there exists an energy
barrier (Esaddle − Emin = ωA) between the initial state (n = ex

or −ex) and the self-oscillation trajectory with the lowest
energy. When n evolves from the initial direction (exemplified
by the point F in Fig. 7) to the self-oscillation near the saddle
(the point S), the SOT not only counteracts the damping but
also pushes n across the barrier. This results in a work-energy
relation

ωT

∫ S

F
(n × ez ) · dn = α

∫ S

F

(
n × dEn

dn

)
· dn + ωA. (D3)

Given that there is no analytic formula to describe the trajec-
tory from F to S, the integrals above cannot be performed
analytically. Nevertheless, due to the strong exchange (ωE �
ωA), it can be inferred from Eqs. (D1) and (D2) that the
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separatrices are very close to the evolution trajectory from
F to S (see the dashed lines in Fig. 7). Namely, the points
F± (intersections between the separatrices and the z-x plane)
are near F . Therefore, the integrals in Eq. (D3) can be well
approximated by those along the trajectory from F+ (or F−) to

S. Utilizing Eqs. (D1) and (D2), as well as nz = (n2
x + n2

y )1/2,
the variable of integration becomes ξ varying from 0 to π/2.
Performing the integrals, and retaining the first-order terms
with respect to α and ωT , one arrives at Eq. (13) in the main
text from Eq. (D3).
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