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Simulating chiral spin liquids with fermionic projected entangled pair states
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Chiral spin liquids (CSL) based on spin-1/2 fermionic projected entangled pair states (fPEPS) are considered
on the square lattice. First, fPEPS approximants of Gutzwiller-projected Chern insulators (GPCI) are investigated
by variational Monte Carlo (VMC) techniques on finite-size tori. We show that such fPEPS of finite bond
dimension can correctly capture the topological properties of the chiral spin liquid, as the exact GPCI, with
the correct topological ground-state degeneracy on the torus. Further, more general fPEPS are considered and
optimized (on the infinite plane) to describe the CSL phase of a chiral frustrated Heisenberg antiferromagnet.
The chiral modes are computed on the edge of a semi-infinite cylinder (of finite circumference) and shown to
follow the predictions from conformal field theory. In contrast to their bosonic analogs the (optimized) fPEPS
do not suffer from the replication of the chiral edge mode in the odd topological sector.
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I. INTRODUCTION

Commonly, a quantum spin liquid refers to a quantum state
that does not break spontaneously the system symmetries,
neither the space group symmetry nor the global continuous
[e.g., SU(2)] symmetry, if any of those is present in the
Hamiltonian. In particular, spin liquids show absence of mag-
netic ordering down to zero temperature. Chiral spin liquids
(CSLs) are exotic states of matter characterized, in addition
to their spin liquid character, by the breaking of time-reversal
(T ) and parity (P) symmetries [1]. They also exhibit long-
range topological order [2]. They have been encountered in
several quantum spin models with SU(2) [3–10] or higher
SU(N) [11–18] symmetry in the presence of a chiral term
breaking explicitly T and P. In some cases, P and T can
be broken spontaneously, as demonstrated in both Hubbard-
/Heisenberg-like models [19–26] and Kitaev models [27]
on lattices with odd plaquettes [28–35]. Parent Hamiltonians
have also been devised for CSLs [36–38].

Experimental efforts to identify compounds with CSL
ground states are ongoing, with prominent attention devoted
to spin-orbit coupled materials with Kitaev-like interaction
under external magnetic fields [39–41]. Additionally, in Moiré
heterostructures, the layer degree of freedom regarded as a
pseudospin facilitates realization of pseudochiral spin liq-
uids [42]. Chiral spin liquids have also been proposed in
cold atom platforms using Floquet driving [43] or Rydberg
arrays [44–47] where the chirality of edge modes can be
detected experimentally. CSLs relevant for Rydberg atom
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models on the honeycomb lattice have recently been classified
via a projective symmetry group approach [48].

As CSLs typically emerge in strongly correlated systems,
numerical tools for determining phase diagrams of generic
Hamiltonians and characterizing CSLs are desired. Tensor
networks such as projected entangled pair states (PEPS) [49]
are well suited to the investigation of spin liquids. Topological
orders can be encoded naturally by imposing virtual gauge
symmetries [50,51]. In addition, chiral forms of PEPS can
describe CSL [52,53] and be used as an efficient variational
scheme to attack frustrated quantum spin models hosting CSL
phases [54,55]. On the other hand, infinite PEPS (iPEPS) is
an ideal tool as it defines states in the thermodynamic limit
directly, avoiding finite-size extrapolations.

Despite the above-mentioned successes and strengths of
the PEPS framework, it has remained challenging to figure out
completely whether conventional bosonic PEPS can truly de-
scribe CSL. In particular, it is still unclear whether topological
obstruction [56,57] affects, in addition to small artifacts in the
long distance real-space correlations (presence of a gossamer
tail [54,58]), global topological properties such as (i) the
topological GS degeneracy or (ii) the correct conformal field
theory (CFT) counting in the entanglement spectrum (ES).
For the nonchiral case, PEPS is believed to be a conceptu-
ally good Ansatz, topological order being encoded by gauge
symmetry [51,59]. In contrast, whether chiral PEPS give the
correct topological degeneracy of the CSL is still unsettled
in general due to expensive computation cost [52], except
in very rare cases where bond dimension is very small [60].
For example, in the case of the SU(2)1 CSL, although one
can insert string (Wilson loop) operators in x and/or y direc-
tions, the resulting states are not linearly independent and the
degeneracy should be only 2, which has not been definitely
proven in chiral (bosonic) PEPS (although results are not
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inconsistent with that claim) [52]. In addition, simple chiral
PEPS revealed a doubling of the chiral edge branch in the odd
topological sector [52,53], which seems to persist in the case
of fully optimized wave functions for Abelian SU(N)1 and
non-Abelian CSLs [11,14,54,55,58,61].

In this paper, based on the recently proposed projected
fermionic PEPS (fPEPS) Ansatz, we show, using VMC tech-
niques, that PEPS can represent CSLs with correct topological
degeneracy. Using this fPEPS Ansatz as initial state, we fur-
ther perform variational optimization to attack a frustrated
J1 − J2 − Jχ square lattice model [62] in the regime of chiral
spin liquid [54,63,64]. The fPEPS approach has competitive
energy compared to the conventional bosonic PEPS, and cru-
cially shows correct ES degeneracy.

The rest of this paper is structured as follows. In Sec. II,
we discuss the numerical techniques employed, including the
construction of the parton Ansatz and the VMC and PEPS
methods. Then, in Sec. III we show results of the VMC analy-
sis of fPEPS states on finite clusters, and in Sec. IV we discuss
the variational optimization of the fPEPS states on the infinite
plane to study the J1 − J2 − Jχ model.

II. NUMERICAL TECHNIQUES

A. Parton ansatze

In order to construct a simple CSL, we first consider a
Chern insulator state with C = 1, obtained by diagonalizing
the following (free electron) Hofstadter Hamiltonian on the
square lattice

H =
∑
〈i j〉,σ

t1χi jc
†
iσ c jσ +

∑
〈〈ik〉〉,σ

t2c†
iσ ckσ eiθik + H.c., (1)

where 〈i j〉 (〈〈ik〉〉) denotes nearest (next-nearest)-neighbor
bonds and σ is the spin index, σ = {↑,↓}. The hoppings are
identical for both spin species. We fix t2 = 0.5t1, χi j = ±1 to
ensure a π flux through every square plaquette and choose the
complex phases θik to obtain a π/2 flux in all triangles. In this
paper we choose the gauge used in Ref. [65] such that the unit
cell can be chosen as two nearest-neighbor sites along the x
direction.

The exact many-body spin wave function |ϕ〉 is a
Gutzwiller projected Slater-determinant

|ϕ〉 = PG

∏
α

c†
α,↑c†

α,↓|0〉, (2)

where the Gutzwiller-projector
∏

i(ni,↑ − ni,↓)2 projects onto
the subspace of exactly one electron per site, and c†

α,σ corre-
spond to single-particle states obtained from the mean-field
Hamiltonian Eq. (1). For Gaussian fPEPS, the set of c†

α,σ

orbitals are only represented approximately due to truncation
of finite bond dimension. Details on Gaussian fPEPS will be
provided in Sec. II B.

It is known that the resultant exact parton state is a SU(2)1

CSL, which is equivalent to the ν = 1/2 bosonic Laughlin
state. On a torus, such CSL has twofold topological de-
generacy where the degenerate states can be constructed by
imposing different boundary conditions on the parton wave
functions [66]. On a cylinder, the CSL hosts chiral gap-
less edge states predicted by SU(2)1 Wess-Zumino-Witten

(WZW) CFT. In the rest of our work, we dub this parton state
in (2) the exact CSL, in contrast to its fPEPS approximation
to be discussed below.

B. Construction of Gaussian fPEPS state

To construct the Gaussian fPEPS state, which is an approx-
imation of the exact ground state of Eq. (1), we adopt the
method introduced in Refs. [67,68]. The translation invariant
many-body Ansatz is parametrized by a single Gaussian tensor
with four virtual indices and two physical indices correspond-
ing to the unit cell in the Hofstadter model. In the Gaussian
tensor, the virtual space dimension is defined by the number of
virtual modes M. Each virtual fermion mode can be occupied
or unoccupied, thus the bond dimension becomes D = 2M for
a spinless state and D = 4M for spinful SU(2) state. To obtain
the best approximation of the Gaussian fPEPS tensor, we use
gradient optimization and choose the (free electron) energy of
Eq. (1) at half-filling as cost function.

As the unprojected fPEPS state is Gaussian, it can be also
written as a Slater determinant (product state) on any finite
torus and all the physical properties can be extracted exactly.
In Ref. [65] it has been shown that the unprojected fPEPS
becomes chiral from M � 2, and the correlation functions
improve quantitatively with increasing M. However, gen-
eral topological properties of the fPEPS remain unclear after
Gutzwiller projection, and are not accessible (except for the
ES) by conventional PEPS techniques. Hence we introduce
the following Monte Carlo method to probe the properties of
Gutzwiller projected Gaussian fPEPS.

C. Monte Carlo technique

The Gutzwiller projected fPEPS wave functions discussed
previously are analyzed within a standard Markov chain
Monte Carlo framework [69]. In particular, overlaps between
two projected wave functions |ψ〉 and |φ〉 can be computed
straightforwardly as follows,

〈ψ |φ〉
〈ψ |ψ〉 =

∑
x 〈ψ |x〉 〈x|φ〉

〈ψ |ψ〉 =
∑

x | 〈ψ |x〉 |2 〈x|φ〉
〈x|ψ〉

〈ψ |ψ〉 , (3)

where {|x〉} is chosen to be the Sz basis to enforce the one
fermion per site constraint exactly. In this paper, we remain in
the Sz = 0 sector, with equal number of up and down spins.
Then, by sampling the normalized probability distribution

P(x) = | 〈ψ |x〉|2
〈ψ |ψ〉 (4)

one can estimate the wave-function overlap as

〈ψ |φ〉
〈ψ |ψ〉 ∼ 1

n

n∑
i=1

〈xi|φ〉
〈xi|ψ〉 , (5)

where n is the number of Monte Carlo runs, and {|xi〉} are
the spin configurations sampled in the Markov chain. We note
that the cost of computing overlaps for the projected fPEPS is
independent of bond dimension, as the set of single-particle
orbitals in real space can be obtained analytically for any M.
This enables the calculations in Sec. III, where we quantita-
tively analyze the fPEPS for M = 1 . . . 6.
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D. Variational iPEPS method

In Sec. IV, we perform a variational study of the chi-
ral Heisenberg antiferromagnetic model, taking the projected
fPEPS parton Ansatz as the initial state in our optimization.
First, we construct the Gutzwiller projected tensor for par-
ton Ansatz following Refs. [65,68], where a single tensor of
bond dimension 4M contains two physical sites and satisfies
U(1) × SU(2) symmetry. Second, we choose this tensor as
initial state and variationally optimize the tensor elements
with the U(1) × SU(2) virtual symmetry kept. To optimize
the tensor, we adopt the automatic difference method [70]
and choose the energy of the chiral spin model as the cost
function. The energy is evaluated from the corner transfer ma-
trix renormalization group (CTMRG) [71,72] method, where
the approximate contraction is controlled by the environment
bond dimension χ , and becomes exact in the χ → ∞ limit.

III. CHARACTERIZATIONS OF PROJECTED fPEPS
PARTON ANSATZ: VMC STUDIES

Several VMC algorithms have been developed to study
topological properties of spin liquids, including entangle-
ment entropy, modular matrices, and topological degener-
acy [66,73,74]. In this section, using VMC calculations on
finite tori, we investigate the properties of the fPEPS wave
functions, and compare them to the exact CSL state con-
structed from the parton Ansatz (2). We demonstrate that the
fPEPS at finite bond dimension can capture the correct prop-
erties of the CSL. The Gaussian fPEPS tensor is determined
from optimizing the mean-field Hamiltonian (1) on a 80 × 80
torus. Subsequently, we put the optimized tensor on smaller
L × L clusters to construct the many-body wave functions,
which are input to the Monte Carlo algorithm.

A. Wave function fidelity

We first compute the normalized overlap between the pro-
jected exact CSL and the fPEPS states with periodic boundary
conditions (PBC-PBC), given by

OM = | 〈�exact|�M〉 |√〈�exact|�exact〉 〈�M |�M〉 . (6)

By contracting physical indices of the PEPS, the overlap can
be mapped to a partition function of a two-dimensional classi-
cal statistical model, thus decaying exponentially with system
size. We can then define the fidelity per unit area (free energy)
f = (OM )1/L2

, which should show weak size dependence and
converge to a finite value in the L → ∞ limit. The infidelity
1 − f plotted in Fig. 1 confirms these expectations. In ad-
dition, the diminishing infidelity with increasing M clearly
demonstrates the improving accuracy of the optimized fPEPS
states. We note that similar results have been obtained for the
other three choices of boundary conditions, i.e., PBC-APBC,
APBC-PBC and APBC-APBC.

B. Spin-spin correlations

To further confirm that the projected fPEPS describe the
correct physical properties of the CSL, we compute the real-
space spin-spin correlations for the L = 18 system, shown in

FIG. 1. Infidelity 1 − f plotted in logarithmic scale as a function
of the system size L for fPEPS states with M = 1 . . . 6 and periodic
boundary conditions. The estimated error bars are smaller than the
size of the symbols.

Fig. 2. We observe exponential behavior at short distances
as expected for a gapped state, with a very short correlation
length ξ ≈ 0.57. Further, the fPEPS states (for all values of
M) are essentially indistinguishable from the exact CSL in
terms of the correlations. Note that the saturation of the de-
cay of the long-distance correlations for r > 5 can be simply
attributed to a finite-size effect with periodic boundary condi-
tions when r ∼ L/2. Hence, we cannot definitively establish
the presence of a gossamer tail, an artifact due to the bulk-
boundary correspondence that has been discussed in several
previous works [58,61,65].

C. Topological properties: Ground-state degeneracy

A fundamental characteristic of a topological ordered
phase is a ground-state degeneracy, which depends on
the topology of space [75]. As mentioned previously, the

FIG. 2. Logarithmic plot of the magnitude of spin-spin correla-
tions as a function of distance for the exact CSL and projected fPEPS,
for the L = 18 cluster with periodic boundary conditions. Symbols
are omitted if the obtained value is lesser than one standard deviation
of error. The expected correlations of the exact CSL at r > 5 (in
the thermodynamic limit) are shown as a dotted line, extending the
exponential behavior.
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FIG. 3. Eigenvalues of the overlap matrix as a function of inverse
system size 1/L for the exact and the fPEPS states. Pairs of eigen-
values converge to +2 and 0 in (a) and (b), respectively. The M = 1
data is shown in the inset since it has a much larger deviation than
the other fPEPS states. The estimated error bars are roughly the size
of the symbols.

exact SU(2)1 CSL state (2) has a twofold degeneracy on a
torus: imposing different boundary conditions on the parton
Ansatz before projection yields degenerate states that cannot
be distinguished by local observables (such as spin-spin corre-
lations) after projection. In the thermodynamic limit the four
states only span a two-dimensional linear space [66].

To investigate this property of the fPEPS and exact states
on finite clusters, we compute the 4 × 4 overlap matrix O with
elements

Oα,β =
〈
�

β
M

∣∣�α
M

〉
√〈

�α
M

∣∣�α
M

〉 〈
�

β
M

∣∣�β
M

〉 , (7)

where α and β denote the four choices of boundary condi-
tions on the torus. The rank of this Hermitian matrix (which
denotes the number of linearly independent eigenvectors) is
the number of nonzero eigenvalues. In the thermodynamic
limit, the eigenvalues of the exact state must converge to
{+2,+2, 0, 0} (the trace of the matrix being 4). In Fig. 3, we
plot the eigenvalues for both the projected fPEPS and the exact
states as a function of L. Remarkably, we observe that for
fixed M > 1, the eigenvalues converge to the exact result with
increasing system size (already at L = 18, the deviation is at
most 10−3). In addition, from the analysis of the eigenvectors
of the overlap matrix, we have obtained the following relations

(up to a gauge degree of freedom):

|�PBC-PBC〉 = |�PBC-APBC〉 + |�APBC-PBC〉√
2

,

|�APBC-APBC〉 = |�PBC-APBC〉 − |�APBC-PBC〉√
2

(8)

with a very good accuracy whenever L � 18, consistent with
the fact that the states on the right-hand side and the left-hand
side of the above equations belong to the same IRREPs of
the C4 rotation group on clusters with Lx = Ly (respectively,
even and odd). These results substantiate that fPEPS, even
at finite bond dimensions, can accurately capture the correct
topological degeneracy of CSL states. This is one of the main
results of our work.

IV. SIMULATION OF THE CHIRAL J1 − J2 − Jχ MODEL

From the VMC analysis in the previous section, we have
seen that projected (Gaussian) fPEPS can describe topolog-
ical properties of CSL faithfully. However, for the purpose
of studying frustrated spin models, the conventional parton
Ansatz has limited number of variational parameters such
as hopping coefficients, Jastrow factors, etc. On the con-
trary, PEPS can represent generic interacting states with the
systematic increase of bond dimension. Now we conduct
a variational PEPS study on the chiral J1 − J2 − Jχ model
using projected GfPEPS as the initial Ansatz. The spin-1/2
Hamiltonian is given by

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i,k〉〉

Si · Sk + Jχ

∑
�i jk

(Si × S j ) · Sk .

(9)
This model was initially proposed in Ref. [62], where exact
diagonalization techniques revealed that the ground state had
a very high overlap with the exact Kalmeyer-Laughlin state.
The model exhibits a chiral spin liquid (CSL) phase over a
large region of its phase diagram, and we select a specific set
of parameters also discussed in that work. The Hamiltonian
can be undersdood as an effective Hamiltonian of the Fermi-
Hubbard model through the Schrieffer-Wolff transformation.
Realizing the Fermi-Hubbard model in cold atom experi-
ments remains an active area of research [76–78]. Further, this
model has been investigated in Ref. [54], where the sum of
four triangular Jχ terms inside a plaquette has been equiv-
alently written as a spin cyclic permutation i(Pi jkl − P−1

i jkl )
term. Reference [54] performed a variational study of this
model with bosonic iPEPS, and found a regime of SU(2)1

CSL in the phase diagram. The optimized bosonic iPEPS
provides good variational energy and correct level counting
in the ES predicted by SU(2)1 WZW CFT. However, there
exists a redundant chiral branch in the odd (semion) sec-
tor [54,79], which contradicts both the theoretical prediction
and recent numerical results obtained from DMRG on finite
cylinders [63,64]. We emphasize that such artificial replica-
tion of chiral branches in bosonic iPEPS is quite general
and is also found in the cases of SU(N) and non-Abelian
CSLs [11,14,55,61].

On the other hand, in Ref. [65] it was shown that the
projected fPEPS from parton construction not only has correct
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FIG. 4. Variational energy of optimized bosonic iPEPS (red) and
projected fermionic iPEPS (blue) for the spin model. Blue open circle
shows the energy of the fermionic parton Ansatz at t1 = 1, t2 = 0.5
without variational optimization of tensor elements.

level counting, but also has exact branch numbers in each
topological sector of the ES. However, it is not clear whether
such ES degeneracy of fPEPS is a robust or fine-tuned feature.
From the variational study below we would like to show that
(i) the parton state provides an energetically good initial guess
for variational optimization and (ii) the optimized fPEPS state
(which is beyond projected Gaussian states) still gives the
correct ES counting and number of chiral modes, implying
that our family of fPEPS states is not fine tuned and provides
a faithful description of CSLs.

A. Variational energy

We choose the parameters of the spin model as J1 =
2 cos(0.06π ) cos(0.14π ), J2 = 2 cos(0.06π ) sin(0.14π ),
Jχ = 4 sin(0.06π ), which has been considered in
Refs. [54,58,62] and is known to be deep inside the CSL
phase with the ground-state energy being E ≈ −1. We
import the SU(2) bosonic iPEPS method there and compute
variational energies as a reference. For the bosonic iPEPS,
the tensor has SU(2) symmetry and the unit-cell size is
chosen to be one such that each tensor only has one physical
leg. The results for virtual spaces V = 0 ⊕ 1/2 (D = 3)
and V = 0 ⊕ 0 ⊕ 1/2 (D = 4) are given in Fig. 4. As we
extrapolate to the infinite χ limit the energies are around
−0.99.

In our fPEPS treatment, the initial parton state is still
chosen at the hopping parameter t1 = 2t2, which corresponds
to the largest band gap. Since the smallest bond dimension
M = 1 is nonchiral, we take M = 2 (D = 16) GfPEPS with
Gutzwiller projection and compute the energy with respect
to the spin model. Due to the gauge choice in the parton
construction, the smallest unit-cell size is two sites along x di-
rection. As can be seen in Fig. 4, the unoptimized parton state
already has good energy close to the optimized bosonic iPEPS
at D = 3, 4. After optimizing the fPEPS tensor elements, the
energy further improves to E ≈ −0.995. When comparing the
energies of bosonic and fermionic iPEPS, one should recall

FIG. 5. ES of optimized M = 2 projected fermionic iPEPS (top)
and D = 3 bosonic iPEPS (bottom) for the spin model on cylinders of
finite width 6 and 8, respectively. Left and right columns correspond
to even (integer spin) and odd (half-integer spin) sectors. The red
dashed lines denote the theoretically predicted linear dispersions of
the tower of states, while the blue dashed line denotes the redundant
branch in the odd sector of bosonic iPEPS.

that since our fPEPS has two-sites unit cell in y direction, the
effective bond dimension in y direction is Deff = 4 per site,
while the x direction bond is much larger than that of bosonic
iPEPS. This is consistent with the fact that our fermionic
iPEPS has better energy.

B. Entanglement spectrum

Aside from modular matrices, bulk topology of CSLs can
also be characterized by edge (entanglement) spectrum ac-
cording to bulk-boundary correspondence. To analyze the
level counting of ES, we put our optimized tensor on a
finite width cylinder and compute the ES of such translation-
invariant state. To compute ES, the boundary Hamiltonian
(transfer matrix fixed points) can be constructed exactly by
exact contraction [80] or approximately by grouping CTMRG
environment T tensors [53]. In the case of fermionic iPEPS,
the tensor has U(1) × SU(2) virtual symmetry and the transfer
matrix fixed points are labeled by virtual charge and parity of
virtual spin, while in the case of bosonic iPEPS the tensor
only has SU(2) virtual symmetry and the transfer matrix fixed
points are labeled only by parity of virtual spin. Figures 5(a)–
5(b) show ES of optimized M = 2 fermionic iPEPS computed
from CTMRG with χ = 110. The low-energy spectrum shows
SU(2) multiplets with counting 0, 1, 0 + 1, 0 + 1 + 1, . . . , in
the integer spin sector and 1/2, 1/2, 1/2 + 3/2, . . . , in the
half-integer spin sector, satisfying prediction from SU(2)1

WZW CFT. Note that in both even and odd sectors there is
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only one low-energy chiral branch, which matches with recent
DMRG results on finite cylinders [63,64]. On the contrary,
Figs. 5(c)–5(d) show ES of D = 3 bosonic iPEPS where the
level counting is correct but an anomalous identical branch
appears in the odd sector with a π -momentum shift. We also
confirmed that the redundant branch can not be eliminated
or shifted by increasing the bond dimension of the bosonic
iPEPS. In future works, it would be interesting to see whether
such artifact of bosonic iPEPS can be eliminated by further
imposing virtual U(1) symmetry and/or increasing the unit-
cell size like in the fPEPS case.

V. CONCLUSION AND OUTLOOK

Tensor network methods have been widely applied to study
frustrated spin models hosting possible spin liquid phases.
However, due to a no-go theorem [57], doubts have arisen
regarding their ability to describe chiral spin liquid states.
In this work, we investigated the topological properties of
projected fPEPS Ansatz for a CSL state. By performing a
VMC analysis on the initial parton state, we demonstrated
that fPEPS at finite bond dimension can accurately capture
the topological GS degeneracy of CSLs. This achievement
has been challenging with conventional bosonic PEPS due to
the high computational cost involved [52]. Additionally, our
results show that the fPEPS Ansatz effectively captures the
spin-spin correlation functions of the CSL. Given the high

quality of overlap fidelity, we anticipate that fPEPS will also
accurately reproduce the modular S and T matrices.

Further, non-Gaussian fPEPS Ansätze were optimized vari-
ationally for the J1 − J2 − Jχ Heisenberg model and were
found to have competitive energy compared to their bosonic
counterparts, while retaining the correct level counting of the
entanglement spectrum as opposed to bosonic iPEPS, which
have a duplicate branch in the odd topological (semion) sector.

Our work provides further supporting evidence for us-
ing PEPS methods in describing topologically ordered states.
For example, fPEPS Ansätze can further be used to study
fermionic Hofstadter-Hubbard model [81] where both the
Chern insulating phase and CSLs can be tuned by varying the
strength of Hubbard interaction (e.g., Ref. [42]). In that case,
our Gaussian fPEPS Ansätze with partially projected doublons
are expected to be good initial variational Ansätze at finite
Hubbard interaction.
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