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We propose an approach for investigating the many-body effects on the phonon spectrum in an electron-
phonon coupled system by taking into account the electron self-energy and vertex corrections which respect
the Ward identity representing the conservation of electronic charge. Our approach provides a systematic
diagrammatic expansion of the phonon self-energy �q(ω) in powers of the electron-phonon scattering strength
squared (g2). In this approach the many-body corrections to the phonon spectrum vanish identically for the
q = 0 mode due to an exact cancellation between the contributions arising from electron self-energy and vertex
corrections. This cancellation holds irrespective of the microscopic details of the system such as dimensionality,
adiabaticity, strength of electron-phonon scattering, etc. Our results demonstrate that the contributions of electron
self-energy and vertex corrections are not only comparable but they also tend to cancel each other so that
the phonon spectrum remains nearly unaffected due to many-body effects in the regime of long-wavelength
excitations (q → 0). Our results provide another constraint for the applicability of the Migdal theorem.
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I. INTRODUCTION

The electron-phonon coupling (EPC) in many materials is
believed to give rise to a plethora of exotic quantum phenom-
ena such as superconductivity, charge-density-wave (CDW)
order, polarons, etc. [1]. One of the major issues related to
these materials is to understand the role of many-body effects
arising from the EPC. More specifically, in systems with finite
EPC, while the electron self-energy corrections are taken into
account, the vertex corrections are conventionally ignored ow-
ing to the Migdal theorem [2]. However, formulated originally
for three-dimensional systems the Migdal theorem is based
on the assumption that the effective electron-phonon coupling
(λ) times �/εF is very small, i.e., λ�/εF � 1, where � and
εF represent the characteristic phonon energy and the Fermi
energy, respectively. Therefore, the applicability of the Migdal
theorem depends on several constraints such as the dimension-
ality, adiabaticity (�/εF ), and strength of electron-phonon
coupling etc. [3–16]. For example, based on the phase space
arguments the Migdal theorem is speculated to be violated in
the case of one- and two-dimensional systems [16]. Similarly,
the breakdown of the Migdal theorem has been demonstrated
in the strong-coupling regime [10]. Therefore, it is highly
desirable to formulate an approach which can also properly
address the regimes beyond the applicability of the Migdal
theorem.

Several interesting features have been demonstrated to
appear due to vertex corrections both in normal and
superconducting states of the electron-phonon systems
[4,5,8–10,12–15]. Moreover, the impact of vertex corrections
becomes more pronounced in the low-dimensional systems
[5,8,9,15,16]. For example, the exact one-electron spectra in
the case of a one-dimensional system showing a rich satellite

structure with peak separations could not be reproduced by
the calculations neglecting the vertex corrections even for an
effective bandwidth large compared to the phonon frequency
[15]. Similarly, both the gap size and transition temperature in
the case of the two-dimensional system change significantly
when the vertex corrections are taken into account [5].

Therefore, it is necessary to do a careful analysis of the
contributions of not only the electron self-energy but also the
vertex corrections for a better understanding of the many-body
effects in the electron-phonon systems. Theoretically an im-
portant clue about the role of electron self-energy and vertex
corrections is provided by the Ward identity as a consequence
of the conservation of electronic charge [17–20]. The time
independence of the total charge requires identical vanishing
of the dynamic polarizability Pq(ω) for the q = 0 mode. This
requirement is expressed in terms of a Ward identity which
provides a specific relationship between self-energy and ver-
tex corrections, as discussed below.

In this paper we utilize the Ward identity for formulating
an approach for investigation of the many-body effects on
the phonon spectrum in electron-phonon systems. Our ap-
proach is based on a systematic diagrammatic expansion of
the phonon self-energy in powers of the electron-phonon scat-
tering strength (g2) by taking into account the electron self-
energy and vertex corrections which respect the Ward identity.
We demonstrate that the many body corrections to the phonon
spectrum vanish identically for the q = 0 mode due to an ex-
act cancellation between the contributions arising from elec-
tron self-energy and vertex corrections. This cancellation sug-
gests that the many-body effects become small in the regime
of the long-wavelength excitations (q → 0), where the contri-
butions from electron self-energy and vertex corrections be-
come not only comparable but also tend to cancel each other.
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FIG. 1. Diagrammatic representation of the Dyson equation for
the phonon Green’s function. Here the single (double) wavy lines
represent the bare (exact) phonon Green’s function D0(D) and the
double lines with arrow represent the exact electron Green’s function
G. The shaded rectangular box represents the full electron-phonon
vertex �. Here we use the notations q = (q, ω), k = (k, E ).

II. MODEL

The coupling between electrons in a single band with a
branch of phonons can be described by the Hamiltonian

Ĥ =
∑

k

εk c†
kck +

∑
q

ωqb†
qbq

+
∑
k,q

gq c†
k+qck (b†

−q + bq), (1)

where c†
k (ck) and b†

q (bq) are the creation (annihilation) oper-
ators for the electron and phonon, respectively, and εk and ωq
represent the bare dispersion for the electron and phonon, re-
spectively. Here gq is the electron-phonon scattering strength.
The momentum dependence of the scattering strength can be
considered in terms of a form factor fq such that a vertex
pair can be associated with the factor |gq|2 = g2| fq|2, where
g represents the momentum-independent scattering strength.
This representation for the scattering strength allows us to
treat g2 as an expansion parameter for the Feynman diagram
series expansion [5].

With an aim to study the many-body effects on the phonon
spectrum we consider the Dyson equation for the phonon
Green’s function, as shown diagrammatically in Fig. 1,

Dq(ω) = D0
q(ω) + D0

q(ω)�q(ω)Dq(ω), (2)

where D0
q(ω) represents the bare phonon Green’s function and

�q(ω) represents the phonon self-energy which provides an
estimation of the many-body effects on the phonon spectrum.

III. WARD IDENTITY PRESERVING APPROACH

This approach provides a systematic diagrammatic scheme
for investigation of the many-body effects on the phonon
spectrum by taking into account the electron self-energy and
vertex corrections, as discussed below. In order to study
the renormalized phonon spectrum we consider the phonon
self-energy �q(ω) = |gq|2Pq(ω), where Pq(ω) represents the
irreducible polarizability and can be expressed as

Pq(ω) = −i
∑

k

∫
dE

2π
Gk(E )Gk+q(E + ω)

×�k,k+q(E , E + ω). (3)

Here G represents the exact electron Green’s function and �

represents the full electron-phonon vertex. The exact elec-
tron Green’s function can be expressed using the Dyson
equation G−1

k (E ) = [G0
k(E )]−1 − 
k(E ) = E − εk − 
k(E ),

where G0
k(E ) represents the bare electron Green’s function,

εk represents the bare electronic dispersion, and 
k(E ) rep-
resents the electron self-energy owing to the electron-phonon
interaction. We note that in general two different conventions
are followed in the literature for studying the role of vertex
corrections [21]. On one hand the exact phonon self-energy
involves a product of a bare and a screened electron-phonon
vertex [1], as usually considered in the model-Hamiltonian-
based investigations including the present paper, while on the
other hand, two adiabatically screened vertices are considered
frequently in the first-principles-based approaches [22].

We now utilize the Ward identity [18–20] and demonstrate
that the irreducible polarizability vanishes identically for the
q = 0 mode as follows. The Ward identity representing the
conservation of electronic charge relates the exact electron
self-energy (
) and the full electron-phonon vertex (�) for
the q = 0 mode as

�k,k(E , E + ω) = 1 + 
k(E ) − 
k(E + ω)

ω
. (4)

Using this identity the irreducible dynamical polarizability in
Eq. (3) for the q = 0 mode can be written as

P0(ω) = −i
∑

k

∫
dE

2π
Gk(E )Gk(E + ω)�k,k(E , E + ω)

= −i
∑

k

∫
dE

2π

{
Gk(E ) − Gk(E + ω)

G−1
k (E + ω) − G−1

k (E )

}

×
[

1 + 
k(E ) − 
k(E + ω)

ω

]

= −i
∑

k

∫
dE

2π

{
Gk(E ) − Gk(E + ω)

ω + 
k(E ) − 
k(E + ω)

}

×
[
ω + 
k(E ) − 
k(E + ω)

ω

]

= − i

ω

∑
k

∫
dE

2π
{Gk(E ) − Gk(E + ω)}

= 0, (5)

because
∫ +∞
−∞ dEGk(E ) = ∫ +∞

−∞ dEGk(E + ω), as ω gives
only a constant shift in energy. In the second line of the above
derivation we use the identity AB = AB[(A − B)/(A − B)] =
(A − B)/(B−1 − A−1).

Now we utilize this Ward identity for carrying out a pertur-
bative expansion of phonon self-energy �q(ω) by treating the
electron-phonon scattering strength squared (g2) as an expan-
sion parameter, as discussed below. We expand the electron
self-energy 
 in the Dyson equation for the electron Green’s
function G = G0 + G0
G in powers of g2 as 
 = 
(1) +

(2) + 
(3) + · · · . Similarly, we expand the vertex correc-
tions ��(= � − 1) in powers of g2 as �� = �(1) + �(2) +
�(3) + · · · . Here � = 1 (i.e., �� = 0) represents the bare
vertex corresponding to the case of noninteracting electrons.
Substituting these expanded forms of 
 and � (= 1 + ��) in
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Eq. (3), the irreducible polarizability can also be expanded in
powers of g2 as follows:

Pq(ω) = P(0)
q (ω) + P(1)

q (ω) + P(2)
q (ω) + · · · . (6)

Here the zeroth-order term P(0) represents the bare polariz-
ability corresponding to the case of noninteracting electrons
and the higher-order terms represent the many-body correc-
tions to the polarizability arising due to electron self-energy
and vertex corrections.

Now, as demonstrated above, since the irreducible polariz-
ability vanishes identically for the q = 0 mode for an arbitrary
value of g as a consequence of the Ward identity, each term
P(n)

q (n = 0, 1, 2, . . .) in Eq. (6) must also vanish separately
order-by-order for the q = 0 mode. As demonstrated in the
following, it turns out that this order-by-order vanishing of
the many-body corrections for the q = 0 mode arises due to an
exact cancellation between the contributions from the electron
self-energy and the vertex corrections.

We now utilize the expanded form of the irreducible polar-
izability in Eq. (6) for carrying out a systematic diagrammatic
expansion of the phonon self-energy �q(ω) = |gq|2Pq(ω) in
powers of g2 as follows:

�q(ω) = �(1)
q (ω) + �(2)

q (ω) + �(3)
q (ω) + · · · . (7)

Here �(n)
q (ω) = |gq|2P(n−1)

q (ω) with n = 1, 2, 3, . . .. This ex-
panded form allows us to classify the different diagrammatic
contributions to the phonon self-energy in powers of g2.

As happens in the case of the irreducible polarizability, the
dynamical phonon self-energy also vanishes identically for
the q = 0 mode as a consequence of the Ward identity. Since
the phonon self-energy provides a measure of the impact of
the many-body effects on the phonon spectrum, the vanishing
of the phonon self-energy for q = 0 mode suggests that the
phonon spectrum in the regime of long-wavelength excitations
(q → 0) remains nearly unaffected by the many-body effects.

IV. MANY-BODY CORRECTIONS IN
LONG-WAVELENGTH LIMIT (q → 0)

We now analyze the contributions of the different terms
in Eq. (7) in order to understand the origin of the vanishingly
small many-body effects in the regime of long-wavelength ex-
citations. For simplicity, we consider the phonon self-energy
by focusing only on the contributions of the leading and the
subleading order terms in Eq. (7). As shown diagrammatically
in Fig. 2, the leading-order phonon self-energy �(1) represents
renormalization of the phonon spectrum due to interaction
between bare electrons and phonons which can be expressed
as follows:

�(1)
q (ω) = |gq|2P(0)

q (ω)

= −i|gq|2
∑

k

∫
dE

2π
G0

k(E )G0
k+q(E + ω). (8)

In other words, the leading-order phonon self-energy �(1)

does not incorporate the many-body effects arising due to the
electron self-energy and vertex corrections. These many-body
effects are taken into account by the higher-order terms in the
expansion of the phonon self-energy in Eq. (7). We now con-

FIG. 2. Diagrammatic representation of the leading-order
phonon self-energy �(1)

q (ω) which involves the noninteracting
electrons represented by the bare Green’s function G0, as shown here
by single lines with arrow. Here we use the notations q = (q, ω),
k = (k, E ).

sider the subleading-order phonon self-energy �(2)
q (ω) which

can be expressed as follows:

�(2)
q (ω) = |gq|2P(1)

q (ω)

= �(2a) + �(2b) + �(2c). (9)

Here �(2a) and �(2b) represent the contributions arising due
to the electron self-energy corrections, as shown diagram-
matically in Fig. 3, and �(2c) represents the contribution
arising due to vertex corrections, as shown diagrammatically
in Fig. 4. These contributions can be expressed as follows:

�(2a)
q (ω) = −i|gq|2

∑
k

∫
dE

2π

[
G0

k(E )
]2



(1)
k (E )

× G0
k+q(E + ω), (10)

�(2b)
q (ω) = −i|gq|2

∑
k

∫
dE

2π
G0

k(E )

× [
G0

k+q(E + ω)
]2



(1)
k+q(E + ω)

= �
(2a)
−q (−ω), (11)

�(2c)
q (ω) = −i|gq|2

∑
k

∫
dE

2π
G0

k(E )G0
k+q(E + ω)

×�
(1)
k,k+q(E , E + ω). (12)

FIG. 3. Diagrammatic representations of �(2a)
q (ω) (left) and

�(2b)
q (ω) (right) which denote the leading-order many-body cor-

rections to phonon self-energy arising due to electron self-energy
corrections. Here we use the notations q = (q, ω), k = (k, E ),
Q = (Q,�).
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FIG. 4. Diagrammatic representation of �(2c)
q (ω) which denotes

the leading-order many-body corrections to phonon self-energy aris-
ing due to vertex corrections. Here we use the notations q = (q, ω),
k = (k, E ), Q = (Q,�).

Here 
(1) and �(1) represent the leading-order electron self-
energy and vertex corrections, respectively, which can be

expressed as



(1)
k (E ) = i

∑
Q

|gQ|2
∫

d�

2π
G0

k+Q(E + �)D0
Q(�) (13)

and

�
(1)
k,k+q(E , E + ω) = i

∑
Q

|gQ|2
∫

d�

2π
G0

k+Q(E + �)

× G0
k+Q+q(E + � + ω)D0

Q(�). (14)

In the following we prove that 
(1) and �(1) respect the
Ward identity for the q = 0 mode, viz.,

�
(1)
k,k(E , E + ω) = 


(1)
k (E ) − 


(1)
k (E + ω)

ω
. (15)

In order to prove this we consider the above expressions for 
(1) and �(1) for q = 0 which gives

�
(1)
k,k(E , E + ω) = i

∑
Q

|gQ|2
∫

d�

2π
D0

Q(�)
{
G0

k+Q(E ′)G0
k+Q(E ′ + ω)

}

= i
∑

Q

|gQ|2
∫

d�

2π
D0

Q(�)

⎧⎨
⎩ G0

k+Q(E ′) − G0
k+Q(E ′ + ω)

[G0
k+Q(E ′ + ω)]−1 − [

G0
k+Q(E ′)

]−1

⎫⎬
⎭

= i
∑

Q

|gQ|2
∫

d�

2π
D0

Q(�)

{
G0

k+Q(E ′) − G0
k+Q(E ′ + ω)

ω

}

= 

(1)
k (E ) − 


(1)
k (E + ω)

ω
. (16)

Here we have used the notation E ′ = E + �.
Now, as discussed above, the net dynamic phonon self-energy must vanish identically for the q = 0 mode as a consequence

of the Ward identity. This condition requires that each term in the expansion of the phonon self-energy must vanish separately
order-by-order for the q = 0 mode.

For the leading-order phonon self-energy �(1) it can be demonstrated straightforwardly that �
(1)
q=0(ω) = 0 by substituting

q = 0 in Eq. (8) as follows:

�
(1)
0 (ω) = −i|g0|2

∑
k

∫
dE

2π
G0

k(E )G0
k(E + ω)

= −i|g0|2
∑

k

∫
dE

2π

G0
k(E ) − G0

k(E + ω)[
G0

k(E + ω)
]−1 − [

G0
k(E )

]−1

= −i
|g0|2
ω

∑
k

∫
dE

2π

{
G0

k(E ) − G0
k(E + ω)

}
= 0. (17)

Next, we demonstrate that the subleading-order dynamical phonon self-energy �(2)
q (ω), where many-body corrections are

incorporated by taking into account the leading-order electron self-energy and vertex corrections, also vanishes for the q = 0
mode as follows. Denoting the net contributions due to electron self-energy corrections as �(2ab), we get

�
(2ab)
0 (ω) = �

(2a)
0 (ω) + �

(2b)
0 (ω)

= −i|g0|2
∑

k

∫
dE

2π

{
G0

k(E )G0
k(E + ω)

}{
G0

k(E )
(1)
k (E ) + G0

k(E + ω)
(1)
k (E + ω)

}

= −i|g0|2
∑

k

∫
dE

2π

{
G0

k(E ) − G0
k(E + ω)[

G0
k(E + ω)

]−1 − [
G0

k(E )
]−1

}{
G0

k(E )
(1)
k (E ) + G0

k(E + ω)
(1)
k (E + ω)

}
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= −i|g0|2
∑

k

∫
dE

2π

{
G0

k(E ) − G0
k(E + ω)

ω

}{
G0

k(E )
(1)
k (E ) + G0

k(E + ω)
(1)
k (E + ω)

}

= −i
|g0|2
ω

∑
k

∫
dE

2π

{[
G0

k(E )
]2



(1)
k (E ) − G0

k(E )G0
k(E + ω)
(1)

k (E )

+ G0
k(E )G0

k(E + ω)
(1)
k (E + ω) − [

G0
k(E + ω)

]2



(1)
k (E + ω)

}
. (18)

Here the first term is canceled by the fourth term because∫ +∞
−∞ dE [G0

k(E + ω)]2

(1)
k (E + ω) = ∫ +∞

−∞ dE [G0
k(E )]2


(1)
k

(E ). Therefore, we get

�
(2ab)
0 (ω) = −i|g0|2

∑
k

∫
dE

2π
G0

k(E )G0
k(E + ω)

×
{

−

(1)
k (E ) + 


(1)
k (E + ω)

ω

}

= −i|g0|2
∑

k

∫
dE

2π
G0

k(E )G0
k(E + ω)

× {−�
(1)
k,k(E , E + ω)

}
= −�

(2c)
0 (ω). (19)

Therefore, the net subleading-order dynamic phonon self-
energy �(2)

q (ω) [= �(2a)
q (ω) + �(2b)

q (ω) + �(2c)
q (ω)] vanishes

identically for the q = 0 mode. In other words, the con-
tributions to phonon self-energy arising due to dressing of
electrons is canceled exactly from those arising due to the
vertex corrections for the q = 0 mode. Furthermore, as obvi-
ous from our analysis, the exact cancellation is independent of
the microscopic details of the system such as dimensionality,
electron density, band dispersion, phonon energy, etc.

Here it must be emphasized that while the Ward iden-
tity implies that the irreducible polarizability and hence the
phonon self-energy must vanish for the q = 0 mode, it does
not provide a microscopic understanding of how the net many-
body corrections to the phonon spectrum vanish for the q = 0
mode. In particular, it is not obvious from the Ward identity
whether the net many-body correction for the q = 0 mode
vanishes because the contributions from the electron self-
energy and vertex corrections themselves vanish separately,
or whether it is their net sum which vanishes. The present
work resolves this ambiguity and provides a clear microscopic
understanding of the vanishing of the many-body corrections
for the q = 0 mode by demonstrating explicitly that while the
contributions from both the electron self-energy and vertex
corrections remain finite, the net many-body corrections van-
ish identically due to an exact cancellation between these two
contributions as a consequence of the Ward identity.

From the exact cancellation we can also naively expect a
small many-body correction to the phonon spectrum in the
long-wavelength limit (q → 0). This is because going away
from the q = 0 case to the q → 0 limit we can expect a
continuous evolution of the competing contributions from
the electron self-energy and vertex corrections which will
therefore tend to cancel each other because of their nearly
equal and opposite contributions. Furthermore, like the exact

cancellation for the q = 0 mode we can also expect that the
near cancellation between the contributions of the electron
self-energy and vertex corrections in the long-wavelength
limit will also be independent of the microscopic details of the
system such as dimensionality, electron density, band disper-
sion, phonon energy, etc. Therefore, the many-body correction
to the phonon spectrum will always be small in the long-
wavelength limit irrespective of the microscopic details of the
system.

Our prediction for the small many-body effects in the
long-wavelength regimes is also supported by the quan-
titative results which can be obtained by evaluating the
subleading-order phonon self-energy �(2)

q (ω) by substitut-

ing G0
k(E ) = 1−nk

E−εk+iη + nk
E−εk−iη , where nk = θ (εF − εk ) and

D0
q(ω) = 1

ω−ωq+iη − 1
ω+ωq−iη . The quantitative evaluations are

done by first carrying out the integration over the energy
variables analytically and then summing over the momen-
tum variables numerically in the first Brillouin zone. For
demonstrating the quantitative results we have considered the
simpler case of the one-dimensional Holstein model which
involves a momentum-independent electron-phonon coupling
(gq = g) and dispersionless bare phonon spectrum (ωq = ω0)
while the electronic dispersion is considered within a nearest-
neighbor tight-binding model εk = 2t (1 − cos k), where t
represents the hopping parameter. In order to further simplify
our analysis we consider the case of a single charge carrier,
i.e., nk = δk,0, whose interaction with the surrounding lattice
distortions (phonons) results in formation of the quasiparticle
known as polaron. Here we focus on the dominant O(1/N )
contributions, where N represents the total number of lattice
sites. Figure 5 shows the results for the momentum-dependent
evolution of the contributions of the electron self-energy and
vertex corrections. As expected, while the two contributions
remain finite, they almost cancel each other in the long-
wavelength regimes (q → 0), as can be seen for q = 0.1.
Here these results have been presented only as a represen-
tative for the purpose of quantitative demonstration of the
small many-body effects in the long-wavelength regimes, and
a detailed analysis will be presented elsewhere.

Although here we have demonstrated the exact cancella-
tion of the many-body corrections by focusing only on the
subleading-order phonon self-energy �(2)

q (ω), we emphasize
that this cancellation will also hold order-by-order for all the
higher order terms in the expansion of the phonon self-energy
in Eq. (7). This is because the net phonon self-energy vanishes
identically for the q = 0 mode for an arbitrary value of g
as a consequence of the Ward identity which requires the
identical vanishing of the phonon self-energy for the q = 0
mode order-by-order in the perturbative expansion. Therefore
the many-body corrections to the phonon dispersion arising
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FIG. 5. Momentum (q) dependent evolution of the contribu-
tions from the leading-order electron self-energy (upper, left) and
vertex corrections (upper, right) to the imaginary part of the
phonon self-energy (lower) as shown for four different values of
q (= 0.1, 0.2, 0.3, 0.4). These results have been obtained for the case
of a single charge carrier in the one-dimensional Holstein model
for parameters ω0 = g = t = 1. As can be expected from the exact
cancellation for the q = 0 mode, the continuous evolution of the
competing contributions from the electron self-energy and vertex
corrections results in a near cancellation in the long-wavelength
limit (q → 0), as can be seen for q = 0.1, thereby making the net
many-body correction weak.

due to the electron self-energy must be canceled exactly by
those arising due to the vertex corrections for the q = 0 mode
at each order provided that the Ward identity is respected at
each order, as demonstrated above for the subleading-order
phonon self-energy.

Although our present analysis for the many-body effects is
focused only in the regime of the long-wavelength excitations
where the charge-conserving Ward identity can be utilized to
understand the microscopic origin of small many-body effects
in terms of the competing contributions from the electron
self-energy and vertex correction, we can also apply this ap-
proach to investigate the momentum-dependent evolution of
the two contributions by quantitatively evaluating the different
diagrammatic contributions for an arbitrary q mode, as shown
in Fig. 5. Furthermore, since the net many-body correction to
the phonon spectrum becomes small in the regime of long-
wavelength excitations irrespective of the microscopic details
of the system, it will also be interesting to study effects of
the various parameters of the system such as dimensionality,
adiabaticity, scattering strength, etc., as we go away from the
regime of long-wavelength excitations. For example, as shown
in Fig. 5, in contrast to the the long-wavelength regimes,
the contribution from the electron self-energy increases more
rapidly in comparison to that of the vertex corrections as we

go away from the long-wavelength regimes, as can be seen
for q = 0.4, thereby resulting in a significant net many-body
correction to the phonon spectrum. A detailed analysis of the
evolution of the contributions from electron self-energy and
vertex corrections by taking into account the various features
of the system such as dimensionality, lattice structure, band
filling, phonon energy, etc., is currently under progress and
will be presented elsewhere.

We note that while our analysis of the many-body effects
in the long-wavelength regimes is equally relevant for the
different branches of phonon spectrum, it is of fundamental
importance for the acoustic phonons which possess the char-
acteristic gapless spectrum in the regime of long-wavelength
excitations with the q = 0 mode being massless. Naively, the
massless nature can be expected from the fact that the q = 0
acoustic phonon corresponds to a uniform translation of all
the lattice points in a crystal which does not cost energy
because it leaves the crystal as a whole invariant owing to
the inherent translational symmetry. However, this seemingly
simple picture becomes a highly nontrivial issue when one
investigates the impact of many-body effects on the phonon
spectrum. As evident from our analysis, taking into account
only the contributions of the electron self-energy and ignor-
ing the contribution of vertex corrections will result in a
spurious finite phonon self-energy for the q = 0 mode, as
indeed reported in the literature [23]. Therefore, ignoring the
contributions of the vertex corrections will not only provide
misleading estimation on the impact of the many-body effects
on the phonon spectrum but also destroy the characteristic
gapless spectrum of the acoustic phonon with a fundamentally
incorrect massive q = 0 mode.

Apart from addressing the fundamental issues related to
the many-body effects on the phonon spectrum, our analysis
is also relevant in the context of the crucial role of the long-
wavelength phonons in governing the thermal properties of
the low-dimensional materials. At low temperature the major
contributions arise from the gapless spectrum associated with
the long-wavelength acoustic phonons because the remaining
parts of the phonon spectrum with higher excitation energies
are effectively frozen out. More importantly, in the case of
the one-dimensional systems, where the phonon density of
states N (ω) remains still finite as the phonon energy vanishes
(ω → 0), the long-wavelength acoustic phonons are predicted
to give rise to anomalous thermal conductivity which in-
creases continuously with length of the system [24]. Indeed,
the increase in thermal conductivity with increasing length of
system has been observed for several quasi-one-dimensional
materials such as carbon nanotubes and silicon nanowires
which are also the potential candidates for heat management
and thermoelectric applications [25]. Therefore, our analysis
of the many-body effects in the long-wavelength regime is of
specific relevance for the quasi-one-dimensional materials.

V. CONCLUSIONS

We have proposed an approach for studying the impact
of the many-body effects on the phonon spectrum due to
electron-phonon coupling. This approach is based on a sys-
tematic diagrammatic expansion of the phonon self-energy
which allows to incorporate the many-body corrections in
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terms of the electron self-energy and vertex corrections which
respect the Ward identity representing the conservation of
electronic charge. We have demonstrated that irrespective of
the microscopic details of the system such as dimensionality,
adiabaticity, strength of electron-phonon coupling, etc., the
net many-body corrections to the phonon spectrum vanish
identically for the q = 0 mode due to an exact cancellation
between the contributions arising from electron self-energy
and vertex corrections. Our analysis predicts that the phonon
spectrum remains nearly unaffected by the many-body effects
in the regime of the long-wavelength excitations (q → 0),
where the contributions of electron self-energy and vertex

corrections become not only comparable but they also tend
to cancel each other. Our results provide another constraint
for the applicability of the Migdal theorem; viz., the vertex
corrections cannot be neglected in the regime of the long-
wavelength excitations. A detailed quantitative investigation
based on this approach is currently under progress and will be
presented elsewhere.
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