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Spread complexity and localization in PT -symmetric systems
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We present a framework for investigating wave function spreading in PT -symmetric quantum systems using
spread complexity and spread entropy. We consider a tight-binding chain with complex on-site potentials at the
boundary sites. In the PT -unbroken phase, the wave function is delocalized. We find that in the PT -broken
phase, it becomes localized on one edge of the tight-binding lattice. This localization is a realization of the
non-Hermitian skin effect. Localization in the PT -broken phase is observed both in the lattice chain basis and
the Krylov basis. Spread entropy, entropic complexity, and a further measure that we term the Krylov inverse
participation ratio probe the dynamics of wave function spreading and quantify the strength of localization
probed in the Krylov basis. The number of Krylov basis vectors required to store the information of the state
reduces with the strength of localization. Our results demonstrate how measures in Krylov space can be used to
characterize the non-Hermitian skin effect and its localization phase transition.
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I. INTRODUCTION

The study of complexity [1–6] in quantum systems has
provided new insights into the dynamical behavior of chaotic
systems and the structure of space time in general [7,8]. It
resulted in the development of new tools and techniques in
quantum many-body systems, quantum information theory,
and holographic theories. Complexity was initially defined
to quantify the difficulty of reaching one target state starting
from an initial reference state of a quantum system [1].

Here we use Krylov state complexity [6] to study
PT -symmetric systems. The complexity in the Krylov ba-
sis was first introduced to study the operator growth in the
Heisenberg picture under unitary evolution and distinguish
chaotic theories from integrable ones in Refs. [3,9]. A recent
advancement to this study [6] was to extend the method to
Schrödinger evolution of quantum states and to show that the
choice of Krylov basis minimizes the complexity. This mea-
sure defined in the Schrödinger picture is dubbed as the spread
complexity [6], which quantifies the spread of an initial state
under the evolution of the corresponding system Hamiltonian.
The spread complexity shows a distinct characteristic behav-
ior in chaotic, integrable, and intermediate systems, providing
new insights into the dynamics of information scrambling and
phase transition under time evolution [10–31]. These con-
cepts were extended to the nonunitary time evolution of open
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quantum systems [32–36]. These studies exemplified how
operator growth is modified in the presence of decoherence,
resulting in a prolonged decay of complexity before reaching
the saturation value. A further example of nonunitarity is
provided by systems subject to local projective measurements,
for which it was found that the spread complexity undergoes a
phase transition as a function of the measurement frequency,
showcasing the quantum Zeno effect [24].

The probability distribution of a state in the Krylov basis
gives rise to an entropy function known as the Krylov entropy.
An alternative complexity measure is given by the exponential
of this entropy. In classical mechanics, the exponential of
entropy is related to the accessible phase space volume. Simi-
larly, entropic complexity estimates the number of supports of
the state on the Krylov basis vectors, reflecting the system’s
complexity. For unitary dynamics, both the spread complex-
ity and the entropic complexity give equivalent estimates of
complexity [6].

An integral component of Krylov space orthonormalization
is provided by the Lanczos coefficients. Recently, a connec-
tion between the fluctuations of the Lanczos coefficients and
Krylov localization was proposed in [9]. The fluctuating Lanc-
zos coefficients act as random hopping potentials between
different sites of the Krylov chain, and the Krylov localization
is then similar to Anderson localization. Wave function local-
ization in Krylov basis then corresponds to the suppression of
complexity.

In this paper, using Krylov state complexity to address the
wave function spreading dynamics in the presence of local-
ization, we consider a PT -symmetric tight-binding model
[37]. PT -symmetric systems provide a natural setup to
study the emergent dynamics which arise from a change of
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eigenspectrum from real to imaginary. This change in the
spectrum is realized by a Hamiltonian with complex conjugate
potentials at the first and last sites [37],

H = −J
N−1∑
l=1

(a†
l al+1 + H.c.) + iγ (a†

1a1 − a†
N aN ). (1)

The creation and annihilation operator, a†
i and ai for the ith

site may be both bosonic or fermionic in nature. The single-
particle solutions of this model exhibit two distinct phases,
depending on the relative values of the coupling strength, J
and the strength of the on-site potential γ of the Hamiltonian.
The PT -unbroken phase has a real eigenspectrum, while the
spontaneously broken phase introduces two imaginary eigen-
values. These two phases are connected by a critical point, at
which the system has a twofold degeneracy with eigenvalue
zero [37]. In the broken phase, one pair of purely imaginary
eigenvalues result in localization of the wave function on the
boundary of the tight-binding lattice, which is the known
non-Hermitian skin effect [38–44]. The term skin effect refers
to the wave function localizing on one boundary (skin) of the
lattice.

Here we observe a non-Hermitian skin effect in the
PT -broken phase in which, as time evolves, the original-basis
state |ψ (t )〉 = e−iHt |ψ (t = 0)〉 becomes localized around the
first site at the left edge of the tight-binding lattice. This local-
ization may also be seen in the Krylov space in the following
way. The dynamics of wave function spreading in the position
basis may be mapped to the dynamics of a dual tight-binding
chain in Krylov space, constructed from a given generic initial
state |ψ (t = 0)〉 [6], with the Lanczos coefficients providing
the couplings for the tight-binding chain in Krylov space. Lo-
calization in the lattice site basis corresponds to localization
in the Krylov basis through a change of basis vectors.

In the PT -unbroken phase, the time-evolved single-
particle state |ψ (t )〉 spans the entire system and oscillates
across different sites over time in both the original and the dual
Krylov lattice. The spread complexity, defined on the dual
Krylov basis, is a distinctive indicator of this phase transition.
In the PT -unbroken scenario, when all the eigenvalues are
real, there is an initial growth of complexity, followed by a sat-
uration phase with large oscillations. These oscillations can be
attributed to the unitary dynamics and finite-size effects of the
tight-binding chain [15]. In contrast, in the PT -broken case,
spread complexity shows a sharp growth followed by stable
saturation. Moreover, compared to the PT -unbroken phase,
the saturation value of complexity is significantly suppressed
in the broken phase. This suppression of the complexity sat-
uration value is due to the localization of the state along
nonunitary time evolution. As the state is localized in the
Krylov basis, it has less number of supports on Krylov basis
vectors. This results in the suppression of complexity. These
results reflect how complexity dynamics of quantum state
evolution, phrased using the Krylov space approach captures
the PT -phase transition and non-Hermitian skin effect.

To systematically quantify the strength of localization in
the dual Krylov basis, we use a dynamic measure, the Krylov
inverse participation ratio (KIPR), inspired by the inverse
participation ratio (IPR) [45,46] for Hermitian evolution. IPR
in Hermitian systems is known as a good measure to probe

Anderson localization. Unlike the conventional IPR, KIPR
serves as a dynamic quantifier. A higher value of KIPR in-
dicates stronger localization in the Krylov space. The strength
of localization varies for different values of the critical pa-
rameter and the spread of the initial state on the tight-binding
lattice. In Ref. [21], KIPR is used to study localization in a
Hermitian model. Our work defines KIPR for non-Hermitian
Hamiltonian dynamics. This definition is different from KIPR
in the Hermitian setup since, for a non-Hermitian Hamilto-
nian, the eigenstates do not form an orthogonal set of basis
vectors. Nonetheless, using a version of the Lanczos algo-
rithm adapted to complex symmetric Hamiltonians [24], we
build a complex orthogonal Krylov basis that is applicable to
PT -symmetric systems. We note that in Ref. [47] PT -phase
transitions were studied using Krylov operator complexity.

II. MAIN RESULT

We find a localization-delocalization transition along with
the PT -phase transition in the model described by the Hamil-
tonian Eq. (1). In the PT -broken phase, the time-evolved
wave function localizes at the left-most lattice site of the
tight-binding chain, manifesting the non-Hermitian skin ef-
fect. We find that the saturation values of spread entropy and
entropic complexity experience a suppression proportional
to the localization strength quantified by the KIPR. In the
PT -broken phase, we find that this suppression of the satu-
ration value of spread complexity is not correlated with the
localization strength. In this phase, spread complexity is no
longer a reliable probe of the strength of localization, unlike
in the unitary phase [9]. However, in this phase, entropic
complexity still reflects the localization strength: it measures
the effective Hilbert space dimension required to store the
entropy distribution and is, therefore, highly sensitive to the
localization strength.

III. PT PHASE TRANSITION AND LOCALIZATION

We discuss the phase transition properties of the system
governed by the PT -symmetric tight-binding Hamiltonian
of Eq. (1) and define the spread complexity. This Hamilto-
nian has uniform nearest-neighbor hopping interactions and
features two complex conjugate imaginary on-site potentials,
denoted as ±iγ . The tunneling strength J is set to one
throughout this paper. The action of the parity operator P
and the time-reversal operator T is given by T iT = −i and
Pa†

l P = a†
N+1−l . The Hamiltonian exhibits PT symmetry,

i.e, [H,PT ] = 0. The PT -unbroken phase corresponds to
the case when all eigenstates of the Hamiltonian given in
Eq. (1) are also eigenstates of the PT operator. In this case,
all the eigenvalues are real, and the evolution is unitary. In
the PT -broken phase, N − 2 eigenvalues are real, and two
eigenvalues form a complex-conjugate pair [37],

Eκ± = ±i2J sinh (κ ). (2)

Here κ satisfies the transcendental equations

γ 2 =
⎧⎨
⎩

J2 sinh (κ (N+1))
sinh (κ (N−1)) for N = 2n + 1,

J2 cosh (κ (N+1))
cosh (κ (N−1)) for N = 2n.

(3)
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FIG. 1. Right (black dashed) and left (purple) edge states in the
PT -broken phase with N = 40, J = 1 and γ = 1.3, corresponding
to energy eigenvalues Eκ− = −0.530769i and Eκ+ = 0.530769i, re-
spectively. We see that the edge states |E±〉 are localized on the left
and right edges of the tight-binding lattice.

We find that the eigenvectors corresponding to the complex
energy eigenvalues Eκ+ and Eκ− are the left edge state |E+〉
and the right edge state |E−〉, respectively. As shown in Fig. 1,
|E+〉 and |E−〉 are localized around the left and right edge
of the lattice, respectively. These states are not eigenstates
of PT operator, thus breaking the PT -symmetry. The skin
effect refers to the time-evolved wave function localizing on
one boundary or the skin of the lattice.

As discussed in Refs. [37,48], the transition between the
PT -symmetric and broken phases occurs at the following
parameter values of the imaginary coupling γ of the Hamilto-
nian Eq. (1):

γ =
{

J
√

(n + 1)/n, for N = 2n + 1,

J, for N = 2n.
(4)

As shown in Ref. [37], at the transition point Eq. (4), two en-
ergy eigenvalues become zero, corresponding to exceptional
points [37,48].

We now apply the Krylov state complexity [6] to our
model. Starting from an initial state |ψ (0)〉 = |K0〉, we con-
struct the Krylov basis {|Kn〉} using an adaptation of Lanczos
algorithm to the complex symmetric Hamiltonians [24,49],
such as Eq. (1). The Krylov basis vectors form a matrix Q,
which follows the complex orthogonality relation, QT Q = In.
In this basis, the Hamiltonian takes a tridiagonal form as T̃ =
QT HQ. The complex symmetric Lanczos algorithm is re-
viewed in the Appendix. The time-evolved state |ψ (t )〉 may be
expanded in the Krylov basis |Kn〉 as |ψ (t )〉 = ∑

n ψ̃n(t )|Kn〉
and the spread complexity and entropy are defined by

C(t ) =
∑

n

npn, S(t ) = −
∑

n

pn ln pn. (5)

Here pn = |ψ̃n(t )|2 and we dynamically normalize the time-
evolved state by N =

√
Tr[e−iHt |ψ (0)〉〈ψ (0)|eiH†t ] to always

fix the total probability to one.
An entropic definition of complexity is given by [6]

CS (t ) = eS(t ), (6)

with S(t ) given by Eq. (5). This entropic complexity is inde-
pendent of the specific choice of monotonic weighting used
in defining the spread complexity in Eq. (5). It quantifies the

minimal Hilbert space dimension necessary to accommodate
the probability distribution of Krylov basis weights.

We proceed by discussing the localization-delocalization
transition that the system Eq. (1) undergoes along with the
PT -phase transition. To dynamically assess the strength of
wave function localization in the dual Krylov basis, we intro-
duce the KIPR,

KIPR(t ) =
D−1∑
n=0

|〈Kn|ψ (t )〉|4 =
D−1∑
n=0

|ψ̃n(t )|4. (7)

This measure acts as a dynamic probe of the wave function
localization in the Krylov basis over time. The KIPR(t ) is one
when the state is fully localized as |ψ (t )〉 = |Kn〉 for a specific
n. In cases when the time-evolved state has equal support on
all sites, |ψ (t )〉 = 1√

D

∑D−1
j=0 |Kj〉, the KIPR is given by 1/D

in D-dimensional Krylov space.

IV. LOCALIZATION IN PT -BROKEN PHASE

We now show that in the PT -broken phase, the wave
functions localize in the lattice basis, giving rise to the non-
Hermitian skin effect. The amplitude of the energy eigenstate
|E+〉 corresponding to the energy eigenvalue Eκ+ = i2J sinh κ

grows exponentially with time,

|E+(t )〉 = e−iHt |E+(0)〉 = e2J sinh(κ )t |E+(0)〉. (8)

At late times, the maximum contribution in a time-evolved
wave function ψ (t ) comes from the state |E+〉. The left edge
state |E+〉 has maximum support on the first site of the actual
lattice, as shown in Fig. 1. Hence, at late times, a generic state
localizes at the first site of the lattice. Localization in the tight-
binding lattice basis is shown in Fig. 7 in the Appendix. This
localization is known in the literature [39,43,44] as the non-
Hermitian skin effect. On the other hand, in the PT -unbroken
phase, where all the eigenvalues are real, the wave function
does not localize and shows oscillatory behavior spanning all
the lattice.

This localization-delocalization transition can also be seen
in Krylov space. In Fig. 2, we plot the time evolution of
spread complexity, entropic complexity and KIPR defined in
Eqs. (5), (6), and (7) in different phases for the initial state
uniformly spread over 12th-18th sites of the chain with N = 40
sites. Different phases can clearly be distinguished. In the
PT -symmetric phase (γ < 1), the spread complexity shows
an initial growth followed by large oscillations that are caused
by the real spectra and by finite-size effects. In contrast to
the symmetric phase, we find that in the PT -broken phase,
γ > 1, the spread complexity saturates rapidly following a
smaller but faster initial rise than in the PT -symmetric case.
At γ = 1, there is a critical point at which the spread com-
plexity shows lower initial growth and higher saturation value
compared to the symmetric and broken phases, respectively.
Moreover, the fluctuations are smaller at the critical point
than in the PT -symmetric phase due to the transition to the
localized regime.

The spread complexity of a state measures how much the
state spreads in the Krylov basis under the time evolution. For
finite-size systems, since the number of steps in the Lanczos
algorithm is bounded by the dimension of the Hilbert space,
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FIG. 2. Time evolution of spread complexity (top), entropic com-
plexity (middle), Krylov inverse participation ratio (bottom) and
spread entropy (inset) in different phases for the initial state uni-
formly spread over 12th-18th sites of the chain with N = 40 sites
and J = 1. Spread complexity and entropy saturation values are sup-
pressed in the PT - broken phase compared to the symmetric phase.
In the PT -broken phase higher value of localization is measured by
KIPR compared to the symmetric phase.

the support of the time-evolved state in the Krylov basis stops
growing once the state has explored the full Krylov space.
In our case, for the single-particle solutions of Eq. (1), the
Hilbert space dimension is the number of lattice sites for both
bosonic or fermionic operators. After the time required to
explore the full Krylov space, the spread complexity either
saturates or oscillates. The saturation of complexity implies
that the support of the time-evolved state has reached a steady
number of Krylov basis vectors. In the PT -symmetric phase,
the time-evolved state is delocalized in the Krylov space and
has larger support in the Krylov basis as compared to the
PT -broken phase. In the broken phase, the state localizes
in the Krylov space and, therefore, has a smaller complexity
saturation value.

Now we turn to entropic complexity defined in Eq. (6).
This may also be used to probe the PT -phase transition.
During the phase transition, its qualitative behavior is similar
to the spread complexity. The time dependence of the entropic
complexity is shown in the central panel of Fig. 2 for the
same initial state as for the spread complexity. The entropic
complexity also shows a lower value in the broken phase
as compared to the symmetric case, which again indicates

FIG. 3. Localization of time-evolved initial states with different
spreads on the Krylov basis at time t = 0 (main plot) and t = 100
(inset plot). We choose the total number of sites N = 40, J = 1, and
γ = 1.3. The localization of the wave function in the Krylov basis
is determined by the spread of the initial state in the tight-binding
chain.

localization of the time-evolved state in the PT -broken phase.
As we will discuss below, in the broken phase, the time evo-
lution is different for spread and entropic complexities.

The KIPR is plotted in the lowest panel of Fig. 2 for the ini-
tial state spread around the center of the tight-binding chain.
Since at t = 0, the initial state is fully localized at a specific
vector as |ψ (0)〉 = |K0〉, the KIPR is one at t = 0. In the
symmetric phase, the KIPR decays and eventually oscillates
around zero, implying that localization is absent. On the other
hand, in the broken phase, the KIPR shows decay followed
by a ramp and finally saturates at a constant value. A higher
saturation value in KIPR indicates stronger localization, as
explained in the paragraph following Eq. (7). In the inset of
Fig. 2, we plot the spread entropy for the same initial state as
for the other three measures. The late-time value of the KIPR
at the critical point lies between the ones for the PT -unbroken
and broken phases. Since the KIPR measures localization, the
higher saturation value of the KIPR in the broken phase com-
pared to the symmetric phase implies that the PT -symmetry
transition and the localization-delocalization transition occur
in parallel in the system considered, giving rise to a non-
Hermitian skin effect.

The place of localization within the Krylov space can be
precisely determined based on the choice of the initial state’s
spread. We plot the amplitude of the Krylov wave function,
|ψ̃n(t )|2, for different initial states at initial and late times
(inset) in Fig. 3. At time t = 0, as expected, we notice all the
initial states completely localized in the first Krylov vector as
|ψ (0)〉 = |K0〉. However, when the initial state is uniformly
spread between sites l1 and l2 of the lattice chain, the resulting
time-evolved state becomes localized on the Krylov basis
vectors |Kn〉 with l1 � n � l2 at late times. This phenomenon
is represented in the inset of Fig. 3. The amplitudes of the
overlap of a time-evolved state on the Krylov basis at late
times are not unique for all initial states. Instead, they depend
on the position of the initial states. When the spread of the
initial state includes the central site, the amplitude of the
overlap is higher compared to when this is not the case, as
shown in the inset of Fig. 3. See Appendix B for further details
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FIG. 4. Saturation of spread complexity (top), entropic complex-
ity (middle), KIPR (bottom) and spread entropy (inset) for different
initial states in broken phase. We choose the total number of sites
N = 40, tunneling strength J = 1, and γ = 1.3. The hierarchy of
saturation values of complexity does not necessarily follow from
the strength of localization; instead, the saturation value of spread
entropy is suppressed accordingly.

about the dependence of the saturation value of complexity on
different initial spreads.

According to our findings shown in Fig. 4, the value at
which spread complexity, entropic complexity, and KIPR sat-
urate significantly depends upon the precise location of the
initial state. For the initial state uniformly spread over the
central site of the chain as shown in Fig. 3, the corresponding
saturation value of the spread complexity as shown by the blue
curve in the first panel of Fig. 4 occupies an intermediate
position, even if the localization strength is the highest. In
contrast, the suppression of entropic complexity and spread
entropy for different initial states always occurs in accordance
with the strength of localization, as can be seen from the
middle and bottom panels of Fig. 4. This observation supports

the finding that for the PT -broken phase, stronger localiza-
tion does not always imply stronger suppression of spread
complexity. However, spread entropy and entropic complexity
are always suppressed inversely proportional to the strength
of localization. The entropic complexity given in Eq. (6) mea-
sures the dimension of the minimum Hilbert space required
to contain the information of the time-evolved state. In the
PT -broken phase, the effective Hilbert space dimension is
reduced proportionally to the localization strength. Therefore,
we conclude that in the presence of localization, the entropic
complexity is a better probe to measure the spread of the state
as compared to the spread complexity in Eq. (5).

This different behavior of spread and entropic complexity
can be understood as follows. Due to the skin effect in the
PT -broken phase, the wave function in the position basis is
found to localize always at the first site in lattice site basis.
However, depending on the choice of initial state, this first po-
sition basis corresponds to different Krylov basis vectors |Km〉.
The further the initial state is from the first lattice site, the
higher the site number m where the wave function localizes in
Krylov space as shown in Fig. 3. So, for different initial states
corresponding to the same strength of localization, the spread
complexity will be higher for the state localized furthest from
the initial Krylov vector. This is due to the fact that in the
definition of the spread complexity in Eq. (5), the Krylov
basis vectors with higher site numbers contribute with higher
weight factor n. The dependence on the position of localiza-
tion in the Krylov basis causes the spread complexity to lose
its sensitivity to the strength of localization in the PT -broken
case. Therefore, we infer that for quantum state evolution in
the Krylov basis, increasing localization does not necessarily
imply suppression of the spread complexity in the nonunitary
PT -broken phase. However, spread entropy and the entropic
complexity as defined in Eq. (6), are always suppressed for
stronger localization.

V. CONCLUSION

For a tight-binding Hamiltonian with complex on-site
potentials at the edge sites, we have shown that in the
PT -symmetric phase, the wave function is delocalized and
has oscillatory behavior at late times. On the other hand,
in the PT -broken phase, the wave function is localized at
the left edge site of the tight-binding lattice for the edge
state corresponding to the positive-imaginary eigenvalue. This
is the main feature of the non-Hermitian skin effect. The
skin effect occurs due to the complex energy eigenvalues.
Their corresponding eigenstates are localized at the edge
of the tight-binding lattice space. The skin effect entails a
localization-delocalization transition that occurs simultane-
ously with the PT -phase transition. In this work, we studied
the spread complexity and spread entropy as a means of
characterizing this dynamical behavior. All four Krylov space
probes we use in this work, namely, spread complexity, spread
entropy, entropic complexity, and KIPR, detect the PT -
phase transition. Due to localization, the saturation values of
spread complexity, spread entropy and entropic complexity
are suppressed in the PT -broken phase. This result for the
nonunitary evolution and PT-symmetric systems adds to the
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FIG. 5. Time dependence of the spread complexity (left), KIPR (right) and spread entropy (inset) in broken phase for different γ . The
chosen initial state is uniformly spread over 12th–19th sites of the lattice chain consisting of N = 40 sites.

general insight [9] that localized quantum states are less com-
plex.

The Krylov inverse participation ratio (KIPR) defined in
Eq. (7) acts as a quantifier for the localization strength in
Krylov space. In the PT -symmetric phase, when there is
no localization, the KIPR value oscillates around 1/D where
D is the dimension of the Krylov space. In the PT -broken
phase, the localization strength depends upon the strength of
the on-site imaginary potential, as well as on the spread of
the initial state on the tight-binding chain. The spread entropy
and entropic complexity are suppressed monotonically with
the localization strength. On the other hand, the spread com-
plexity is not correlated with the localization strength. This
insensitivity is due to the position dependence of the spread
complexity.
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APPENDIX A: LANCZOS ALGORITHM ADAPTED TO
COMPLEX SYMMETRIC OPERATOR

We review the algorithm for constructing the Krylov basis
associated with a complex symmetric operator A [24,49]. The
complex symmetry refers to the property, AT = A but A† �= A.
The utilization of complex symmetry leads to a reduction in
both computational workload and storage requirements when
compared to the bi-Lanczos method. Notably, the algorithm
demonstrates that for a non-Hermitian but complex symmetric
operator, only one set of Krylov basis vectors is sufficient
for tridiagonalizing the operator, in contrast to the bi-Lanczos
algorithm, which demands two sets of basis vectors. The
diagonalizability of a complex symmetric matrix A depends
on the feasibility of selecting its eigenvector matrix Z such
that ZT AZ = diag(λ1, λ2, ..., λn). The matrix of eigenvectors
Z , adheres to the condition ZT Z = In, indicating complex
orthogonality. The importance of complex orthogonality plays
a pivotal role in facilitating an efficient construction of the
Krylov basis. To ensure this complex orthogonality, even
in the presence of complex vectors, a modified Lanczos
algorithm is employed.

The introduced complex symmetric Lanczos algorithm, as
detailed in Ref. [49], is adept at deriving the tridiagonal form
of a complex symmetric matrix A [24]. This algorithm con-
structs an orthogonal basis |q j〉 spanning the Krylov space
K j (A, |q1〉) ≡ A|q1〉, A2|q1〉, . . .. The basis is initiated with a
normalized vector, chosen as the initial state |q1〉 = |ψ (0)〉.
Complex orthogonality of the basis vectors is ensured, with
〈qj |q j〉 = δi, j , where 〈q j | = (|q j〉)T . The basis construction
involves a three-term recursion relation

β j+1|q j+1〉 = A|q j〉 − α j |q j〉 − β j |q j−1〉, (A1)

where βn = 〈qn−1|A|qn〉 and αn = 〈qn|A|qn〉. In the result-
ing basis |qj〉, the complex symmetric matrix A adopts the
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tridiagonal form denoted as T̃j ,

T̃j =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2 0 . . . 0

β2 α2 β3
...

0 . . .
. . .

. . .
... β j−1 α j−1 β j

0 . . . 0 β j α j

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

Through the utilization of the Lanczos algorithm, which
enforces complex orthogonality, the Krylov basis matrix set is
obtained as Q = [|q1〉 |q2〉... |qn〉], satisfying QT Q = In. This
process yields the tridiagonal form of matrix A in this basis,
expressed as T̃j = QT

j AQj .

APPENDIX B: RELATION BETWEEN LOCALIZATION
AND SATURATION OF COMPLEXITY AND ENTROPY IN

THE PT -Broken Phase

In Fig. 5, we plot spread complexity, spread entropy, and
KIPR for different γ in the PT -broken phase (γ > 1) with
the same initial state uniformly spread over 12th–19th sites of
the lattice chain, which consists of N = 40 sites. The goal
is to understand if stronger localization of the time-evolved
state in the Krylov space always necessarily means suppres-
sion of complexity and entropy saturation values. We notice
that the saturation value of the spread complexity decreases
as γ increases. However, for spread entropy, the saturation
value falls when γ rises up-to γ = 1.75. After γ > 1.75, the
saturation value of entropy begins to rise with γ . The figure of
KIPR provides a valuable comparison between the saturation
value of spread complexity and entropy with the strength of
localization. We observe that there is also a crossover for the
saturation value of the KIPR at γ = 1.75, which is perfectly
consistent with the spread entropy case. Therefore, spread
entropy in the Krylov basis for a quantum state is always
more suppressed when localization is stronger; this is not
necessarily the case for spread complexity.

The saturation value of spread complexity, entropy, and
KIPR depends on the choice of the initial state, as depicted
in Fig. 4. We further validate this pattern by varying the
initial state uniformly spread over four sites from the left to
the right of the chain and observing the dependence of the
saturation value of complexity and entropy on changes in
the saturation value of KIPR. The saturation value of KIPR
and the saturation value of spread entropy should exhibit an
inverse relationship, demonstrating that a stronger saturation
indicates the suppression of spread entropy. Thus, higher satu-
ration values of KIPR lead to lower saturation values of spread
entropy. For visualization, we define C and S as the average
saturation values of spread complexity and spread entropy,
respectively, as

C = lim
t∗→∞

1

t∗ − tsat

∫ t∗

tsat

C(t )dt,

S = lim
t∗→∞

1

t∗ − tsat

∫ t∗

tsat

S(t )dt . (A3)

FIG. 6. Comparison between the late-time average saturation
values of spread entropy (red), the inverse of KIPR (green), and
spread complexity (blue) for different choices for the spread of the
initial state. Notice that the spread entropy and KIPR follow the exact
same pattern while the spread complexity saturation value keeps
growing as the initial spread is taken far from the first position basis.

We additionally define K as the average of the inverse of
the KIPR saturation value as

K = lim
t∗→∞

1

t∗ − tsat

∫ t∗

tsat

1

KIPR(t )
dt . (A4)

Here, tsat is the time when complexity, entropy and KIPR
values get saturated and for a particular initial state, this time
is same for all these three quantities. Following our modified
proposal, S should be proportional to K. This behavior aligns
precisely with our findings in Fig. 6. The blue, red, and green
dots represent the C, S , and K, respectively. We have rescaled
C and S by 0.2 and 3 times, respectively, for bringing all the
values in the same plot. We find S is suppressed according
to the strength of localization as measured by K but C keeps
growing linearly due to the monotonically increasing weight
factor.

APPENDIX C: SUPPORT OF THE TIME-EVOLVED
STATES IN THE TIGHT-BINDING LATTICE BASIS

In Fig. 7, we illustrate the localization of the initial states
on the lattice basis in the PT -broken phase. We consider
three different spreads of the initial state. Initially, the states
have equal support on the different lattice sites for N = 40.
The tridiagonal Hamiltonian in the PT -broken phase has an
unbalanced gain parameter in the first diagonal. Due to this
unbalanced gain, the state localizes at the first site of the
lattice at late times. Correspondingly, the localization of the
time-evolved states in the Krylov basis is shown in Fig. 3.
Since all the initial states are taken as the |K0〉 = δn,0, the
states are localized in a specific vector in the Krylov basis.
The Hamiltonian for an arbitrary initial state changes after
performing the Lanczos algorithm, and the new tridiagonal
matrix T̃ that we get in this way would always have the
first non-Hermiticity present around the sites where the cho-
sen initial state had the first nonzero support. As soon as
the Krylov wave function hits these sites, it localizes and
stays so afterwards. Therefore, in the PT -broken phase, com-
plexity analysis is dependent on the initial state, and the
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FIG. 7. Localization of time-evolved different initial states on lattice sites at initial (left) and late times (right).

localization of the time-evolved state on the Krylov basis,
always helps us to understand which site exactly the cho-
sen initial state had the first nonzero support on. Comparing
Figs. 3 and 7, we can see a dual mapping between the lo-
calization of the states in the two different bases. However,
the dual mapping is approximate since the amplitudes of the

localization of initial states on the lattice at early times are
the same. In contrast, the amplitudes of the localization of
initial states in the Krylov basis at late times are not the same,
see Fig. 3. These different amplitudes of localization in the
Krylov basis are the main reason for the different strengths of
localizations.
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