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Benchmarking quantum master equations beyond ultraweak coupling
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Recently, Nathan and Rudner derived a Gorini-Kossakowski-Sudarshan-Lindblad master equation from the
Redfield equation. The claim is that the level of approximation is equal to that of the Redfield equation. Here
we benchmark the Nathan-Rudner equation (NRE) against the exact solution of a damped harmonic oscillator,
and we compare its performance to that of the time-dependent Redfield equation (RE). We find that which
of the equations performs better depends on the regime considered. It turns out that the short-time dynamics
is generally much better captured by the RE, whereas the NRE delivers results comparable to those of the
rotating-wave approximation. For the steady state, in the high-temperature limit the RE again performs better and
its solution approaches the exact result for ultrahigh temperatures. Nevertheless, here also the NRE constitutes
a good approximation. In the low-temperature limit, in turn, the NRE provides a better approximation than the
RE. For too strong coupling, here the RE might even fail completely by predicting unphysical behavior.
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I. INTRODUCTION

All quantum systems are coupled to their environment.
Only rarely is the idealization of an isolated quantum system
found to be a good approximation, and coherent evolution can
be observed beyond very short times (e.g., for experiments
with ultracold atoms [1]). In thermal equilibrium and for
ultraweak system-bath coupling (defined by the system-bath
coupling being small compared to the energy level splitting in
the system), the state of the system is described by statistical
mechanics. This is very efficient and requires only a few
thermodynamic variables, like temperature or chemical po-
tential. However, beyond ultraweak coupling and away from
equilibrium, the state of the system does depend on the details
of the environment. Since an explicit treatment of the total
system-bath compound is often neither of interest nor feasible,
the general strategy is to derive a master equation for the
reduced density matrix of the system. Ideally, the solution of
the master equation should be an accurate description of the
impact of the environment on the dynamics and steady state of
the system. A common approach for deriving a quantum mas-
ter equation is the Born-Markov approximation giving rise to
the Redfield master equation [2–8]. This equation has been
shown to describe the state of the system rather accurately [9].
It correctly captures the coherences of the density matrix (the
off-diagonal elements in energy representation) in second-
order system-bath coupling [9–13]. Only the populations of
the energy eigenstates (the diagonal elements of the density
matrix) require more sophisticated methods already in second
order; see, e.g., Refs. [14–16].

However, the Redfield equation has the disadvantage that
it is not of Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
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form. This implies on the one hand that it might lead
to unphysical violations of positivity (which are, however,
significant only outside the range of the validity of the Born-
Markov approximation) [6,9,17–20]. On the other hand, it
does not allow the use of standard quantum-trajectory sim-
ulations, where the coherent evolution of an ensemble of pure
states is interrupted by random quantum jumps. The conven-
tional approach relies on the GKSL form and cannot directly
be applied to the Redfield equation. Therefore, it seems
to be desired to find master equations of GKSL form that
provide an accurate description of the coupling to the environ-
ment. (Note that recently also alternative quantum-trajectory
approaches have been described that allow us to unravel time-
local non-Lindblad master equations such as the Redfield
equation [21–23], without requiring an effective extension of
the state space like previously proposed methods. However,
in the long-time limit, they might require a larger number
of trajectories as the conventional approach, as discussed in
Ref. [24].) For ultraweak coupling, this is achieved using
the rotating-wave approximation (RWA), which gives rise to
the quantum optical master equation [4,25,26]. However, the
assumption of ultraweak coupling is often challenged. For
instance, in quantum many-body systems, energy levels can
become exponentially small with the system size.

Recently numerous different GKSL master equations have
been proposed to approximate the Redfield equation [27–33].
Of special interest is the Nathan-Rudner equation (NRE) in
Refs. [29,34], which is similar to the geometric-arithmetic
master equation in Ref. [28]. In their work, Nathan and Rud-
ner claim that the approximation that led to this equation is
consistent with the Born-Markov approach, such that it is
as accurate as the Redfield equation. This is very promising
in view of the efficient simulation of open quantum systems
beyond ultraweak coupling. The NRE has been studied in
numerous works [31,35–38] also in relation to time-dependent
master equations [32,33]. In this paper, we benchmark the
Nathan-Rudner equation by applying it to an exactly solvable
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model, given by a damped harmonic oscillator, and by com-
paring its performance to that of the Redfield and the quantum
optical master equations. For this purpose, we consider both
the transient evolution of the system as well as its steady state.

This paper is organized as follows: In Sec. II, we recapitu-
late the quantum master equations considered in this paper,
namely the Redfield, the quantum optical, and the Nathan-
Rudner equations. These will later be applied to the damped
harmonic oscillator introduced in Sec. III together with its
exact Hu-Paz-Zhang master equation. In Sec. IV, we bench-
mark both the transient dynamics and the steady state of the
approximate master equations against the results of the exact
master equation.

II. MASTER EQUATIONS FOR WEAK
SYSTEM-BATH COUPLING

The quantum master equations considered here are ob-
tained by combining second-order perturbation theory in the
system-bath coupling with the Born and Markov approxima-
tions. This gives rise to the time-dependent Redfield equation.
Applying further approximations, one also obtains the time-
independent Redfield equation, the Nathan-Rudner equation,
and the quantum-optical master equation. In this section, we
briefly review these equations.

For the microscopic derivation, we start from the total
Hamiltonian of the full system-bath compound Ĥtot = ĤS +
ĤB + ĤSB, where ĤS is the Hamiltonian of the open system
and ĤB is the Hamiltonian of the bath. The interaction Hamil-
tonian ĤSB is written in the canonical form ĤSB = √

γ Ŝ ⊗ B̂,
e.g., by doing a Schmidt decomposition, where Ŝ and B̂ act
solely on the system and bath, respectively. The generaliza-
tion to multiple coupling terms is straightforward, but not
considered here for simplicity. The dimensionless quantity γ

captures the relative strength of the interaction compared to
the energy scales of the system. Let t0 denote the time at
which system and bath are coupled. That is, for time t0 we
assume a factorized initial state ρ̂tot (t0) = ρ̂(t0) ⊗ ρ̂B, with
ρ̂B = e−βĤB/ZB being the thermal equilibrium state of the bath
at inverse temperature β.

A. Redfield equation

The Redfield equation is obtained in second order of the
system-bath coupling from the Born-Markov approximation.
For the reduced density matrix ρ̂(t ) = trB(ρ̂tot (t )) of the sys-
tem, it reads [2–8]

d

dt
ρ̂I (t ) = −

∫ t

t0

dτC(t − τ )[Ŝt , Ŝτ ρ̂I (t )] + H.c. (1)

in the interaction picture, which is indicated by the label
I . Here, C(t − τ ) ≡ γ 〈B̂t B̂τ 〉/h̄2 denotes the bath correla-
tion function, and Ŝt = exp(−iĤSt/h̄)Ŝ exp(iĤSt/h̄) and B̂t =
exp(−iĤBt/h̄)B̂ exp(iĤBt/h̄) are interaction picture operators.
In the Schrödinger picture, it takes the form

d

dt
ρ̂(t ) = − i

h̄
[ĤS, ρ̂(t )] + Ŝρ̂(t )Ŝ†

t + Ŝt ρ̂(t )Ŝ

− ŜŜt ρ̂(t ) − ρ̂(t )Ŝ†
t Ŝ, (2)

with Ŝt ≡ ∫ t
t0

dτC(τ )Ŝ−τ . The last four terms give rise to
both a Lamb-shift Hamiltonian and a dissipative contribution
[30,39]. The Redfield equation is explicitly time-dependent.
However, often the time-independent Redfield equation is
considered by replacing Ŝt → Ŝ∞ ≡ ∫ ∞

t0
dτC(τ )Ŝ−τ . This is

justified for times t − t0 that are large compared to the typical
relaxation time of the bath correlation.

B. Quantum optical master equation

For ultraweak system-bath coupling, we can perform a
rotating-wave approximation (RWA), where we neglect off-
diagonal coupling terms in the energy eigenbasis of the
system, to obtain the quantum optical master equation [4,5,26]

d

dt
ρ̂(t ) = − i

h̄
[ĤS + �̂RWA, ρ̂(t )] +

∑
lk

2Gr
t (�lk )|Slk|2

×
(

L̂lk ρ̂(t )L̂†
lk − 1

2
{L̂†

lk L̂lk, ρ̂(t )}
)

. (3)

Here, Gr
t (�) + iGi

t (�) ≡ ∫ t
0 dτC(τ )e−i�τ denotes the time-

dependent coupling density, with real and imaginary parts
Gr

t (�), Gi
t (�), respectively. It also defines the tensor ele-

ments of the Redfield superoperator in the eigenbasis of the
system. Often, especially for the dynamics approaching the
steady state, we take the asymptotic generator with G∞(�),
which is discussed in Appendix C. This will also be done in
the following. The Lamb-shift Hamiltonian is then diagonal
in the eigenbasis of the system Hamiltonian ĤS ,

�̂RWA = h̄
∑

lk

Gi
∞(�lk )|Slk|2L̂†

lk L̂lk . (4)

It therefore only shifts the eigenenergies of the system, but
leaves the eigenstates unchanged.

For thermal environments, the steady-state solution of the
quantum optical master equation is the canonical Gibbs state
ρ̂0 = exp(−βĤS )/ZS , with ZS = trS ( exp(−βĤS )). Since this
is independent of the coupling strength, it is only valid in
the ultraweak coupling regime, where the coupling strength
approaches zero [10,40].

C. Nathan-Rudner equation

In this work, we focus on the master equation proposed
by Nathan and Rudner in Ref. [29]. Like the quantum optical
master equation, it is in GKSL form, but it is obtained from
the Redfield equation by an approximation that is different
from the RWA. The claim is that, differently from the RWA,
the error induced by this approximation is on the same order of
magnitude as the error of the Redfield equation. The main idea
is to introduce yet a second time integral on the right-hand
side of Eq. (1) to identify an equation in GKSL form with one
single jump operator and a new Lamb-shift Hamiltonian. To
be able to do that, the authors explicitly consider t0 = −∞,
meaning that t − t0 is large compared to the typical relaxation
time of the bath correlation. In Appendix A, we show that
this approximation is equivalent to using the time-independent
Redfield equation.
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To get the Nathan-Rudner equation, first the bath correla-
tion function is decomposed into a convolution integral

C(t − τ ) =
∫ ∞

−∞
dsg(t − s)g(s − τ ), (5)

which defines a new function g(t ). In practice, we will use
the Fourier transform h(�) of this function, which, thanks to
the convolution theorem, can be obtained by taking the square
root of the Fourier transform of the bath correlation function
C(t ) [29]. Now, the Redfield Eq. (1) reads

d

dt
ρ̂I (t ) =

∫ ∞

−∞
dτ

∫ ∞

−∞
dsF (t, s, τ )[ρ̂I (t )], (6)

with superoperator

F (t, s, τ )[σ̂ ] = θ (t − τ )g(t − s)g(s − τ )[Ŝt , Ŝτ σ̂ ] + H.c.,
(7)

and θ (t ) being the Heaviside step function. Integrating once
from t1 to t2 results in

ρ̂I (t2) − ρ̂I (t1) =
∫ t2

t1

dt
∫ ∞

−∞
dτ

∫ ∞

−∞
dsF (t, s, τ )[ρ̂I (t )].

(8)

Next, the integral is approximated according to

F (t, s, τ ) ≈ F (s, t, τ ). (9)

By exchanging the variables t and s, one obtains

ρ̂I (t2) − ρ̂I (t1) =
∫ t2

t1

ds
∫ ∞

−∞
dt

∫ ∞

−∞
dτF (t, s, τ )[ρ̂I (s)].

(10)

This step is described in detail in Ref. [29], where the validity
of the approximation is also discussed. The Nathan-Rudner
equation is then obtained by performing a derivative with
respect to t2. We replace τ, t, t2 with s′, s, t , respectively.
With the jump operator

L̂I =
∫ ∞

−∞
dsg(t − s)Ŝs, (11)

and the Lamb-shift Hamiltonian

�̂N
I = h̄

2i

∫ ∞

−∞
ds

∫ ∞

−∞
ds′Ŝsg(s − t )g(t − s′)Ŝs′sgn(s − s′),

(12)

it is possible to bring the equation into GKSL form,

d

dt
ρ̂I (t ) = − i

h̄

[
�̂N

I , ρ̂I (t )
] − 1

2
{L̂†

I L̂I , ρ̂I (t )} + L̂I ρ̂I (t )L̂†
I .

(13)

This is a remarkable result. Here θ (t ) = 1
2 + 1

2 sgn(t ) was used
to separate the double integral into separable and inseparable
parts, which represent the jump operator L̂I and the Lamb shift
Hamiltonian �̂N

I , respectively. In the Schrödinger picture, the
equation is given by

d

dt
ρ̂(t ) = − i

h̄
[ĤS + �̂N , ρ̂(t )] − 1

2
{L̂†L̂, ρ̂(t )} + L̂ρ̂(t )L̂†.

(14)

For time-independent Hamiltonians, it is convenient to
use the representation of the Nathan-Rudner equation in the

eigenbasis of the Hamiltonian of the system ĤS . The matrix
elements of the operators L̂ and �̂N are then given by

Llk = 2πh(�lk )Slk, �N
lk =

∑
n

f (�nl ,�kn)SlnSnk, (15)

where �lk = εl − εk is the energy difference between the
eigenstates |l〉 and |k〉. For thermal baths, h(�) and f (�1,�2)
are defined as

h(�) =
√

1

2π

J (�)/h̄

eβ� − 1
, (16)

f (�1,�2) = 2π h̄P
∫ ∞

−∞

dω

ω
h(ω + �1)h(ω − �2), (17)

where J (�) is the spectral density (see Appendix C) and P
denotes the principal value of the integral. Using convolution
theorems, it can be shown that h(�) is the Fourier transform
of g(t ) from Eq. (5).

In Refs. [28,31,41], a similar master equation has been
found by replacing the arithmetic mean in the Kossakowski
matrix of the Redfield equation with a geometric mean. This
approach leads to the same jump operator L̂I in Eq. (11).
The only difference between the geometric-arithmetic master
equation and the NRE lies in the Lamb-shift Hamiltonian.
An alternative approach derives a Lindblad-form master equa-
tion from the dynamic structure factor [42].

III. DAMPED HARMONIC OSCILLATOR

In Ref. [29], the authors described the regime of validity of
their equation by introducing general error measures. In this
work, we benchmark the master equation explicitly against the
exact solution of a damped harmonic oscillator. Furthermore,
we compare with the Redfield and quantum optical master
equation.

To this end, we will use HS = h̄ω(â†â + 1/2) + GRŜ2 as
the Hamiltonian of the system, where GR = ∫ ∞

0 dωJ (ω)/ω
is the reorganization energy, which renormalizes the shifted
energies in an open quantum system [43]. The system is
coupled to a thermal bath of harmonic oscillators ĤB with a
coupling Hamiltonian, ĤSB = x̂ ⊗ B̂, where x̂ is the displace-
ment operator of the central oscillator.

A. Nathan-Rudner equation

For an Ohmic spectral density with a Drude cutoff, we
are not able to find an analytical expression for the integral
f in Eq. (17). Thus, for a generic system, f has to either
be calculated for all relevant level splittings, which is done
below, or it has to be approximated by interpolating it between
values computed numerically on a sufficiently dense grid of
arguments. Compared to the computation of the Redfield gen-
erator, for which the coupling density can be expressed by
analytic functions, the computation of the generator for the
NRE thus requires a slightly larger numerical effort. Alter-
natively, one might also use the master equation proposed in
Ref. [31], which is equivalent to the NRE, except for the fact
that the Lamb-shift Hamiltonian takes a simpler form, which
in fact directly corresponds to the Lamb shift of the Redfield
equation. For the harmonic oscillator to be considered here,
the energy levels are equidistant and the coupling operator
x̂ only couples states of energy difference |εl − εk| = h̄ω.
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FIG. 1. Time-dependent coefficients of the exact Hu-Paz-Zhang
master equation for γ /ω = 0.1, Ec = 5h̄ω, βω = 1 in solid lines. In
the static limit, for large times, the coefficients reach static values
indicated by the dashed lines.

Therefore, only three different integrals have to be calculated
numerically, i.e., f (−h̄ω, h̄ω), f (h̄ω,−h̄ω), and f (h̄ω, h̄ω).

B. Exact equation

To see how the NRE compares to the Redfield equation,
the exact Hu-Paz-Zhang master equation for the harmonic
oscillator with mass m and frequency ω coupled to an Ohmic
Drude bath with spectral density

J (�) = γ�/π

1 + (�/Ec)2
(18)

is considered, where Ec is the cutoff energy. For a factorized
initial state with a bath in thermal equilibrium, the exact
equation can be obtained [44–46],

d

dt
ρ̂(t ) = − i

h̄

[
p̂2

2m
+ m

2
γx(t )x̂2, ρ̂(t )

]
− i

γp(t )

2h̄
[x̂, { p̂, ρ̂(t )}]

+ m2

h̄2 Dp(t )[x̂, [ p̂, ρ̂(t )]] − m2

h̄2 Dx(t )[x̂, [x̂, ρ̂(t )]].

(19)

Here p̂ is the momentum operator. The derivation of the
four time-dependent coefficients γx(t ), γp(t ), Dx(t ), and
Dp(t ) is outlined, e.g., in Refs. [44–52]. The renormalized
squared frequency γx(t ) and the relaxation strength γp(t )
are temperature-independent. The temperature-dependent dif-
fusion coefficients Dx(t ) and Dp(t ) result from quantum
fluctuations. In the asymptotic regime, for t → ∞, these
coefficients approach constant values. This is analogous
to the static limit discussed for the Redfield equation in
Appendix C. For ultraweak coupling and large temperature,
the time-dependent coefficients are depicted in Fig. 1. In the
static limit, one obtains γx � ω2, γp � γ , Dx � 0, and Dp �
γ /mβ (cf. the dashed lines in Fig. 1).

For γ approaching 0, the exact steady-state solution re-
duces to the canonical Gibbs state of the system [10]. This
means that the steady-state solution of the Redfield equation is
equal to the exact steady state in the ultraweak coupling limit.

IV. BENCHMARKING AGAINST EXACT SOLUTION

In this section, we study the validity of the NRE by
benchmarking it against the exactly solvable model of the
damped harmonic oscillator and comparing the results to
the Redfield equation and the quantum optical (or RWA)
master equation. All dynamical calculations are done for

FIG. 2. Examples for the dynamics of the expectation value of
the number operator of the system using different values for γ and
β. All examples were calculated with Ec = 5h̄ω.

an initial pure state ρ̂0 = |ψ0〉〈ψ0| that is the equal super-
position of the ground and the first excited state of the
harmonic oscillator, |ψ0〉 = (|0〉 + |1〉)/

√
2 with |1〉 = â†|0〉,

with â = √
mω/2h̄(x̂ + i p̂/mω). For our analysis, we use

the full time-dependent exact and Redfield master equa-
tions. For a comparison to the approximative asymptotic
time-independent generators, we refer to Appendix C. The
infinite-dimensional Hilbert space of the harmonic oscillator
is truncated to the first 30 lowest energy eigenstates. Tempera-
tures and cutoff energies are given in units of h̄ω. Superscripts
X on variables and operators are used to refer to the different
models, X = E for the exact equation, X = R for Redfield,
and X = N for Nathan-Rudner.

Figures 2 and 3 give a first impression of the dynamics
under the different master equations. They show the dynamics
of the expectation value of the system’s number operator
〈n̂〉 = 〈â†â〉 in Fig. 2, and the trace distance d (ρE , ρX ) be-
tween the approximate solutions and the exact solution in
Fig. 3, each for different inverse temperatures and coupling

FIG. 3. Examples for the dynamics of the trace distance
d (ρ̂E , ρ̂X ) between the approximate solutions and the exact solution
using different values for γ and β. All examples were calculated with
Ec = 5h̄ω.
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strengths. The dynamics of 〈n̂〉 in Fig. 2 indicate that the
solution of the Redfield equation follows the solution of the
exact equation for a finite time on the order of γωt ∼ 1,
while the Nathan-Rudner and RWA solutions deviate instantly
from the exact dynamics. Looking at Fig. 3, this translates
to a smaller trace distance between the Redfield solution and
the exact solution as compared to the other master equations.
This observation is explained, most likely, by the fact that the
NRE possesses a time-independent generator corresponding
to the asymptotic long-time limit. Also the time-independent
Redfield equation performs worse than the time-dependent
one (see Fig. 9 in Appendix C). However, unlike for the
Redfield equation, no time-dependent equivalent of the NRE
is known.

We also see in the figures that at about γωt ∼ 5, the system
approaches a steady state. Here the time dependence of the
generator becomes irrelevant. From the errors in Fig. 3, we
infer that, while the Redfield equation performs slightly better
for the larger temperature (h̄ωβ = 1), the NRE is superior
for the lower temperature (h̄ωβ = 5). The Redfield solution
even becomes unphysical for low temperature and strong
system-bath coupling, giving rise to an unphysical negative
average excitation number 〈n̂〉 < 0 and a trace distance larger
than 1. This is a well-known problem of the Redfield equa-
tion [6,9,17–20,53]. It does not occur for the NRE thanks to
its GKSL form.

To get a better understanding of the differences between
the master equations, in the following we systematically ana-
lyze the relaxation dynamics of the different models. This is
followed by an analysis of the steady state.

A. Dynamics

To systematically compare the dynamics of the different
master equations, we average the trace distance d (ρE , ρX )
over the time interval t ∈ [0, τR],

d (ρE , ρX ) = 1

τR

∫ τR

0
d (ρE (t ), ρX (t )) dt . (20)

Here we have chosen the time interval with τR = 2/γω based
on the dynamics depicted in Figs. 2 and 3. It covers the tran-
sient dynamics and excludes the steady-state regime. Thus,
it is roughly determined by the timescale on which the sys-
tem relaxes to its steady state. The time-averaged distance
d (ρE , ρX ) defines the dynamical error and quantifies de-
viations from the exact solution during transient evolution.
Figure 4 compares the dynamical errors of the Nathan-Rudner
and Redfield equations as a function of inverse temperature β

and coupling strength γ . For short time dynamics, the Red-
field equation outperforms the NRE in the parameter regime
shown in Figs. 4(a) and 4(b). The only exception are low
temperatures and strong-coupling strengths, where the perfor-
mance is on the same order of magnitude (though for an even
shorter time interval the Redfield equation would improve).
This can be seen by the dotted blue lines in Figs. 4(d) and 4(e),
where for fixed temperature the dynamical error is plotted as
a function of the coupling strength γ . In Fig. 4(c), we can, in
turn, observe that the errors vanish in the high-temperature
(small h̄ωβ) limit for the Redfield results, while this does
not seem to be the case for the NRE (see also the discussion
below).

FIG. 4. Time average trace distance in the transient regime
Eq. (20) for cutoff Ec = 5h̄ω. (a) Heatmap of d (ρ̂E , ρ̂R ) for a range
of values of coupling strength γ and inverse temperature β. The
gray area indicates values of d (ρ̂E , ρ̂X ) > 1. (b) Equivalent heatmap
for d (ρ̂E , ρ̂N ). (c) Plots of d (ρ̂E , ρ̂X ) for specific values of γ . The
corresponding γ values for the graphs shown are marked in the
heatmaps on the left by vertical lines. [(d),(e)] Plots of d (ρ̂E , ρ̂X )
for specific values of β. The corresponding β values for the graphs
shown are marked in the heatmaps above by horizontal lines.

As discussed above, one of the reasons for the superior
performance of the Redfield equation in this case seems to
come from the fact that we use the time-dependent Redfield
equation, whereas for the NRE, the starting point had to be
the asymptotic (time-independent) Redfield equation. This
is highlighted in Appendix C, where we compare the time-
independent Redfield equation to the NRE.

Another effect that might partly explain the difference
between the dynamical errors of the NRE and the Redfield
equation is that the Redfield equation is not of GKSL form.
While this is a disadvantage, when positivity is actually vi-
olated, it might also be an advantage in regimes where this
is not the case. Namely, the exact Hu-Paz-Zhang equation is
equally not of GKSL form (see also Ref. [24]), which raises
the general question of whether the GKSL form is actually
superior to others under all circumstances [38,54]. Therefore,
it is natural to compare the exact evolution also to the RWA,
which is also of GKSL form. Figure 5 shows the dynamical
error of the RWA, and again the dynamical error of the NRE
for the same range of values as used in Fig. 4. The difference
between the dynamical error of the RWA and the error of the
NRE is reduced noticeably compared to the difference be-
tween the errors of the Redfield and Nathan-Rudner equations.
For the dynamics, the RWA and the NRE deliver essentially
equal results.

As a first main result of this work, we conclude that for
the transient dynamics the Redfield equation is better than the
NRE in the parameter regime studied. The discrepancy can be
mostly attributed to the lack of an explicit time dependence in
the approach by Nathan and Rudner.

B. Steady-state solutions

In the previous subsection, the transient dynamics of the
Nathan-Ruder equation is compared to the transient dynam-
ics of the Redfield equation. The aim of this subsection is
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FIG. 5. Average trace distance in the transient regime Eq. (20)
for cutoff Ec = 5h̄ω. (a) Heatmap of d (ρ̂E , ρ̂RWA) for a range of val-
ues of coupling strength γ and inverse temperature β. (b) Equivalent
heatmap for d (ρ̂E , ρ̂N ). (c) Plots of d (ρ̂E , ρ̂X ) for specific values of
γ . The corresponding γ values for the graphs shown are marked in
the heatmaps on the left by vertical lines. [(d),(e)] Plots of d (ρ̂E , ρ̂X )
for specific values of β. The corresponding β values for the graphs
shown are marked in the heatmaps above by horizontal lines.

to analyze steady-state solutions. Analogous to the analysis
of the transient relaxation dynamics, here, we use the trace
distance of the steady-state solutions to the exact equilibrium
state of the damped harmonic oscillator as an error mea-
sure. In this section, we focus on the parameter regime in
which the Redfield equation still yields a physical steady state.
This is achieved by choosing the Drude cutoff Ec = 1 h̄ω (as
compared to Ec = 5 h̄ω for the dynamics in Figs. 2–5). For
the parameters considered in the previous simulations, the
Redfield equation violates positivity when both the coupling
strength and the inverse temperature take large values (within
the parameter range considered).

One of the properties of the Redfield equation is that for
ultraweak coupling, when the coupling strength γ approaches
zero, the steady-state error tends to zero. This implies that in
the ultraweak coupling limit, the steady-state solution of the
Redfield equation is the canonical Gibbs state of the system.
This can be seen analytically within the perturbation expan-
sion to second order in the coupling strength

√
γ [10], and

it also holds for the NRE [37] (see also our discussion in
Appendix B). Thus, for both equations, one finds

d (ρ̂E , ρ̂X ) = d
(
ρ̂E

0 + γ ρ̂E
2 , ρ̂X

0 + γ ρ̂X
2

) + O(γ 2)

γ→0−−→ d (ρ̂E , ρ̂X ) = d
(
ρ̂E

0 , ρ̂X
0

) = 0, (21)

with X = R, N , and ρ̂X
0 and ρ̂X

2 being the zeroth-order and
second-order steady-state contributions, respectively. For fi-
nite coupling, the steady state depends on the details of the
system and bath. A detailed analysis for the Redfield equa-
tion can be found in Ref. [10].

To compare the errors beyond the zeroth order, below we
plot the scaled errors

d (ρ̂E , ρ̂X )/γ
γ→0−−→ d

(
ρ̂E

2 , ρ̂X
2

)
, (22)

which in the limit of γ → 0 compares the solutions in second
order of the coupling strength. For the Redfield equation, the

FIG. 6. d (ρ̂E , ρ̂X )/γ of steady-state solutions for cutoff Ec =
h̄ω. (a) Heatmap of d (ρ̂E , ρ̂R )/γ for a range of values of coupling
strength γ and inverse temperature β. (b) Equivalent heatmap for
d (ρ̂E , ρ̂N )/γ . (c) Plot of d (ρ̂E , ρ̂X ) for specific values of γ . The
numerical values have been rescaled with the corresponding value
of γ compared to the values of the plots on the left. [(d),(e)] Plots
of d (ρ̂E , ρ̂X )/γ for specific values of β. The corresponding β values
for the graphs shown are marked in the heatmaps above by horizontal
lines.

error in second order is expected to be finite [10], which is
confirmed in Figs. 6(a) and 6(d). This means that the second-
order term of the Redfield steady-state solution does not equal
the second-order term of the exact steady state, i.e., ρ̂R

2 �= ρ̂E
2 .

In Figs. 6(b) and 6(e), it is shown that the same holds true also
for the NRE, i.e., ρ̂N

2 �= ρ̂E
2 . However, we can clearly observe

that the Redfield equation performs better for high temper-
atures, whereas the NRE provides more accurate results for
low temperatures.

Let us now focus on the coherences, i.e., the off-diagonal
elements of the density matrix in energy representation. They
vanish in zeroth-order perturbation theory, where we obtain
the canonical Gibbs state, so that their leading contribu-
tion appears in second order. For the Redfield equation, the
second-order coherences are equal to the second-order coher-
ences of the exact equation. The reason for the discrepancy in
the second order of the steady-state solutions is a discrepancy
in the populations (diagonal elements of the density operator)
[10]. To confirm this and to investigate whether such a state-
ment is true also for the NRE, we define the distances of the
coherences,

dOD(ρ̂E , ρ̂X ) =
√∑

i �= j

∣∣ρE
i j − ρX

i j

∣∣2
. (23)

To infer the behavior in second order, below we again plot the
scaled distance

dOD(ρ̂E , ρ̂X )/γ
γ→0−−→

√∑
i �= j

∣∣(ρE
2

)
i j − (

ρX
2

)
i j

∣∣2
. (24)

So if dOD(ρ̂E , ρ̂X )/γ approaches 0 as γ approaches 0, all
coherences of ρ̂E

2 and ρ̂X
2 have to be equal, otherwise at least

one entry differs. As shown in Figs. 7(a) and 7(c), for the Red-
field solution the quantity dOD(ρ̂E , ρ̂R)/γ approaches zero
in the limit of γ → 0. This confirms the prediction that the
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FIG. 7. dOD(ρ̂E , ρ̂X )/γ of steady-state solutions for Ec = h̄ω.
(a) Heatmap of dOD(ρ̂E , ρ̂R)/γ for a range of values of γ and
β. (b) Equivalent heatmap for dOD(ρ̂E , ρ̂N )/γ . [(c),(d)] Plots of
dOD(ρ̂E , ρ̂X )/γ for specific values of β. The corresponding β values
for the graphs shown are marked in the heatmaps above by horizontal
lines.

coherences of the Redfield steady state agree with the exact
solution up to second order in the coupling. Furthermore, this
is the case for all temperatures. In contrast, in Figs. 7(b) and
7(d), for the NRE the quantity dOD(ρ̂E , ρ̂N )/γ approaches
finite values for all considered temperatures. Consequently,
in second order of the coupling, the coherences of the
Nathan-Rudner steady-state solution deviate from the exact
equilibrium state. It was recently discussed in Ref. [54] that
such a deviation can give rise to a spurious violation of local
conservation laws (like energy or particle number conserva-
tion in the bulk of a system coupled to an environment at its
edges). To address the problem of an inconsistent steady state
of the NRE in second order of the coupling, which was also
pointed out in Refs. [35,36], Nathan and Rudner proposed
an additional transformation that is applied after integrating
the NRE and that is supposed to resolve these issues [34].
However, the modification comes with a considerable effort
and is omitted in our consideration here.

In Fig. 7(c), we can see that the error in the coherences
of the NRE becomes particularly pronounced in the limit of
high temperatures. And also in Fig. 6(c), we can see clear
deviations from the exact solution. In the limit of ultrahigh
temperatures, h̄ωβ � 1, for states with energy well below
the temperature, εn � 1/β, the density matrix approaches
the maximally mixed state with equal populations and van-
ishing coherences. In this regime, the bath correlation is
short-lived, and the Redfield equation as well as the RWA
and other Lindbladian approximations, e.g., in Ref. [30], are
valid descriptions. However, for the steady state of the NRE,
in Fig. 6(c), in the high-temperature limit the errors appear to
be finite. This discrepancy is likely related to the fact that the
NRE does not accurately capture the off-diagonal elements.

To investigate the behavior in the high-temperature regime
in more detail, in Fig. 8(a) we plot the steady-state error of
the NRE as a function of the inverse temperature and for
increasing truncations of the Hilbert space dimension. While
this more detailed plot of the ultrahigh-temperature regime
seems to imply that the steady-state error of the NRE goes

FIG. 8. (a) Steady-state error d (ρ̂E , ρ̂E ) of the NRE for increas-
ing Hilbert space dimension dim(HS ) and varying values of β,
where γ = 0.8. βtol is the value where the tolerance of the numerical
calculation is reached. (b) Same plot as (a) with logarithmic inverse
temperature scale. (c) Steady-state error d (βtol ) of NRE at tolerance
temperature βtol as a function of Hilbert space dimension dim(HS).

to zero, the rapid drop off of the steady-state error for higher
dimensions of the Hilbert space turns out to be an artifact of
the truncation of the Hilbert space. For the steady state, the
energy at which the state space is truncated should be well
above both the temperature and the system-bath coupling. To
ensure the accuracy of our numerical simulations, we estimate
a tolerance value for the sum of the populations of the highest
10% of energy states, which should not be exceeded. This also
constrains the maximal considered temperature, or equiva-
lently the minimal inverse temperature. We set the tolerance to
be 0.1%, and we call the inverse temperature where the toler-
ance is reached βtol. For smaller inverse temperatures β < βtol

the highest energy states get populated beyond our tolerance.
In Fig. 8(c), we plot the corresponding steady-state error
d (βtol ) as a function of the truncated Hilbert space dimension
dim(HS), where we use the same color for the triangles as for
the corresponding curves in Fig. 8(a). For larger Hilbert space
dimension, we use red triangles. Figure 8(c) indicates that for
increasing Hilbert space dimension, and therefore decreasing
βtol, the steady-state error tends to a finite value. This implies
that the NRE does not reproduce the exact steady state in the
ultrahigh-temperature limit.

V. CONCLUSIONS

In this work, we study the regime of validity of the Nathan-
Rudner quantum master equation [29] both for the transient
dynamics and its steady state. By benchmarking it against the
exact solution of the damped harmonic oscillator in a thermal
bath, we show that for the transient dynamics, the Redfield
equation outperforms the NRE, whereas the NRE delivers
similar results to the quantum optical master equation. For
the steady state and for low temperatures, the NRE performs
better than the Redfield equation, which in this regime can fail
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due to strong violation of positivity. In turn, for high tempera-
tures the Redfield equation becomes exact, which appears not
to be the case for the NRE. However, it has been shown [37]
that like the Redfield equation, also the NRE provides the cor-
rect canonical Gibbs state in the limit of ultraweak coupling.
In conclusion, for the steady state the NRE can provide a very
useful tool for the investigation of open quantum systems,
especially at low temperatures, where for the paradigmatic
damped oscillator model it performs better than the Redfield
equation. Whether the latter is true in general should be the
focus of future studies.

One interesting question for future research is whether
it is possible to find GKSL master equations similar to the
NRE that are time-dependent, so that at low temperature and
beyond ultraweak coupling they describe not only the steady
state, but also the transient dynamics. Another one is whether
it is possible to construct such a GKSL master equation,
which correctly describes the steady state in second-order
system bath coupling, as the recently proposed non-GKSL
canonically consistent master equation [16].
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APPENDIX A: TRANSITION
TO THE SCHRÖDINGER PICTURE

Here we will show that setting t0 = −∞ in Eq. (1) and
setting t0 = 0 while changing the upper integration boundary
to ∞ leads to the same Redfield equation in the Schrödinger
picture. Expressing the left-hand side of Eq. (1) with respect
to the density operator in the Schrödinger picture, one finds

d

dt
[exp(iĤSt/h̄)ρ̂(t ) exp(−iĤSt/h̄)]

= exp(iĤSt/h̄)

(
d

dt
ρ̂(t ) + i

h̄
[ĤS, ρ̂(t )]

)
exp(−iĤSt/h̄).

(A1)

For the integrand on the right-hand side, one finds

[Ŝt , Ŝτ ρ̂I (t )] = exp(iĤSt/h̄)[Ŝ, Ŝτ−t ρ̂(t )] exp(−iĤSt/h̄).
(A2)

This leads to

d

dt
ρ̂(t ) = − i

h̄
[ĤS, ρ̂(t )]+

∫ t

t0

dτC(t − τ )[Ŝ, Ŝτ−t ρ̂(t )]+H.c.

(A3)

Making the variable transformation from τ to t − τ results in

d

dt
ρ̂(t ) = − i

h̄
[ĤS, ρ̂(t )] +

∫ t−t0

0
dτC(τ )[Ŝ, Ŝ−τ ρ̂(t )] + H.c.

(A4)

The upper integration boundary is only dependent on the dif-
ference t − t0. For t0 = −∞, this difference is ∞. The same
is true if we set t in the upper integration boundary to ∞ and
t0 = 0. The lower integration boundary is always 0.

APPENDIX B: STEADY-STATE SOLUTION
OF THE NATHAN-RUDNER EQUATION

IN THE ULTRAWEAK COUPLING LIMIT

In the main text, in Sec. IV, we have analyzed the validity
of the NRE numerically for the damped harmonic oscillator
coupled to an Ohmic bath with a Drude cutoff. The numerical
analysis indicates that for this specific model, the NRE yields
the exact steady state in the ultraweak coupling limit, which
is equal to the canonical Gibbs state of the system. In this
Appendix, we show analytically that this is true for arbitrary
systems, just as it is for the Redfield equation. With this, we
repeat the analysis of Refs. [35,37] where the authors obtained
the steady-state solution of the NRE up to second order in the
coupling strength. To do that, we start from the steady-state
solution of the Nathan-Rudner Eq. (14),

0 = − i

h̄
[ĤS + γ ˆ̃�N , ρ̂N ] − γ

(
1

2
{ ˆ̃L† ˆ̃L, ρ̂N } + ˆ̃Lρ̂N ˆ̃L†

)
,

(B1)

where we have indicated explicitly that the generator is of
second order in the coupling

√
γ by writing L̂ = √

γ ˆ̃L and

�̂N = γ ˆ̃�N . For the steady state, we perform a perturbative
expansion up to second order in the coupling, ρ̂N � ρ̂N

0 +
γ ρ̂N

2 , and we arrange the terms in orders of γ . We arrive at

0 = − i

h̄

[
ĤS, ρ̂

N
0

] + γ

(
− i

h̄

([
ĤS, ρ̂

N
2

] + [ ˆ̃�N , ρ̂N
0

])

− 1

2

{ ˆ̃L† ˆ̃L, ρ̂N
0

} + ˆ̃Lρ̂N
0

ˆ̃L†

)
+ O(γ 2). (B2)

Since γ can take any (small) value, the zeroth and second
order have to vanish independently in Eq. (B2). The zeroth-
order contribution reads

0 = [
ĤS, ρ̂

N
0

] =
[ ∑

n

εn|n〉〈n|
∑

lk

〈l|ρ̂N
0 |k〉|l〉〈k|

]

=
∑

lk

〈l|ρ̂N
0 |k〉 (εl − εk )|l〉〈k|, (B3)

where |k〉 and εk denote an energy eigenstate and its energy,
respectively. It follows that 〈l|ρ̂N

0 |k〉 (εl − εk ) = 0 for all pairs
l and k. For l = k, this is always the case because �ll = εl −
εl = 0. This line of reasoning can also be used to show that
the diagonal entries of the commutator 〈l|[ĤS, ρ̂

N
2 ]|l〉 = 0 are

zero. For l �= k, when �lk �= 0, it follows that 〈l|ρ̂N
0 |k〉 = 0.

Therefore, ρ̂N
0 is diagonal in the energy eigenbasis and can be

written as ρ̂N
0 = ∑

n pn|n〉〈n|, with populations pn. In second
order, i.e., in linear order with respect to γ , using the Lamb
shift in Eq. (15), the commutator can be written as

[ ˆ̃�N , ρ̂N
0

] =
∑
mlk

f̃ (�ml ,�km)SlmSmk (pk − pl )|l〉〈k|, (B4)

where γ f̃ (�ml ,�km) = f (�ml ,�km). Again, the diagonal
entries of [ ˆ̃�N , ρ̂N

0 ] are zero because pk − pl vanishes for
l = k. The remaining parts of the second-order term can be
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written as{ ˆ̃L† ˆ̃L, ρ̂N
0

} = 4π2
∑
ilk

h̃(�li )h̃(�lk )SilSlk (pk + pi )|i〉〈k|

(B5)

and

ˆ̃Lρ̂N
0

ˆ̃L† = 4π2
∑
lk j

pkh̃(�lk )h̃(� jk )S jkSlk|l〉〈 j|, (B6)

where the system representation from Eq. (15) and√
γ h̃(�lk ) = h(�lk ) are used. Now we focus on the diagonal

elements of the second-order contribution, which yield an al-
gebraic equation for the populations pi. Combining Eqs. (B5)
and (B6) and using the fact that the diagonal elements of the
commutators in the second-order term of Eq. (B2) are zero,
one obtains

〈i|
(

− 1

2

{ ˆ̃L† ˆ̃L, ρ̂N
0

} + ˆ̃Lρ̂N
0

ˆ̃L†

)
|i〉

= 2π2
∑

l

(2plh(�il )
2 − 2pih(�li )

2). (B7)

Equation (B7) has the form of a rate equation, where h(�il )2

are the transition rates. We can use h(�) =
√

1
2π

J (�)/h̄
eβ�−1 , which

results in the detailed-balanced condition [4]

h(�li )2

h(�il )2
= −eβ�il − 1

eβ�li − 1
= e−β�li , (B8)

where J (−�) = −J (�) was employed. Inserting Eq. (B8),
Eq. (B7) can be simplified further. Since the resulting expres-
sion has to be equal to 0, one obtains∑

l

h(�il )
2(pl − pie

−β�li ) = 0. (B9)

As the rates are non-negative and the equation has to be equal
to 0 for all pi, the condition

pl

pi
= e−β�li (B10)

has to be satisfied. This can be rewritten as pl = pieβ(εi−εl ),
with εi and εl being eigenenergies of the system. With
the normalization condition

∑
l pl = 1, it follows that ρ̂N

0 =
exp(−βĤS )/ZS , where ZS is the partition function of the
system.

At finite coupling, the steady state of the NRE does not
correspond to the canonical Gibbs state anymore [35,36].
However, in this regime also the thermal state of the system
and bath does not correspond to the canonical Gibbs state of
the system, but to a state that can be expressed as a Gibbs
state of the so-called Hamiltonian of mean force. As we have
discussed in the main text, in Sec. IV B, neither the Redfield
nor the Nathan-Rudner steady state corresponds to this exact
steady state at finite coupling (though the Redfield equation at
least possesses the correct second-order coherences [10]).

APPENDIX C: TIME-INDEPENDENT GENERATOR

In this Appendix, we explicitly state the time-independent
generators for the Redfield equation and RWA for the damped
harmonic oscillator in an Ohmic bath with a Drude cutoff,

where Ŝt from Eq. (2) is replaced with Ŝ∞, which is the limit
of Ŝt for t approaching infinity.

At a microscopic level, the bath is modeled as a continuum
of harmonic oscillators. Therefore, the bath Hamiltonian reads
ĤB = ∑

n h̄ωn(b̂†
nb̂n + 1

2 ), where b̂†
n and b̂n are creation and

annihilation operators of the harmonic oscillators in the bath.
The one-dimensional position operator x̂ of the system

will be used as the coupling operator Ŝ. The other coupling
operator B̂ will be modeled as B̂ = ∑

n κnx̂n, with x̂n being
the position operators of the harmonic oscillators of the bath,
and κn are the corresponding coupling strengths [4]. With
these definitions and by assuming that the bath is in the
canonical Gibbs state ρ̂B = exp(−βĤB)/TrB( exp(−βĤB))
at inverse temperature β, the bath correlation func-
tion C(τ ) can be expressed with the spectral density
J (�) = ∑

n |κn|2δ(� − h̄ωn) [4,30], so that

C(τ ) =
∫ ∞

−∞

d�

h̄

J (�)/h̄

eβ� − 1
ei�τ/h̄. (C1)

To calculate the matrix elements of the convoluted operator
Ŝ∞, it is convenient to introduce the eigenbasis of the system.
The matrix elements are then given by (Ŝ∞)lk = G∞(�lk )xlk

with the energy difference �lk between the eigenstates |l〉 and
|k〉 and the position operator matrix elements xlk . G∞(�) is
the half-sided Fourier transform of the bath correlation func-
tion C(τ ). Rewriting and changing the order of integration
results in

G∞(�) = 1

h̄2

∫ ∞

−∞

d�

h̄

J (�)/h̄

eβ� − 1

∫ ∞

0
dτei(�−�)τ/h̄. (C2)

By making use of the Sokhotski-Plemelj formula [55]∫ ∞

0
dτei(�−�)τ/h̄ = h̄

(
πδ(� − �) − iP 1

� − �

)
, (C3)

FIG. 9. Dynamical error d (ρ̂E , ρ̂X ) of the different master equa-
tions for Ec = 5h̄ω for a range of values of γ using exemplary values
for β. (a) Plot of d (ρ̂E , ρ̂R ) for specific values of β. (b) Plot of
d (ρ̂E , ρ̂N ) for specific values of β.
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where δ(·) is the Dirac delta function and P is the principal
value, G∞(�) can be divided into real and imaginary parts,

G∞(�) = π
J (�)/h̄

eβ� − 1
− iP

∫ ∞

−∞
d�

1

� − �

J (�)/h̄

eβ� − 1

= Gr
∞(�) + iGi

∞(�). (C4)

The spectral density J (�) is now assumed to be a smooth
function. For our analysis, we use an Ohmic bath with a
Drude cutoff function [Eq. (18)]. Using this model, an analytic
expression for Gi

∞(�) can be obtained [30],

Gi
∞(�) = −γ�2Ec

2h̄
(
E2

c +�2
) + (�/h̄)γ

( −E2
c

2
(
E2

c + �2
) cot(βEc/2)

+ 2

β

∞∑
l=1

νl(
�2 + ν2

l

)(
1 − ν2

l /E2
c

))
, (C5)

with the Matsubara energies defined as νl = 2π l/β. The spec-
tral density J (�) is now assumed to be a smooth function.

To see how the accuracy of the Redfield equation changes
when we use the time-independent generator, we have
reproduced Fig. 4(d) in Fig. 9(a), this time using the time-
independent generator. The figure shows the dynamical error
of the Redfield equation for varying values of γ , using ex-
emplary values of β. Again, we have included the same plot
for the Nathan-Rudner equation using the same exemplary
values for β, which can be seen in Fig. 9(b). Compared
to the time-dependent case, the Nathan-Rudner equation de-
livers comparable results to the Redfield equation and even
outperforms it in the low-temperature regime. This implies,
that much of the advantage that the Redfield equation has
in reproducing the transient dynamics of the system comes
from the fact that it is not limited to the time-dependent
case.
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[31] D. Davidović, Geometric-arithmetic master equation in large
and fast open quantum systems, J. Phys. A 55, 455301 (2022).

[32] A. D’Abbruzzo, V. Cavina, and V. Giovannetti, A time-
dependent regularization of the Redfield equation, SciPost
Phys. 15, 117 (2023).

[33] A. D’Abbruzzo, D. Farina, and V. Giovannetti, Recovering
complete positivity of non-Markovian quantum dynamics with
Choi-proximity regularization, Phys. Rev. X 14, 031010 (2024).

[34] F. Nathan and M. S. Rudner, Quantifying the accuracy of steady
states obtained from the universal Lindblad equation, Phys. Rev.
B 109, 205140 (2024).

[35] J. S. Lee and J. Yeo, Comment on “Universal Lindblad equation
for open quantum systems,” arXiv:2011.00735.

[36] F. Nathan and M. S. Rudner, Response to “Comment on
universal Lindblad equation for open quantum systems”,
arXiv:2011.04574.

[37] J. S. Lee and J. Yeo, Perturbative steady states of completely
positive quantum master equations, Phys. Rev. E 106, 054145
(2022).

[38] D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha, Search-
ing for Lindbladians obeying local conservation laws and
showing thermalization, Phys. Rev. A 107, 062216 (2023).

[39] A. Colla and H.-P. Breuer, Open-system approach to nonequi-
librium quantum thermodynamics at arbitrary coupling, Phys.
Rev. A 105, 052216 (2022).

[40] P. Hänggi and G.-L. Ingold, Fundamental aspects of quantum
Brownian motion, Chaos 15, 026105 (2005).

[41] F. S. Nathan, Topological phenomena in periodically driven
systems, Ph.D. thesis, Niels Bohr Institute, University of
Copenhagen, 2018.

[42] B. Vacchini, Test particle in a quantum gas, Phys. Rev. E 63,
066115 (2001).

[43] A. Caldeira and A. Leggett, Quantum tunnelling in a dissipative
system, Ann. Phys. 149, 374 (1983).

[44] R. Karrlein and H. Grabert, Exact time evolution and master
equations for the damped harmonic oscillator, Phys. Rev. E 55,
153 (1997).

[45] F. Haake and R. Reibold, Strong damping and low-temperature
anomalies for the harmonic oscillator, Phys. Rev. A 32, 2462
(1985).

[46] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion
in a general environment: Exact master equation with nonlocal
dissipation and colored noise, Phys. Rev. D 45, 2843 (1992).

[47] H. Grabert, U. Weiss, and P. Talkner, Quantum theory of the
damped harmonic oscillator, Z. Phys. B 55, 87 (1984).

[48] H. Grabert, P. Schramm, and G.-L. Ingold, Quantum Brownian
motion: The functional integral approach, Phys. Rep. 168, 115
(1988).

[49] J. P. Paz, Physical origins of time asymmetry, in Decoherence
in Quantum Brownian Motion (Cambridge University Press,
Cambridge, 1994), Vol. 1, pp. 213–220.

[50] C. Zerbe and P. Hänggi, Brownian parametric quantum oscilla-
tor with dissipation, Phys. Rev. E 52, 1533 (1995).

[51] S. Maniscalco, F. Intravaia, J. Piilo, and A. Messina, Misbeliefs
and misunderstandings about the non-Markovian dynamics of a
damped harmonic oscillator, J. Opt. B 6, S98 (2004).

[52] G. Homa, A. Csordás, M. A. Csirik, and J. Z. Bernád, Range of
applicability of the Hu-Paz-Zhang master equation, Phys. Rev.
A 102, 022206 (2020).

[53] I. de Vega and D. Alonso, Dynamics of non-Markovian open
quantum systems, Rev. Mod. Phys. 89, 015001 (2017).

[54] D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha, Funda-
mental limitations in Lindblad descriptions of systems weakly
coupled to baths, Phys. Rev. A 105, 032208 (2022).

[55] E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York,
1998).

064319-11

https://doi.org/10.1103/PhysRevA.100.012107
https://doi.org/10.22331/q-2020-09-21-326
https://doi.org/10.1103/PhysRevB.102.115109
https://doi.org/10.1103/PhysRevE.104.014110
https://doi.org/10.1088/1751-8121/ac9f30
https://doi.org/10.21468/SciPostPhys.15.3.117
https://doi.org/10.1103/PhysRevX.14.031010
https://doi.org/10.1103/PhysRevB.109.205140
https://arxiv.org/abs/2011.00735
https://arxiv.org/abs/2011.04574
https://doi.org/10.1103/PhysRevE.106.054145
https://doi.org/10.1103/PhysRevA.107.062216
https://doi.org/10.1103/PhysRevA.105.052216
https://doi.org/10.1063/1.1853631
https://doi.org/10.1103/PhysRevE.63.066115
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1103/PhysRevE.55.153
https://doi.org/10.1103/PhysRevA.32.2462
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1007/BF01307505
https://doi.org/10.1016/0370-1573(88)90023-3
https://doi.org/10.1103/PhysRevE.52.1533
https://doi.org/10.1088/1464-4266/6/3/016
https://doi.org/10.1103/PhysRevA.102.022206
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevA.105.032208

