
PHYSICAL REVIEW B 110, 064317 (2024)
Editors’ Suggestion

Apparent delay of the Kibble-Zurek mechanism in quenched open systems
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We report an intermediate regime in the quench time, τq, separating the usual validity of the Kibble-Zurek
mechanism (KZM) and its breakdown for rapid quenches in open systems under finite quench protocols. It
manifests in the power-law scaling of the transition time with τq as the system appears to enter the adiabatic
regime, even though the ramp is already terminated and the final quench value is held constant. This intermediate
regime, which we dub the delayed KZM, emerges due to the dissipation, preventing the system from freezing in
the impulse regime. This results in a large delay between the actual time the system undergoes a phase transition
and the time inferred from a threshold-based criterion for the order parameter, as done in most experiments.
We demonstrate using the open Dicke model and its one-dimensional lattice version that this phenomenon is a
generic feature of open systems that can be mapped onto an effective coupled oscillator model. We also show that
the phenomenon becomes more prominent near criticality, and its effects on the transition time measurement can
be further exacerbated by large threshold values for an order parameter. Due to this, we propose an alternative
method for threshold-based criterion which uses the spatiotemporal information, such as the system’s defect
number, for identifying the transition time.
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I. INTRODUCTION

Initially formulated to describe the evolution of topolog-
ical defects in the early universe [1–3], the Kibble-Zurek
mechanism (KZM) has been successful in describing the de-
pendence of the defect number and duration of a continuous
phase transition on the quench timescale, τq [4]. In particu-
lar, the theory has been tested in multiple platforms, ranging
from atomic Bose-Einstein condensates [5–13], spin systems
[14–17], Rydberg atom setups [18,19], and trapped-ion sys-
tems [20,21]. It has also been tested in dissipative quantum
systems [17,22–28], and has recently been extended to include
generic nonequilibrium systems [29–31].

Under the standard KZM, a generic closed system with a
continuous phase transition has a diverging relaxation time,
τ , and correlation length, ξ , as it approaches its critical point,
λc. In particular, one expects τ and ξ to scale as τ ∝ |ε|−vz

and ξ ∝ |ε|−v [4], respectively, where ε = (λ − λc)/λc is the
reduced distance of the control parameter, λ, from the critical
point, while v and z are the static and dynamic critical ex-
ponents, respectively. It is then expected that if the system is
linearly quenched via a ramp protocol, ε = t/τq, the system
will become frozen near λc due to τ diverging. This motivates
the introduction of the adiabatic-impulse (AI) approximation,
where the system’s dynamics are classified into two regimes
[4]. Far from λc, the system is in an adiabatic regime, in which
its macroscopic quantities adiabatically follow the quench.
Near λc, the system enters the impulse regime, wherein all
relevant observables remain frozen even after passing λc. It
only reenters the adiabatic regime and transitions to a new
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phase after some finite time referred to as the freeze-out time,
t̂ , has passed [4]. This occurs after the system reaches the
AI crossover point, ε(t̂ ), setting t̂ ∼ τ (ε(t̂ )) [4]. The KZM
predicts that, due to the scaling of τ , t̂ and ε(t̂ ) must follow
the scaling laws [4]

t̂ ∝ τ
vz

1+vz
q , ε(t̂ ) ∝ τ

− 1
1+vz

q . (1)

While the standard KZM has been successful in explaining
the dynamics of continuously quenched systems, studies on
systems with finite quenches have shown that the mechanism
breaks down if the quench terminates quickly at a certain
value, ε f [32–40]. In particular, t̂ and ε(t̂ ) saturate at a finite
value as τq → 0, with ε(t̂ ) = ε f , and thus t̂ ∼ τ (ε f ) [40]. In
Ref. [40], this breakdown of the KZM is predicted to occur
at some critical quench time τq,c = t̂fast/ε f , where t̂fast is the
saturation value of t̂ in the sudden quench limit, τq → 0.

Measuring the exact value of t̂ and ε(t̂ ) is a nontrivial task
unlike defect counting due to the limitations in detecting the
exact time a system reenters the adiabatic regime. As such,
it is common to employ a threshold criterion and measure
instead the transition time, t̂th, which is the time it takes for
an order parameter to reach a given threshold after passing λc.
The crossover point at the transition time, ε(t̂th ), is similarly
defined. For a sufficiently small threshold value, it is assumed
that t̂th is a good approximation for t̂ . While this method is
successful in showing the power-law scaling of t̂th and ε(t̂th )
as a function of τq [5,10,12,28,32,37,41], it remains unclear
whether the inherent deviation between t̂ and t̂th does not lead
to any significant effects on the scaling of the KZM quantities
for any generic quench protocols.

In this paper, we report an intermediate regime separating
the breakdown and validity of the KZM appearing in open
systems under a finite quench protocol depicted in Fig. 1(a). In
this regime, the transition time follows the power-law scaling
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FIG. 1. Sketch of a generic open system undergoing a continuous
phase transition. (a) A finite ramp protocol is applied on a system
initialized in the normal phase. (b) The quench modifies the effective
potential experienced by the system represented by the ball. This
pushes the system to enter a symmetry-broken phase at t̂ after the
ramp passes the critical point ε(t = 0) = 0. The transition, however,
is only detected after the system’s order parameter reaches the set
threshold value, marked by vertical dashed lines, at t̂th.

predicted by the KZM even though the system appears to relax
after the quench has terminated, as illustrated in Fig. 1(b). As
we will show later, this regime manifests precisely due to the
dissipation exacerbating the deviation between the freeze-out
time and the transition time, leading to a delay in the detec-
tion of the phase transition, as schematically represented in
Fig. 1(b). We demonstrate using the open Dicke model (DM)
[42,43] and its one-dimensional lattice extension, the open
Dicke lattice model (DLM) [44] that the range of τq where we
observe this “delayed” KZM is a generic feature of open sys-
tems with finite dissipation strength, κ . We also show that the
delayed KZM is more prominent near criticality and that its
signatures become more significant for large threshold values
for an order parameter. Thus, our paper highlights subtleties of
the KZM in open systems in finite quench scenarios relevant
to experiments.

The paper is structured as follows. In Sec. II, we intro-
duce a minimal system that can exhibit the delayed KZM
when quenched at intermediate values of τq. By deriving an
effective potential for the minimal system, we show that the
phenomenon is due to a relaxation mechanism induced by the
dissipation of the system. Then, using the open DM and open
DLM as a test bed, we demonstrate in Sec. III that the delayed
KZM is a generic feature of open systems under a finite
quench and that the phenomenon becomes more prominent
near criticality. In Sec. IV, we explore how the deviations
brought by the delayed KZM can be further exacerbated with
large thresholds for order parameters and propose an alter-
native method for measuring the transition time beyond the
threshold-based criterion. We provide a summary and possible
extensions of our work in Sec. V.

II. DELAYED KZM: THEORY

Consider a generic open system with a continuous
phase transition that is described by the Lindblad master
equation [45],

∂t ρ̂ = −i[Ĥ (ε(t ))/h̄, ρ̂] + Dρ̂, (2)

FIG. 2. (a) Sketch of the open COS. (b) Scaling of t̂th and ε(t̂th ) as
a function of τq for κ = 0.1ω. The vertical dashed line corresponds
to τq,c, while the solid line corresponds to τ ∗

q,c. (c) Boundary of the
delayed KZM as a function of κ . The remaining parameters are set
to ε f = 0.2 and |a|2th = 2.

where Dρ̂ = ∑

 κ
(2L̂
ρ̂L̂†


 − {L̂†

 L̂
, ρ̂}) is the dissipator and

Ĥ (ε(t )) is the time-dependent Hamiltonian of the system.
The system undergoes a phase transition from a normal
phase (NP), in which the global symmetry of the system is
preserved, to a symmetry-broken phase via a finite quench
protocol,

ε(t ) =
{

t/τq ti � t � ε f τq

ε f ε f τq < t � t f ,
(3)

where ti = −τq and t f are the initial and final time of the
quench. In the following, we demonstrate that if the system
can be approximated as or mapped onto an effective coupled
oscillator system (COS), with at least one dissipative channel,
as sketched in Fig. 2(a), then we should observe a finite
range of τq where the deviation between t̂ and t̂th becomes
significant enough that we get a contradictory behavior be-
tween the scaling of the transition time and crossover point.
To observe the dynamics of the systems considered in this
paper, we will use a mean-field approach and assume that
for any operators, Â and B̂, 〈ÂB̂〉 ≈ 〈Â〉〈B̂〉. This allows us to
treat any operators as complex numbers and use the notation
A ≡ 〈Â〉. We numerically integrate the systems’ mean-field
equations in Appendix A using a standard fourth-order Runge
Kutta algorithm with a time step of ω
t = 0.01, where ω is
a frequency associated to the dissipative channel, as we will
show later.

The Hamiltonian of the COS is

ĤCOS

h̄
= ωâ†â + ω0b̂†b̂ + λ(t )(â† + â)(b̂ + b̂†), (4)

where ω and ω0 are the transition frequencies associated with
the bosonic modes â and b̂, respectively, and λ(t ) is the
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coupling strength between the two modes. The â mode is
subject to dissipation, which is captured in the master equa-
tion by the dissipator Dρ̂ = κ (2âρ̂â† − {â†â, ρ̂}). The COS
has an extensive application in multiple settings, such as—but
not limited to—cavity-magnon systems [46,47], atom-cavity
systems [42,43,48,49], and spin systems [50,51].

The open COS has two phases: the NP, which corre-
sponds to a steady state with a = b = 0, and an unbounded
state where both modes exponentially diverge as t → ∞
[42]. When nonlinearity is present, the unbounded state can
be associated with a symmetry-broken phase in which the
modes choose a new steady state depending on their ini-
tial values. These two states are separated by the critical
point [42]:

λc = 1

2

√
ω0

ω
(κ2 + ω2). (5)

To show that the COS is a minimal model that can ex-
hibit the KZM and its subsequent breakdown at small τq,
we consider its dynamics as it transitions from the NP to
the unbounded state. We do this by initializing the system
near the steady state of NP, a0 = −b0 = 0.01. We then ap-
ply the quench protocol in Eq. (3) onto the COS and track
the dynamics of the occupation number of the â mode, |a|2.
We finally determine t̂th by identifying the time it takes for
|a|2 to reach the threshold value, |a|2th, after the ramp passes
ε(t = 0) = 0. The crossover point at the transition time is then
inferred back from t̂th using Eq. (3). We present in Fig. 2(b)
the scaling of t̂th and ε(t̂th ) as a function of τq. We can observe
that for large τq, or slow quench, all relevant quantities follow
the power-law scaling predicted by the KZM. As we decrease
τq, ε(t̂th ) begins to saturate at a larger critical quench time,
τ ∗

q,c, than t̂th, as indicated by the solid line in Fig. 2(b). Fi-
nally, as τq → 0, t̂th approaches a constant value after passing
another critical quench time, τq,c, denoted in Fig. 2(b) as
a dashed line. Note that the fluctuations in the scaling of
t̂th and ε(t̂th ) can be attributed to the mean-field approach,
which neglects any quantum fluctuation in the system’s dy-
namics. The scaling behavior of t̂th and ε(t̂th ) implies that
within the range τq,c < τq � τ ∗

q,c, there exists an intermedi-
ate regime between the true breakdown and the validity of
the KZM, wherein the KZM remains valid even though the
system appears to relax well after the quench has terminated.
As shown in Fig. 2(c), this intermediate regime vanishes
as κ → 0, highlighting that this is a dissipation-induced
effect.

We can understand this apparent contradiction between the
scaling of the t̂th and ε(t̂th ) by looking at the dynamics of |a|2
as the ramp crosses over ε = 0. In Fig. 3(a), we present an
exemplary dynamics of |a|2 in the logarithmic scale for the
regime τq,c < τq � τ ∗

q,c. Notice that before the system enters
the unbounded state, |a|2 first exponentially decays towards
its steady state, indicating that the system does not freeze in
the impulse regime. This dynamics is reminiscent of systems
relaxing towards the global minimum of their energy surface
due to dissipation, as sketched in Fig. 1(b). We can further
establish this connection by obtaining the potential surface of
the COS, which we can do by substituting the pseudoposition

FIG. 3. (a) (Top panel) Ramp protocol for ωτq = 500 and ε f =
0.2. The circle point indicates ε(t̂ ) while the diamond point marks
ε(t̂th ). Bottom panel: Exemplary dynamics of |a|2 in the τq-regime of
the delayed KZM for κ = 0.1ω. The vertical dashed lines correspond
to ωt̂ , while the solid lines represent ωt̂th for a threshold of |a|2th = 2.
(b), (c) potential surface of the open COS for (b) ε(t ) < 0, (c) ε(t ) =
0, and (d) ε(t ) > 0.

and momentum operators for the â mode,

x̂ = 1√
2ω

(â† + â), p̂x = i

√
ω

2
(â† − â), (6)

and the b̂ mode,

ŷ = 1√
2ω0

(b̂† + b̂), p̂y =
√

ω0

2
(b̂† − b̂), (7)

back to Eq. (4). Note that for the remainder of this section,
we set h̄ = 1 for brevity. With this substitution, the COS
Hamiltonian becomes

ĤCOS = p̂2
x

2
+ p̂2

y

2
+ V̂ (x̂, ŷ), (8)

where

V̂ (x̂, ŷ) = 1
2ω2x̂2 + 1

2ω2
0 ŷ2 + 2

√
ωω0λx̂ŷ (9)

is the effective potential of the COS in the closed system
limit, κ = 0. In this limit, the potential surface has a global
minimum at x̂ = ŷ = 0 when λ < λc = √

ωω0/2, as shown in
Fig. 3(b). It then loses its global minimum when λ = λc as
sketched in Fig. 3(c). Finally, the global minimum becomes a
saddle point when λ > λc, as shown in Fig. 3(d). Note that in
the presence of dissipation, the COS effective potential only
becomes modified such that the critical point becomes Eq. (5),
while the structure of the potential surface remains the same
due to Eq. (8) being quadratic.

With the above picture, we can now interpret the relaxation
mechanism observed in Fig. 3(a) as follows. Suppose that we
initialize our system such that λ < λc and the initial states
of â and b̂ modes are close to the global minimum of V̂ . In
the mean-field level, if κ = 0, we can expect that the system
will oscillate around the global minimum of V̂ as we increase
λ using the finite ramp protocol defined in Eq. (3), together
with the modification of the COS potential surface. As we
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FIG. 4. (a), (b) Sketch of the (a) open Dicke model and the (b) open Dicke lattice model with periodic boundary conditions. (c)–(e)
Exemplary dynamics of the (c) occupation number, (d) phase of the â mode, and (e) Sx of the quenched open Dicke model for ωτq = 1000
and ε f = 0.2. (f)–(h) Exemplary steady-state spatial distribution of the (f) occupation number, (g) phase of the â
 mode, and (h) Sx


 of the open
Dicke lattice model in the SR phase. (i), (j) Signatures of the delayed KZM for the (i) open DM and (j) open DLM. Top panel: Scaling of t̂th as
a function of τq for κ = 0.1ω. The vertical dashed lines represent τq,c, while the solid lines corresponds to τ ∗

q,c. Bottom panel: The boundary
of the delayed KZM regime as a function of κ . The remaining parameters are set to ε f = 0.2 and |a|2th = 2 for the open DM, and J = 0.1ω,
ε f = 0.25, and |a|2th/M = 2, with M = 500 sites, for the open DLM.

cross λc, the global minimum of V̂ becomes a saddle point. As
such, any deviation of the initial state from the origin would
eventually push the system to either the positive x̂ and −ŷ
direction or vice versa, signaling the spontaneous symmetry
breaking of the system.

In the presence of dissipation, however, the system can
still relax to the global minimum before the quench reaches
λc for sufficiently large quench timescales τq > τq,c. As a
result, the slow deformation of the effective potential allows
for the system to remain near a = b = 0 even after passing the
critical point where the potential loses its global minimum.
The nudge from the system’s initial state eventually pushes
the system towards a new minimum as the quench progresses,
signaling the phase transition. This approach, however, only
becomes detectable when |a|2 reaches |a|2th, which occurs only
after the linear ramp has terminated. Thus, we observe the
saturation of the crossover point at ε f even though t̂th follows
the predicted scaling of the KZM, which hints that the system
entered the adiabatic regime within the duration of the ramp.
Note that the relaxation mechanism is not present in the closed
limit, as hinted by the regime vanishing in Fig. 2(c) as κ → 0.
The delay between t̂ and t̂th at finite τq motivates us to call this
phenomenon delayed KZM.

In the next section, we will show that the delayed KZM is
a generic feature of open systems that can be mapped onto an
effective COS. Moreover, we will demonstrate that not only
is the delayed KZM induced purely by dissipation but it also
becomes more prominent when the system is quenched near
criticality, ε f ≈ 0.

III. DELAYED KZM IN OPEN SYSTEMS

A. Signatures of the delayed KZM

We now test whether the delayed KZM is a generic feature
of open systems by considering two fully connected sys-
tems: the open DM, schematically represented in Fig. 4(a),
and its one-dimensional lattice version, the open DLM, as
shown in Fig. 4(b). Both systems are described by the master
equation in Eq. (2), with the Hamiltonian of the open DM
being [42,43]

ĤDM

h̄
= ωâ†â + ω0Ŝz + 2λ(t )√

N
(â + â†)Ŝx, (10)

while the Hamiltonian of its M-site lattice version with peri-
odic boundary conditions takes the form [44]

ĤDLM

h̄
= 1

h̄

M∑



ĤDM

 − J

M∑
〈i, j〉

(â†
i â j + â†

j âi ). (11)

The open DM has the same dissipator as the open COS, while
the dissipator of the open DM is Dρ̂ = κ

∑M

 (2â
ρ̂â†


 −
{â†


 â
, ρ̂}) [44]. The open DM describes the dynamics of N
two-level systems, represented by the collective spin opera-
tors Ŝx,y,z, coupled to a dissipative bosonic mode, â, which
in cavity-QED experiments corresponds to a photonic mode
[28,41,43,48]. In both systems, ω and ω0 are the bosonic
and spin transition frequencies, respectively, and λ is the
spin-boson coupling, while J represents the nearest-neighbor
interaction in the open DLM.
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In equilibrium, the open DM has two phases: the NP and
the superradiant (SR) phase [42,43]. The NP is character-
ized by a fully polarised collective spin at the −z direction,
i.e., Sz = −N/2, and a zero total occupation number, |a|2.
Meanwhile, the SR phase is associated with the Z2 symmetry
breaking of the system, leading to a nonzero Sx and |a|2, with
Sx (a) picking a random sign (phase) from the two degenerate
steady states of the system [43]. The two phases are separated
by the same critical point as the open COS [43]. Under a finite
quench, however, the open DM exhibits nontrivial dynamics
as it transitions from the NP to the SR phase. We present in
Figs. 4(c)–4(e) an exemplary dynamics of the total occupation
number, |a|2, and the phase of the bosonic mode, ϕ, and Sx

of the open DM for ωτq = 1000. We initialized the system
near the steady state of the NP, where the initial values of the
bosonic mode are a = 0.01, while the collective spin opera-
tors are

Sx(ti ) = N

2
δ, Sy(ti ) = 0, Sz(ti ) = −N

2

√
1 − δ2, (12)

where δ is a perturbation set to δ = 0.01. We can observe
that when the system is in the NP, the occupation number
approaches the NP steady state, a = 0, which is consistent
with our predicted behavior from the potential surface inter-
pretation of phase transition in an open system, which we
describe in Sec. II. In addition, the phase of the bosonic mode
oscillates from −π to π , while the Sx remains close to Sx = 0.
As ε(t ) > 0 at t > 0, the system enters the SR phase, which
results in ϕ spontaneously admitting a finite value as the |a|2
starts to exponentially grow until t = ε f τq, where the ramp
terminates. At that point, the |a|2 finally saturates at the steady
state of the SR phase. Meanwhile, the transition of Sx from its
behavior in the NP to the SR phase only becomes prominent
at a later time. We will further expand on the implication of
the behavior of these order parameters later in Sec. IV.

As for the open DLM, for small values of J , the interaction
between the open DMs modifies the λc into a critical line [44]:

λc = 1

2

√
ω0(ω − 2J )

(
1 + κ2

(ω − 2J )2

)
. (13)

Moreover, suppose that we drive the open DLM from the NP
to the SR phase using a finite quench after initializing it near
the steady state of NP. Specifically, we initialize the collective
spins at Sx,y,z


 = Sx,y,z(t = ti ), while the bosonic modes are
initialized at the vacuum state, which can be represented as
a complex Gaussian variable a
 = 1

2 (ηR

 + ηI


), where ηR,I



are random numbers sampled from a Gaussian distribution
satisfying 〈ηi


〉 = 0 and 〈ηi

η

j
m〉 = δi, jδ
,m for i, j = R, I [52].

Then, as the system enters the SR phase, each site can in-
dependently pick between the two degenerate steady states
available, allowing for the formation of domains and point de-
fects, the number of which depends on the correlation length
of the system. We present in Figs. 4(f)–4(h) the exemplary
spatiotemporal dynamics of |a
|2, ϕ
, and Sx


 of the open DLM
after doing a finite quench towards the SR phase. We can
observe that the point defects can manifest either as dips in
the occupation number, phase slips in the spatial profile of ϕ
,
or domain walls in Sx


 . Note that the defect number Nd follows
the predicted KZM power-law scaling with τq, which we

demonstrate in Appendix B. Since the notion of topological
defects is well-defined in the open DLM, it serves as a good
test bed for the delayed KZM for systems with short-range
interaction. This is in addition to the open DM, which has been
experimentally shown to exhibit signatures of the KZM [28]
despite the open question of its nonequilibrium universality
class [53,54].

We now present in Figs. 4(i) and 4(j) the scaling of t̂th and
ε(t̂th ) as a function of τq for the open DM and open DLM,
respectively. Similar to the COS, the t̂th for both systems is
inferred from the total occupation number, which for the open
DLM is explicitly defined as |a|2 = ∑


 |a
|2. Notice that both
systems exhibit the signatures of the delayed KZM, where t̂th
continues with its KZM power-law scaling as ε(t̂th ) saturates
for intermediate values of τq. They also exhibit the closing of
the boundary of the delayed KZM as we decrease κ . We can
understand the emergence of the delayed KZM in these two
systems by noting that the open DM can be mapped exactly
into the COS in the thermodynamic limit, N → ∞. We can
do this by applying the approximate Holstein-Primakoff rep-
resentation (HPR) [42,43],

Ŝz = N

2
, Ŝ− =

√
N

⎛
⎝

√
1 − b̂†b̂

N

⎞
⎠b̂ ≈

√
Nb̂, (14)

on Eq. (10) to reduce it onto the COS Hamiltonian in Eq. (4)
up to a constant term.

Meanwhile, we can transform the open DLM into a set
of COS in the thermodynamic limit by first substituting the
approximate HPR of the collective spins to Eq. (11), noting
that Ŝz,± → Ŝz,±


 and b̂ → b̂
 [44]. This leads to a Hamiltonian
of the form

ĤDLM

h̄
≈ 1

h̄

M∑



ĤCOS

 − J

∑
〈i, j〉

(â†
i â j + â†

j âi ). (15)

We then perform a discrete Fourier transform,

âk = 1√
M

∑



eik
â
, b̂k = 1√
M

∑



eik
b̂
, (16)

on Eq. (15) to obtain an effective Hamiltonian,

ĤDLM

h̄
≈ 1

h̄

∑
k

ĤOM
k , (17)

where

ĤOM
k

h̄
= ωkâ†

k âk + ω0b̂†
kb̂k + λ(â†

k b̂k + â−kb̂k + H.c.) (18)

is the Hamiltonian of each uncoupled oscillator at the mo-
mentum mode k and ωk = ω − 2J cos(k). In this form, we
can easily observe that the open DLM has a similar structure
to the COS, with the similarity being more apparent at the
zero-momentum mode:

ĤOM
0

h̄
= (ω − 2J )â†

0â0 + ω0b̂†
0b̂0 + λ(â†

0 + â0)(b̂†
0 + b̂0).

(19)
These results show that the signatures of the delayed KZM can
appear not only in the open DM but also in the open DLM,
where both short-range interactions between the sites and
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FIG. 5. (a) Dependence of the occupation number decay rate of
the open DLM on τq for ε f = 0.25 and κ = J = 0.1ω. The solid line
corresponds to the average value of γd from ωτq = 102 to ωτq = 104.
(b), (c) γ̄d as a function of (b) ε f for κ = 0.1ω and (c) κ for ε f =
0.25. The dashed lines correspond to the best-fit lines.

multiple degenerate steady states are present in the system. As
such, we confirm that the delayed KZM is a generic feature of
open systems under a finite quench that can be mapped onto a
COS, regardless of the interaction present in the system.

Since we have shown the generality of the delayed KZM on
open systems, we now explore in greater detail the dissipative
and near-critical nature of the delayed KZM in Sec. III B.

B. Dissipative and critical nature of the delayed KZM

In Sec. II, we have claimed that the dissipation is responsi-
ble for the relaxation mechanism that leads to the emergence
of the delayed KZM. This is also corroborated by the dis-
appearance of the delayed KZM regime in the closed limit,
implying that the phenomenon appears only at finite dissi-
pation strength, κ . We now explicitly demonstrate that this
claim is true for any generic open systems by calculating the
decay rate of the total occupation number, γd , as the system
approaches the critical point. We will then identify how γd

scales with ε f and κ . For the rest of this section, we will
only consider the open DLM, although our results here should
apply as well for both the COS and the open DM.

To determine the γd of the open DLM for a given κ and
ε f , we calculate the slope of the best-fit line of the logarithm
of |a|2 within the time interval [−0.75τq, 0]. The chosen time
window is arbitrary, but it ensures that the γd is inferred within
the duration that the system is in the impulse regime. We show
in Fig. 5(a) the dependence of γd with the quench time. We
can observe that γd is constant for large values of τq. As we
decrease τq, however, γd begins to fluctuate and eventually
decreases to a much lower value. We attribute the deviation of
γd from its constant value on the errors incurred in the best-fit
line of ln |a|2 for small values of τq. In particular, since we
only considered a simulation time step of ω
t = 0.01, the
small time window for these values of τq leads to smaller sets
of data points for |a|2, resulting to an overall poorer fit. Due
to this consideration, we only considered the data points from
ωτq = 102 to ωτq = 104 in calculating the average value of
the decay rate with τq, γ̄d .

We now present in Figs. 5(b) and 5(c) the behavior of
γ̄d as a function of ε f and κ , respectively. We can observe
that γ̄d remains constant for all values of ε f , implying that

FIG. 6. (a), (b) Scaling of (a) t̂th and (b) ε(t̂th ) of the open DLM
as a function of τq for different ε f . The dashed lines in (a) correspond
to the best-fit lines of t̂th for fast and slow quenches, with their
intersections marking τq,c. Meanwhile, the dashed lines in (b) denote
τ ∗

q,c. (c) Borders of the delayed KZM regime as a function of ε f . The
dashed line corresponds to the best-fit line of τ ∗

q,c. The remaining
parameters are κ = J = 0.1ω, and |a|2th/M = 2, with M = 500 sites.

the average decay rate of |a|2 is independent of the quench
protocol used in the system. Meanwhile, γ̄d has an inverse
relationship with κ , demonstrating that the relaxation mech-
anism responsible for the delayed KZM is indeed a direct
result of dissipation allowing the initial occupation number
in the dissipative bosonic mode to leak out of the system as
it remains in the impulse regime. For completeness, we check
the linear dependence of γ̄d with κ by fitting a line on it and
calculating the square of its Pearson correlation coefficient,
R2. By doing this, we obtain R2 = 0.9996, which indicates a
great fit between the best-fit line and the data points.

Given that ε f do not alter the behavior of the decay rate of
|a|2, it is natural to ask whether varying ε f has any significant
effect as well on the scaling of t̂th and ε(t̂th ), and on the sig-
natures of the delayed KZM. We answer the first question in
Figs. 6(a) and 6(b), where we show the scaling of t̂th and ε(t̂th ),
respectively, with τq for different values of ε f . We can see
that varying ε f does not significantly change the scaling of the
KZM quantities considered. However, the τ ∗

q,c, shown as solid
lines in Fig. 6(b), increases significantly as we decrease ε f .
This modification on τ ∗

q,c becomes more apparent in Fig. 6(c),
where we show the scaling of τq,c and τ ∗

q,c as a function of ε f .
Notice that both quantities are inversely proportional to ε f ,
with τ ∗

q,c dropping faster than τq,c as ε → ∞. As a result, the
delayed KZM regime vanishes for large ε f , highlighting that
its signatures become more apparent for strongly dissipative
systems quenched near criticality. We finally note that τ ∗

q,c
follows a power-law scaling as evidenced by the power-law
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FIG. 7. (a), (b) Scaling of (a) t̂th and (b) ε(t̂th ) of the open DM
as a function of τq for different values of |a|2th. (c) Boundary of
the delayed KZM regime as a function of κ for different |a|2. The
remaining parameters are set to ε f = 0.2 and κ = 0.1ω.

fit curve shown in Fig. 6(c). In particular, since τ ∗
q,c becomes

the true critical quench time separating the breakdown and
validity of the KZM at large ε f , we expect that it should follow
the power-law scaling [40]

τ ∗
q,c ∝ ε

−(vz+1)
f , (20)

which we show to be the case in Appendix B.
So far, we have shown that the presence of the delayed

KZM leads to a significant deviation between the true freeze-
out time, t̂ , and the transition time, t̂th. Given that the delayed
KZM becomes more prominent near criticality at strong
dissipation, we now address in the next section how the
threshold-based criterion for determining t̂th contributes to the
deviation and whether a more accurate method can be used to
measure t̂ .

IV. TRANSITION TIME MEASUREMENT

The threshold value used to determine the transition time
plays a role in the delay between t̂ and t̂th. In particular, we
can expect a longer delay for larger |a|2th since the system’s
order parameter has to reach a larger threshold value before
being detected. This intuition prompts the question of whether
decreasing the threshold value has any effect on the scaling of
t̂th and ε(t̂th ), and as to whether it can suppress the deviation
brought by the delayed KZM, and thus its signatures.

We answer the first question in Figs. 7(a) and 7(b), where
we present the scaling of t̂th and ε(t̂th ), respectively. For this
part, while we only consider the open DM, the results here
should apply to the COS and the open DLM as well. We can
observe that the scaling of t̂th and ε(t̂th ) do not significantly
change as we increase the threshold value. In particular, while
the t̂th is only shifted by a constant value as |a|2th increases,
both KZM quantities considered eventually collapse in a sin-
gle scaling as τq → ∞. As for the boundaries of the delayed
KZM regime, we can observe in Fig. 7(c) that the gap between

τq,c and τ ∗
q,c widens as we increase |a|2th, implying that the

delayed KZM becomes more prominent at large |a|2th.
We can understand the widening of the delayed KZM

regime for large |a|2th by noting that in an ideal setup where
t̂ can be accurately identified, the gap between τq,c and τ ∗

q,c
vanishes, and thus following the prediction in Ref. [40], τq,c =
τ ∗

q,c = t̂/ε f . Since for any threshold-based criterion, τ ∗
q,c =

t̂th/ε f and τq,c 
= τ ∗
q,c for large κ and small ε f , then

τ ∗
q,c − τq,c = 1

ε f
(t̂th − t̂ ). (21)

Let us assume that within the time interval [t̂, ε f τq], the
total occupation is exponentially growing such that |a|2 ∝
exp(γgt ), where γg is the growth rate of the total occupation
number. This assumption is supported by Fig. 4(c), where the
|a|2 of the open DM exponentially grows from the minimum
value to its saturation value. With this assumption, we can
infer that t̂th ∝ ln |a|2th/γg and t̂ ∝ ln |a|2min/γg, where |a|2min is
the minimum value of the total occupation number. Thus,

τ ∗
q,c − τq,c ∝ 1

ε f γg

(
ln |a|2th − ln |a|2min

)
, (22)

which implies that we can suppress the signatures of the
delayed KZM by setting |a|2th close to |a|2min.

Now, determining an optimal threshold value that sup-
presses the signatures of the delayed KZM may be difficult
to achieve as it requires prior knowledge of |a|2min for ar-
bitrary τq. This problem motivates the question of whether
an alternative method can be used to infer t̂ without relying
on any threshold-based criterion. As we have hinted in the
dynamics of the phase of the â mode of the open DM shown
in Fig. 4(d), we can do this by choosing an appropriate order
parameter that rapidly reaches its steady state upon the system
entering a phase transition. In the case of the open DM, this
order parameter corresponds to the boson mode’s phase, ϕ.
We demonstrate this method further in Figs. 8(b) and 8(c),
where we show that for nonzero dimensional systems, like the
open DLM, we can use the phase information of the â
 modes
to extract t̂ . As presented in Fig. 8(d), we can do this by deter-
mining the time at which either the defect number, Nd , or the
site-averaged phase begins to saturate. In the COS level, the
inferred t̂ for this method would be equivalent to the moment
the system picks a new global minimum it would fall onto,
signaling phase transition. Thus, we expect that if the system’s
phase information is available in an experimental setup, such
as in Ref. [55], then that can serve as a more sensitive tool for
detecting phase transitions compared to threshold-based order
parameters that depend on the mode occupations.

V. SUMMARY AND DISCUSSION

In this paper, we extend the Kibble-Zurek mechanism to
open systems under a finite quench and report an interme-
diate regime separating the breakdown and validity of the
KZM at fast and slow quench timescales, respectively. This
regime manifests as a continuation of the transition time’s
KZM power-law scaling at τq, where the system appears to
relax after the quench has terminated. As we have shown
using a coupled oscillator system, this phenomenon results
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FIG. 8. (a) Ramp protocol for the quench time within the τq-
regime of the delayed KZM for the open DLM. The circle point
marks ε(t̂ ), while the diamond point denotes ε(t̂th ). (b), (c) Spa-
tiotemporal dynamics of (b) the occupation number |a
|2 and (c) the
phase of the â
 mode, ϕ
. (d) Exemplary dynamics of the defect num-
ber and the site-averaged ϕ
. The vertical dashed lines correspond to
ωt̂ , while the solid lines represent ωt̂th. The remaining parameters
are set to ε f = 1.25, κ = J = 0.1ω, and |a|2th = 0.05|a|2s , where |a|2s
is the steady state of |a|2.

from the system’s relaxation towards the global minimum of
its potential due to dissipation. This mechanism effectively
hides the system’s crossover to the adiabatic regime, only to
be revealed once the system reaches the arbitrary threshold of
the order parameter.

Using the open DM and the open DLM, we have also
demonstrated that the delayed KZM is a generic feature of
open systems under finite quenches that can be mapped onto
a coupled oscillator system. Furthermore, we have shown that
the signatures of the delayed KZM, specifically the size of the
quench interval where the delayed KZM regime is observed,
become more prominent for small values of ε f , highlighting
the dissipative and near-critical nature of this phenomenon.
We have discussed the implications of the delayed KZM
in the context of the threshold-based criterion typically used
in experiments to measure the transition time and proposed an
alternative method to measure t̂ . Our proposed method only
relies on the spatialtemporal information of an appropriate
order parameter, such as the defect number and phase infor-
mation of the system’s bosonic modes, thus providing a more
sensitive tool for detecting phase transitions.

Our results extend the notion of the KZM to dissipative
systems with finite quench protocols beyond the limits of slow
and rapid quenches. It also provides a framework on how the
manifestation of the KZM can be altered in experimental pro-
tocols, wherein limitations in measuring the true AI crossover
become more relevant. Since our results are all in the mean-
field level, a natural extension of our paper is to verify whether
the delayed KZM would survive in the presence of quantum
fluctuations. It would also be interesting to test the signatures
of the delayed KZM in the quantum regime of the open DM
and the open DLM, and further explore their universality
classes beyond the mean-field level. These extensions can be

readily done in multiple platforms, including, but not limited
to, cavity-QED setups [28,41,56–58], nitrogen-vacancy center
ensembles [44,59–61], cavity-magnon systems [46,47], and
photonic crystals [62].
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APPENDIX A: MEAN-FIELD EQUATIONS
OF THE CONSIDERED SYSTEMS

To obtain the mean-field equations of the systems consid-
ered in the main text, we consider the master equation for the
expectation value of an arbitrary operator, Ô,

∂t
〈
Ô

〉 = i

〈[
Ĥ

h̄
, Ô

]
+ DÔ

〉
, (A1)

where Ĥ is the system’s Hamiltonian and DÔ =∑

 κ
(2L̂†


ÔL̂
 − {L̂†

 L̂
, Ô}) is the dissipator, with L̂
 being

the jump operators. We will also let A = 〈Â〉 for notation
convenience. Using this master equation, the mean-field
equation of the open COS is

∂t a = −i[ωa + λ(b + b∗)] − κa, (A2a)

∂t b = −i[ω0b + λ(a + a∗)]. (A2b)

As for the open Dicke model, its mean-field equations are

∂t a = −i

(
ωa + 2λ√

N
Sx

)
− κa, (A3a)

∂t S
x = −ω0Sy, (A3b)

∂t S
y = ω0Sx − 2λ√

N
(a∗ + a)Sz, (A3c)

∂t S
z = 2λ√

N
(a∗ + a)Sy. (A3d)

Note that for both the open COS and open DLM, the jump
operator is given to be L̂
 = L̂ = â. Finally, the mean-field
equations of the open DLM for a jump operator L̂
 = â
 is

∂t a
 = −i

[
ωa
 + 2λ√

N
Sx


 − J (a
−1 + a
+1)

]
− κa
, (A4a)

∂t S
x

 = −ω0Sy


, (A4b)

∂t S
y

 = ω0Sx


 − 2λ√
N

(a
 + a∗

 )Sz


, (A4c)

∂t S
z

 = 2λ√

N
(a
 + a∗


 )Sy. (A4d)

APPENDIX B: KZM EXPONENTS OF THE OPEN DICKE
LATTICE MODEL

One of the key predictions of the KZM is the power-law
scaling of the defect number as a function of τq [4],

Nd ∝ τ
−(D−d ) v

1+vz
q , (B1)
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FIG. 9. Scaling of the defect number, Nd , of the open DLM as a
function of τq, for different values of ε f . The vertical dashed lines
correspond to τq,c for a given ε f . The system parameters are set to
κ = J = 0.1ω.

where D and d are the dimensions of the system and the
topological defects, respectively. To demonstrate that the open
DLM satisfies the predicted KZM scaling for Nd , we present
in Fig. 9 the number of phase slips present in the system
for a given τq and ε f . We can observe that for large τq, Nd

follows a power-law scaling behavior with τq, emphasizing
that the system indeed follows the KZM at slow quenches,
which is consistent with the behavior of t̂ and ε(t̂ ) shown in
Figs. 6(a) and 6(b). Notice, however, that as we approach τq,c,
marked by the vertical dashed lines, Nd starts to fluctuate,
with the fluctuation becoming more significant as ε f → 0.
This behavior is akin to the presaturation regime observed
for closed systems under finite quench protocols [35]. As
to whether this regime persists in the presence of quantum
fluctuation remains an open question. We finally observe the
saturation of Nd as τq → 0, signifying the breakdown of the
KZM for small values of τq.

Since we have shown that the KZM quantities t̂th, ε(t̂th ),
and Nd follow the predicted KZM scaling, for completeness,
we now estimate the critical exponents of the open DLM from
the power-law exponents of the of these quantities. We do
this by assuming that t̂th and Nd follows a generic power-law
scaling,

t̂th ∝ τα
q , Nd ∝ τβ

q , (B2)

within the quench time interval ωτq = ωτq,c and ωτq = 104.
From these equations, we can infer from Eqs. (1) and (B1)
that α and β are related to critical exponents v and z by the
relations

v = α

|β| , z = |β|
1 − α

, vz = α

1 − α
. (B3)

We present in Figs. 10(a) and 10(b) the estimated vz as a
function of ε f and κ , respectively, for both the threshold-based
transition time and the t̂ obtained from the dynamics of the
Nd , as described in Sec. IV of the main text. We can see
that the threshold-based vz remains relatively constant for all
values of ε f , while the defect-based vz appears to converge
to the critical exponent of the Ising universality [63,64], the
universality class of the single Dicke model [65]. We further
check whether the two values of vz are consistent with one
another by calculating vz as well from the scaling of τ ∗

q,c with

FIG. 10. (a), (b) Calculated vz from the Nd and threshold-based
transition time as a function of (a) ε f for κ = 0.1ω and (b) κ for
ε f = 1.25. The remaining parameter is J = 0.1ω. (c), (d) Estimated
critical exponents (c) v and (d) z as a function of ε f . The dashed
lines correspond to the critical exponents of the Ising universality
class [63,64]. The remaining parameters are set to κ = J = 0.1ω.

ε f , which is given by Eq. (20). We show this in Fig. 10(a) as
a solid line, with the grey regions corresponding to the uncer-
tainty due to fitting errors. Notice that the value of vz from the
defect-based method is consistent with the one obtained from
τ ∗

q,c for large values of ε f , while it becomes more consistent
with the threshold-based vz for small ε f . With this picture, the
threshold-based vz and τ ∗

q,c can be interpreted as the upper and
lower bounds for the uncertainty of the open DLM’s critical
exponents in the mean-field level, respectively.

As for the behavior of the threshold-based and defect-based
vz as a function of κ , we can see in Fig. 10(b) that both
values of vz decrease as κ → 0. In particular, the vz for both
cases approaches the experimental value of vz for the open
Dicke model for κ = 1.0ω [28]. This result implies that the
system’s dissipation modifies the critical exponents of the
system, which is consistent with the predictions in Refs. [22]
and [23]. Without any specific analytical prediction on how
κ modifies the effective critical exponent of the system, we
cannot assign a universality class for the open DLM that may
apply to any arbitrary dissipation strength.

Given this limitation, we restrict the calculation of the
critical exponents for κ = 0.1ω. We show in Figs. 10(c)
and 10(d) the values of v and z, respectively, for both the
defect-based and threshold-based methods. We can observe
that the value of v for both cases has a large deviation
from the static critical exponent of the Ising universality,
which is v = 1 [63]. Meanwhile, the value of z for the
threshold-based criterion converges to z ∼ 2.183, which is
the dynamic critical exponent of the Ising universality class
[64]. As we previously mentioned, we can attribute the devi-
ations of v and z to the dissipation-induced modification of
the critical exponents. The accumulated errors on the scaling
exponents of Nd , t̂th, and t̂Nd due to the fitting errors may
also amplify the deviations of the critical exponents from
their expected values. Determining which case has a more
significant effect on the values of v and z requires understand-
ing the dynamics of the open DLM beyond the mean-field
level.
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