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Ab initio Wannier-representation-based calculations of photocurrent in semiconductors and metals
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We present a general ab initio method based on Wannier functions using the covariant derivative for simulating
the photocurrent in solids. The method is widely applicable to charge/spin dc and ac photocurrent at any
perturbation levels in both semiconductors and metals for both linearly and circularly polarized light. This
is because the method is theoretically complete (within the relaxation-time approximation), that is to say, it
includes all intraband, interband, and their cross terms. Specifically for the second-order dc photocurrent, it
includes all of the following contributions—shift current, gyration current, (magnetic) injection current, Berry
curvature dipole, and other Fermi surface contributions, instead of only a part of them as in most previous ab
initio methods. It is also free from the degeneracy issue, i.e., applicable to arbitrary band structures with arbitrary
numbers of degenerate bands. We apply the method to simulate the charge/spin dc and ac photocurrent of
various semiconductors and metals, including GaAs, graphene-hBN heterostructure, monolayer WS2, monolayer
GeS, bilayer antiferromagnetic MnBi2Te4, and topological Weyl semimetal RhSi. Our theoretical results are
in agreement with previous theoretical works. Our numerical tests of GaAs, WS2, and GeS suggest setting
the degeneracy threshold in the conventional method as h̄�(2), with �(2) the relaxation rate of the off-diagonal
elements of the density matrix between two states with close energies. We find that compared with the conven-
tional Wannier-function-based method using nondegenerate perturbation theory, the numerical errors of optical
susceptibilities of bilayer antiferromagnetic MnBi2Te4 with the PT symmetry can be reduced by one to two
orders of magnitude by our method for circularly polarized light. Our method provides a universal computational
tool for reliable and accurate predictions of abundant weak-field photocurrent phenomena in disparate materials.
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I. INTRODUCTION

Electric current generation under uniform light illumina-
tion, known as photocurrent, has been studied extensively in
the field of optoelectronic physics [1–11]. Recently, photocur-
rent phenomena in solids, such as the bulk photovoltaic effect
[BPVE, also called the photogalvanic effect (PGE)], second-
and third-harmonic generation (SHG and THG), and sum-
/difference-frequency generation, have drawn much attention
in the research fields of condensed-matter physics, optoelec-
tronics, optospintronics, material science, etc. For example,
the quantized circular photogalvanic effect (CPGE), whereby
circularly polarized light generates helicity-dependent pho-
tocurrent, was predicted [4] in Weyl semimetals and later
observed [5]. Spin–valley-coupled CPGE and its electric con-
trol were realized in WSe2 [6]. Robust pure spin photocurrent
was predicted in several materials [7,12]. Electrically and
broadband tunable third-harmonic generation was realized in
graphene [13].

In this work, we focus on photocurrent under weak fields,
since the weak-field condition is typically satisfied in stud-
ies of BPVE and low-order harmonic generation (LHG) and
is preferred for related low-power optical devices. More-
over, weak-field photocurrent measurements are invaluable
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in detecting material properties such as topological and spin
properties. This is because weak-field photocurrent results
from the product of electric fields and optical susceptibilities,
and the latter are a class of material properties determined by
band structure, Berry connection, spin-orbit coupling, scatter-
ing strength, etc.

Predictive ab initio theories based on density functional
theory (DFT) emerged in the late 1990s for SHG [9,14] and
in the early 2010s for BPVE [2,12,15]. These theories are
invaluable for the understanding of experimental findings and
predictions of new materials with excellent properties. The
main challenge of ab initio calculations is the large number
of k-points needed to achieve convergence. For instance, up
to 106 k-points may be necessary for topological semimetals,
which makes the calculations computationally expensive. The
k-point convergence issue becomes more serious if ab ini-
tio sophisticated forms of the scattering/relaxation processes
beyond the simple relaxation-time approximation (RTA) are
employed.

To resolve this issue, ab initio methods using maximally
localized Wannier functions have been employed for efficient
calculations of the shift current, injection current, and Berry
curvature dipole contributions to the photocurrent [16–20].
However, current Wannier-function-based methods have two
main problems: (i) Some important contributions to BPVE,
e.g., Fermi surface contributions and the gyration current
contribution proposed by Watanabe and Yanase [21], are
not considered, and the implementations for LHG are even
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less complete. Therefore, large errors may occur in studies
of metallic systems and/or under circularly polarized light.
(ii) The Wannier interpolation of the Berry connection and
its derivatives (needed in their methods) uses nondegenerate
perturbation theory, for which the degenerate bands are not
treated properly.

The above problems can be eliminated by employing a
technique originally developed in Ref. [9] for theoretical sim-
ulations of high harmonic generation (HHG) under strong
fields, where the laser term of the electron dynamics is first
expressed in a smooth “Wannier” representation and is then
transformed to the eigenstate representation. In “Wannier”
representation, the basis functions are smooth Bloch-like
functions of k, so that the laser term (in the length gauge) is
well defined and can be easily computed by finite differences.
Therefore, the degeneracy issue is bypassed. Moreover, with
an accurate expression of the laser term, all contributions
to the photocurrent within the RTA, including the shift cur-
rent, gyration current, (magnetic) injection current, the Berry
curvature dipole contribution, and other Fermi surface contri-
butions, can be considered.

Therefore, it is promising to apply the technique of Ref. [9]
to other photocurrent properties besides HHG. We have thus
developed here an ab initio method of the photocurrent, in-
cluding BPVE and LHG, based on Wannier functions and
within the RTA. The method is applicable to both semiconduc-
tors and metals for both linearly and circularly polarized light,
corresponding to linear PGE (LPGE) and CPGE, respectively.

This article is organized as follows. In Sec. II, we de-
rive the formulas of optical susceptibilities via perturbative
treatment of the density-matrix (DM) master equation in the
length gauge within the RTA. We then relate the second-
order optical susceptibilities to LPGE and CPGE. We further
discuss different contributions to BPVE based on the separa-
tion of intraband and interband parts of perturbative density
matrices, and we compare our method with the conventional
Wannier-function-based method using nondegenerate pertur-
bation theory [16,17] for BPVE. In Sec. III, we give the
computational setups of our DFT and photocurrent calcu-
lations. In Sec. IV, we apply our method to simulate the
charge and/or spin BPVE and LHG of various semiconductors
and metals, including GaAs, graphene-hBN heterostructure,
monolayer WS2, a two-dimensional (2D) ferroelectric mate-
rial (monolayer GeS), bilayer antiferromagnetic MnBi2Te4,
and topological Weyl semimetal RhSi. In Sec. V, a summary
and outlook are given.

II. METHODS

Theoretically, the photocurrent formulas can be expressed
in both the length and velocity gauges for the laser [22]. In
most theoretical works, the length gauge was employed. This
is because although the velocity gauge has simpler formulas,
it suffers from several issues: (i) A large number of bands
are required to converge the results if additional calculations
are not carried out [12,23]. (ii) The dephasing processes and
the general scattering term of the master equation beyond the
RTA are hard to include [24]. (iii) The numerical results may
diverge at the low-ω (photon frequency) limit [22].

In the length gauge, the current density Jc(t ) and spin-
current density Jsγ (t ) are

Jc/sγ (t ) = V −1
cell Tr[jc/sγ ρ(t )], (1)

jc = −ev, (2)

v = −i

h̄
[r, H0], (3)

jsγ = 0.5 × (sγ v + vsγ ), (4)

where ρ is the DM operator of Bloch electrons, Vcell is the
unit-cell volume/area of the crystal for 3D/2D systems, jc is
the charge current operator, v is the velocity operator, r is the
position operator, H is the Hamiltonian operator, and H0 is the
unperturbed Hamiltonian operator. In the eigenbasis, H0

kab =
εkaδab, with ε the eigenvalue, k the k-point index, and a (b) the
band index. sγ is the spin operator along the γ direction. jsγ is
the conventional spin-current operator [25].

In general, the DM operator ρ is expressed in the eigenba-
sis representation as

ρ =
∑
kk′ab

ρka,k′b|ka〉〈k′b|, (5)

ρka,k′b = 〈ka|ρ|k′b〉. (6)

In this work, since we focus on circumstances in which
translational symmetry is not broken, ρka,k′b is always diago-
nal in the Bloch-state wave vector. Thus, ρka,k′b is simplified
as ρkab, and ρk is used as the band matrix of ρ at k.

In this work, except in Sec. II D, we usually omit the
subscript k for the matrices at k for simplicity, but we still
keep it along with band indices for matrix elements.

A. DM master equation in the length gauge

We solve the quantum master equation of the single-
particle ρ(t ) in the Schrödinger picture as [22,26,27]

dρ(t )

dt
= − i

h̄
[H0, ρ(t )] + DE [ρ] + C[ρ], (7)

DE [ρ] = e

h̄
E(t ) · Dρ

Dk
, (8)

where DE [ρ] and C[ρ] are the laser and collision terms of
the DM dynamics, respectively. E(t ) is the time-dependent
electric field of a laser, and Dρ

Dk is the covariant derivative of ρ.
For a laser with photon frequency ω,

E(t ) = E(ω)eiωt + E(−ω)e−iωt , (9)

with E(−ω) ≡ E∗(ω) being the constant amplitude.
The covariant derivative of an arbitrary matrix A, DA

Dk , is
defined as [22]

DA

Dk
= dA

dk
− i[ξ, A], (10)

ξkab = i
〈
uka

∣∣∣dukb

dk

〉
, (11)

where d
dk is the gradient, ξ is the Berry connection, and u is the

basis function or the periodic part of the Bloch wave function.
Note that Eq. (10) above is the same as Eq. 34 of Ref. [22],
but different notations are used. The operator D

Dk is directly
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related to the position operator r as follows:

DA

Dk
= − i[r, A]. (12)

Therefore, the laser or electric-field term of the master equa-
tion DE [ρ] can be expressed as

DE [ρ] = − i

h̄
[HE , ρ], (13)

HE = eE(t ) · r. (14)

The computation of Dρ

Dk via Eq. (10) is nontrivial due to
the following issues: First, the basis functions u are usually
obtained by diagonalizing H0 at different k independently, so
that the basis functions contain arbitrary phase factors and
are arbitrary in degenerate subspaces. Therefore, the basis
functions u are in general not smooth over k, which makes dρ

dk
not well-defined (except when ρ = f eq). Second, the compu-
tation of ξ may suffer from the degeneracy issue, as discussed
later in Sec. II D 1. The above issues are bypassed through
the use of a Wannier-function-based technique given below in
Sec. II D 2.

The collision term C[ρ] of Eq. (7) describes the decay
of ρ to its equilibrium due to various processes, such as the
electron-phonon scattering, the electron-hole recombination,
etc. In this work, we approximate C[ρ] within the RTA as

C[ρ] = − � � {ρ − f eq}, (15)

where f eq is the equilibrium part of ρ and a diagonal matrix
whose elements are Fermi-Dirac functions. � is the relaxation
rate matrix, and �kaa is the relaxation rate of the electronic
state (k, a) (�ka). Hadamard product A � B means the elemen-
twise multiplication of matrices A and B.

Suppose

ρ = f eq + ρE . (16)

Considering that df eq

dt = 0 and [ε, f eq] = 0, within the RTA,
Eq. (7) becomes

ih̄
dρE

dt
+ (ih̄� − 	) � ρE = ieE(t ) · Dρ

Dk
, (17)

	kab = εka − εkb. (18)

B. Perturbative solution of ρE and optical susceptibilities
for charge and spin current

At weak fields, ρ can be expanded as ρ = ∑
n ρ (n) with

ρ (n) = O(|E(ω)|n) and ρ (0) ≡ f eq. Therefore, the nth-order
master equation is

ih̄
dρE ,(n)

dt
+ (ih̄� − 	) � ρE ,(n) = ieE(t ) · Dρ (n−1)

Dk
, (19)

ρE ,(n) = (1 − δn0)ρ (n). (20)

The above equation is a first-order (for the time derivative)
ordinary differential equation if the minimum element of �

(�min) is positive. At t � �−1
min, Eq. (19) has a stationary

solution

ρE ,(n)(t ) =
∑

m

ρE ,(n)(mω)eimωt , (21)

where ρE ,(n)(mω) is time-independent. Therefore, at t �
�−1

min, from Eq. (19),

(−mh̄ω − 	 + ih̄�) � ρE ,(n)(mω)

= ie
∑
±

E(±ω) · Dρ (n−1)[(m ∓ 1)ω]

Dk
. (22)

Defining

d�
kab(ω) = 1

−h̄ω − 	kab + ih̄�kab
, (23)

we have

ρE ,(n)(mω) = ie
∑
±

E(±ω) · Dρ (n−1)[(m ∓ 1)ω]

Dk

� d� (mω). (24)

From the above equation, we can define an nth-order DM from
the following iterative formulas:

ρE ,(n)
α1···αn

(ω1, . . . , ωn) =
⎧⎨⎩ieEα1 (ω1)

Dρ (n−1)
α2 ···αn (ω2,...,ωn )

Dkα1

�d�
( ∑n

j=1 ω j

)
⎫⎬⎭, (25)

ρE ,(1)
αn

(ωn) = ieEαn (ωn)
Dρ (0)

Dkαn

� d� (ωn), (26)

ω j = ± ω. (27)

We further define the normalized nth-order DM as

ρ̃E ,(n)
α1···αn

(ω1, . . . , ωn) =ρE ,(n)
α1···αn

(ω1, . . . , ωn)∏n
i Eαi (ωi )

. (28)

Therefore, the nth-order current and spin-current densities
can be expressed as

Jc/sγ ,(n)(t ) =
∑

m

Jc/sγ ,(n)(mω)eimωt , (29)

Jc/sγ ,(n)

⎛⎝ n∑
j=1

ω j

⎞⎠ = V −1
cell

n∏
i

Eαi (ωi) (30)

× Tr
[
jc/sγ ρ̃E ,(n)

α1···αn
(ω1, . . . , ωn)

]
. (31)

Since nth-order optical susceptibilities for charge and spin
current are defined as

J
c/sγ ,(n)
β

⎛⎝ n∑
j=1

ω j

⎞⎠ =
∑

α1···αn

n∏
i

Eαi (ωi )

× σ
c/sγ ,β
α1···αn (ω1, . . . , ωn), (32)

we have

σ
c/sγ ,β
α1···αn (ω1, . . . , ωn) = V −1

cell Tr
[

j
c/sγ

β ρ̃E ,(n)
α1···αn

(ω1, . . . , ωn)
]
.

(33)

From the above equations, we can obtain arbitrary-order
perturbative optical susceptibilities and photocurrent. Consid-
ering that BPVE, SHG, and THG, three of the most important
photocurrent phenomena, are determined by second- and
third-order optical susceptibilities, we present the detailed
formulas of optical susceptibilities in the first three orders as
follows.
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1. First-order

From Eqs. (26), (28), and (33), we have

ρ̃E ,(1)
α (ω) = ie

D f eq

Dkα

� d� (ω), (34)

σ
c/sγ ,β
α (ω) = ieV −1

cell Tr

[
j
c/sγ

β

D f eq

Dkα

� d� (ω)

]
. (35)

σ
c/sγ ,β
α (ω) determines the optical conductivity.

2. Second-order

From Eqs. (25), (26), (28), and (33), we have the dc com-
ponent

ρ̃E ,(2)
α1α2

(−ω,ω) = ie
Dρ̃E ,(1)

α2
(ω)

Dkα1

� d� (0), (36)

σ
c/sγ ,β
α1α2 (−ω,ω) =V −1

cell Tr
[

j
c/sγ

β ρ̃E ,(2)
α1α2

(−ω,ω)
]

(37)

and the 2ω ac component

ρ̃E ,(2)
α1α2

(ω,ω) = ie
Dρ̃E ,(1)

α2
(ω)

Dkα1

� d� (2ω), (38)

σ
c/sγ ,β
α1α2 (ω,ω) =V −1

cell Tr
[

j
c/sγ

β ρ̃E ,(2)
α1α2

(ω,ω)
]
. (39)

σ
c/sγ ,β
α1α2 (−ω,ω) and σ

c/sγ ,β
α1α2 (ω,ω) determine BPVE and

SHG, respectively.

3. Third-order

From Eqs. (25), (26), (28), and (33), we have the 3ω ac
component

ρ̃E ,(3)
α1α2α3

(ω,ω,ω) = ie
Dρ̃E ,(2)

α2α3
(ω,ω)

Dkα1

� d� (3ω), (40)

σ
c/sγ ,β
α1α2α3 (ω,ω,ω) =V −1

cell Tr
[

j
c/sγ

β ρ̃E ,(3)
α1α2α3

(ω,ω,ω)
]
. (41)

σ
c/sγ ,β
α1α2α3 (ω,ω,ω) determines THG.

Under weak fields, the photocurrent mechanisms can be
separated into two classes [2]: (i) One is described using the
single-particle electronic quantities and with the scattering
in the Born approximation. The scattering is usually further
simplified within the RTA. (ii) Another is due to the asym-
metric scattering beyond the Born approximation and is called
ballistic current. Since the former class seems more important
in most cases and ab initio simulations of ballistic current are
numerically difficult [28], most ab initio works only consider
the former class of the mechanisms [21,29].

The former class can be further separated into various types
of contributions depending on whether intraband or interband
parts of perturbative density matrices ρ (n) are considered [29].
See the discussions in Sec. II E below and Appendix A. The
following contributions to BPVE were identified previously
[21,29]: the shift current, gyration current, (magnetic) injec-
tion current, Berry curvature dipole, and other Fermi surface
contributions. Since our method includes both intraband and
interband parts of all ρ (n) matrices, all types of contributions
belonging to the former class are considered.

C. LPGE and CPGE

From Eq. (9), the electric field amplitudes are E(±ω).
For linearly polarized light, Eα1 (−ω)Eα2 (ω) ≡ E∗

α1
(ω)Eα2 (ω)

is real for any α1 and α2, and E(−ω) × E(ω) ≡ E∗(ω) ×
E(ω) = 0 is always satisfied. For circularly polarized light,
E(−ω) × E(ω) ≡ E∗(ω) × E(ω) is always purely imaginary.
Therefore, we introduce the following definitions for LPGE
and CPGE:

Lα1α2 (ω) = Re
{
E∗

α1
(ω)Eα2 (ω)

}
, (42)

F(ω) = 1
2 iE∗(ω) × E(ω), (43)

σ
DC,c/sγ ,β
α1α2 (ω) = 1

2

(
σ

c/sγ ,β
α1α2 (−ω,ω) + σ

c/sγ ,β
α2α1 (ω,−ω)

)
, (44)

η
c/sγ ,β
α1α2 (ω) = Re

[
σ

dc,c/sγ ,β
α1α2 (ω)

]
, (45)

κ
c/sγ ,β

λ (ω) = εα1α2λIm
[
σ

dc,c/sγ ,β
α1α2 (ω)

]
, (46)

where εα1α2λ is a Levi-Civita symbol. We note that Lα1α2 (ω) ≡
Lα2α1 (ω) and η

c/sγ ,β
α1α2 ≡ η

c/sγ ,β
α2α1 . Here we call η

c/sγ ,β
α1α2 (κc/sγ ,β

λ )
the LPGE (CPGE) coefficient or susceptibility.

For LPGE, F(ω) = 0, so that only the real parts of
σ

c/sγ ,β
α1α2 (∓ω,±ω) contribute. For CPGE, both the imaginary

and real parts of σ
c/sγ ,β
α1α2 (∓ω,±ω) can contribute, as F(ω) 
= 0

and some of Lα1α2 (ω) can be nonzero.
Using the relation

σ
c/sγ ,β
α1α2 (−ω,ω) = [

σ
c/sγ ,β
α1α2 (ω,−ω)

]∗
, (47)

the second-order dc current density for photon-frequency ω

can be expressed as

J
sγ

β (0) =
∑

α1α2±
Eα1 (∓ω)Eα2 (±ω)σ c/sγ ,β

α1α2 (∓ω,±ω)

= 2

{∑
α1α2

Lα1α2 (ω)ηc/sγ ,β
α1α2 (ω)

+ ∑
λ Fλ(ω)κc/sγ ,β

λ (ω)

}
. (48)

For CPGE, in many cases, κ
c/sγ ,β

λ are found to be much

larger than η
c/sγ ,β
α1α2 , so that η

c/sγ ,β
α1α2 are often not considered.

Let us consider a few special cases below:
(i) Suppose E(ω) = E (1, 1, 0), with E a real value for

linearly polarized light. As F(ω) = 0, we have

J
sγ

β (0) = 2
∑

α1,α2=x,y

η
c/sγ ,β
α1α2 Lα1α2 (ω). (49)

(ii) Suppose E(ω) = E (1, i, 0), with E a real value
for circularly polarized light. As Lxy(ω) = 0 and F(ω) =
E2(0, 0,−1), we have

J
sγ

β (0) = 2

⎛⎝ ∑
α=x,y

Lαα (ω)ηc/sγ ,β
αα + Fz(ω)κc/sγ ,β

z

⎞⎠. (50)

D. Wannier interpolation and the computation of the covariant
derivative Dρk

Dk

The Wannier interpolation based on maximally localized
Wannier functions of electronic quantities has been widely
employed to simulate various physical properties [30–35].
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The Wannier interpolation contains four steps: (i) The elec-
tronic quantities are first calculated on coarse k meshes, e.g.,
6 × 6 × 6 and 12 × 12 for 3D and 2D systems, respectively.
(ii) Secondly, they are transformed to the corresponding real-
space matrix elements with (real-space) localized Wannier
functions (WFs) as the basis. (iii) Thirdly, electronic quan-
tities are transformed back to the reciprocal space. At this
step, quantities on very fine k meshes (e.g., 2000 × 2000)
or at many arbitrary k-points in the Wannier representation
are obtained. In the Wannier representation, the basis func-
tions are smooth Bloch-like functions [see Eq. (51) below].
(iv) Finally, the Wannier representation is replaced by the
eigenbasis representation where the basis functions are the
Bloch eigenstates of the Wannier-interpolated Hamiltonian.
Thus, physical properties can be conveniently calculated with
electronic quantities in the eigenbasis representation with a
converged number of k-points.

In this subsection, different representations are used to
express electronic quantities. Therefore, for clarity, no ad-
ditional notation or superscript is used for the eigenbasis
representation, while superscript W is used for the Wannier
representation. Note that all equations before this subsection
use the eigenbasis representation.

1. Wannier representation and Wannier interpolation

The WFs are denoted as |Ra〉, where a is the index of a
WF in the unit cell, and R labels the unit cell. The smooth
Bloch-like functions are given by the phased sum of WFs,∣∣uW

ka

〉 =
∑

R

e−ik·(̂r−R)|Ra〉, (51)

which span the actual Bloch eigenstates |uka〉 at each k. r̂ is
the position operator. Here, a hat is used to emphasize that it
is an operator instead of a coordinate of electron position.

Define

Ĥ0
k = e−ik·̂rĤ0eik·̂r (52)

with Ĥ0 the unperturbed Hamiltonian operator.
It follows that, if we construct the Hamiltonian in the

Wannier representation

HW
kab = 〈

uW
ka

∣∣Ĥ0
k

∣∣uW
kb

〉
(53)

and diagonalize it as

U †
k HW

k Uk = εk, (54)

where Uk are the eigenstate matrix and εk is the diagonal
matrix of eigenvalues, the corresponding Bloch eigenstates
are

|uka〉 =
∑

b

∣∣uW
kb

〉
Ukba. (55)

Similar to HW
k , the velocity and spin matrices are well

defined in Wannier representation and are denoted as vW
k and

sW
k , respectively. The computations of HW

k , vW
k , and sW

k are
efficient and done through standard techniques developed in
Ref. [31]. With Uk , the velocity and spin matrices in the

eigenbasis representation read

vk = U †
k vW

k Uk, (56)

sk = U †
k sW

k Uk . (57)

Having vk and sk , j
c/sγ

β,k are obtained straightforwardly from
Eqs. (2) and (4). As the basis size of the Wannier representa-
tion is usually small (same as the eigenbasis representation),
the computations of εk , Uk , vk , and sk are all efficient. The
computational technique of Berry connection in Wannier rep-
resentation ξW

k is slightly different from that of HW
k and is also

efficient [31].
In the conventional Wannier-function-based ab initio meth-

ods (using the length gauge) of the photocurrent [16–20], it is
necessary to compute ξk and the derivative of its off-diagonal
part ξ o

k . ξk is expressed as

ξk = iDk + ξ k, (58)

Dk = U †
k

dUk

dk
, (59)

ξ k = U †
k ξW

k Uk, (60)

ξW
kab = i

〈
uW

ka

∣∣∣∣duW
kb

dk

〉
. (61)

However, computing Dk directly via Eq. (59) is nontrivial
and usually done using nondegenerate perturbation theory
[16,31],

Dkab ≈ Dpert
kab , (62)

Dpert
kab =

⎧⎪⎨⎪⎩
(

U †
k

dHW
k

dk Uk

)
ab

εkb−εka
if εka 
= εkb,

0 if εka = εkb.

(63)

Obviously, Dpert
kab are problematic for degenerate bands. This

issue may be removed for twofold degeneracy by choosing a
specific gauge of Uk [36], but computing Dkab for arbitrarily
degenerate bands without an approximation is still difficult.
Similarly, in the conventional method, the expression of the
derivative of ξ o

k contains U †
k

d2Uk
dk2 , which is also done using

nondegenerate perturbation theory [17], so that the derivative
of ξ o

k may have some random errors for degenerate bands. The
degeneracy issue is completely removed in our method, since
Dk and U †

k
d2Uk
dk2 are absent in the computation of Dρk

Dk , as shown
clearly in the next subsection.

2. The computation of the covariant derivative Dρk
Dk

Dρk

Dk is called the covariant derivative because it satisfies the
following relation for arbitrary Uk:

Dρk

Dk
= U †

k

DρW
k

Dk
Uk, (64)

where ρW
k = UkρkU

†
k . The proof is given in Appendix B.

Since

DρW
k

Dk
= dρW

k

dk
− i

[
ξW

k , ρW
k

]
, (65)
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we further have

Dρk

Dk
= U †

k

dρW
k

dk
Uk − i[ξ k, ρk]. (66)

Since the basis function of Wannier representation uW
ka is

smooth over k for each index a, the matrix derivative dρW
k

dk is
well defined and can be computed numerically by finite differ-
ences. We use the central difference here. Define kp = k + dk
and km = k − dk so that

U †
k

dρW
k

dk
Uk =U †

k

ρW
kp

− ρW
km

2dk
Uk

=
(
okkpρkpo

†
kkp

− okkmρkm o†
kkm

)
2dk

(67)

with ok1k2 the overlap matrix

ok1k2 = U †
k1

Uk2 . (68)

Due to the use of WFs, electronic quantities including ρ
(n)
k

can be computed at arbitrary k. Therefore, |dk| can be arbi-
trarily small and is typically chosen as 10−8, which guarantees
the accuracy of finite-difference computations. For the finite-

difference computation of
Dρ

(n)
k0

Dk , HW
k , vW

k , and ξW
k matrices at a

set of k-points surrounding the central k-point k0 are needed.
Such Wannier-representation matrices at these k-points can
be computed either directly via Wannier interpolation at each
k-point, or via Taylor expansions of HW

k , vW
k , and ξW

k matrices
around k0, whose (few-order) derivatives can be computed
efficiently [31].

With Eq. (67) and ξ k computed by Eq. (60), Dρk

Dk is then
obtained from Eq. (66). For numerical implementation of Dρk

Dk ,
helpful techniques are employed, as described in Appendixes
C and D.

E. Different contributions to BPVE

For further discussions, we first introduce the following
separation of an arbitrary matrix A:

A = Ad + Ao, (69)

where the subscripts d and o stand for the diagonal and off-
diagonal parts.

The second-order optical susceptibilities for BPVE (corre-
sponding to charge photocurrent) can be separated into four
parts:

σ dc,c,β
α1α2

(ω) = σ dc,c,β,dd
α1α2

(ω) + σ dc,c,β,od
α1α2

(ω)

+ σ dc,c,β,do
α1α2

(ω) + σ dc,c,β,oo
α1α2

(ω). (70)

In the double subscripts dd , od , do, and oo, the first letter
indicates the diagonal and off-diagonal parts of ρ (2), and the
second letter corresponds to the dependence of the relevant
parts of ρ (1) on ρ (2).

We present the forms of the above four parts in this subsec-
tion, but we leave the detailed derivations for Appendix A:

(i) The dd intraband-intraband part. This is a Fermi-surface
term—the Drude term—and it reads

σ dc,c,β,dd
α1α2

(ω) = −e3V −1
cell N

−1
k

h̄2(ω2 + �2)

∑
ka

vβ,kaa
d2 f eq

ka

dkα1 dkα2

. (71)

(ii) The od interband-intraband part. This is another Fermi-
surface term, which corresponds to the Berry curvature dipole
term when � = 0, and it reads

σ dc,c,β,od
α1α2

(ω) = e3V −1
cell N

−1
k

2(−h̄ω + ih̄�)

×
∑
k,ab

ξ o
β,kbaξ

o
α1,kab

df eq
kab

dkα2

	kabd�
kab(0)

+ [(α1,−ω) ↔ (α2, ω)]. (72)

(iii) The do intraband-interband part. This is the injection
current term, and it reads

σ dc,c,β,do
α1α2

(ω) = e3πV −1
cell N

−1
k

h̄�

∑
kab

ξα2,kabξα1,kba

× (vβ,aa − vβ,bb) f eq
kabδ

� (h̄ω + 	kab), (73)

δ� (h̄ω) = 1

π

h̄�

(h̄ω)2 + (h̄�)2
. (74)

This is the same as Ref. [29].
(iv) The oo interband-interband part. This part contains the

shift current for linearly polarized light and its counterpart
for circularly polarized light—the gyration current—and also
several other contributions including the Fermi surface ones
[21,29]. According to Appendix A, this part reads

σ dc,c,β,oo
α1α2

(−ω,ω) = e3V −1
cell N

−1
k

h̄

×
∑
kab

(
Dξ�,o

β,k

Dkα1

)
ba

ξ o
α2,kab f eq

kabd�
kab(ω)

+ [(α1,−ω) ↔ (α2, ω)], (75)

where

ξ�,o
β,kab = −ih̄vo

β,kabd�
kba(0),

= ξ o
β,kab

	kab

	kab + ih̄�
. (76)

In Eq. (75), the relaxation rate � appears in two places—
one in d�

k (±ω) = 1/(∓h̄ω − 	k + ih̄�) of ρ̃E ,(1)
α (±ω) and

another in d�
k (0) = 1/(−	k + ih̄�) [see Eq. (76)] of

ρ̃E ,(2)
α1α2

(∓ω,±ω) [Eq. (37)]. These two �’s play very different
roles in the shift and gyration current, as discussed below.
Thus, we name � in d�

k (0) as �(2) below for the oo part.
To obtain the standard formulas of the shift and gyration

current [21], we need to take the weak-scattering limit �(2) →
0, so that Eq. (76) is approximated as

ξ�(2),o
β ≈ ξ o

β. (77)

In realistic samples and/or at finite temperatures, we need
to consider that �(2) is finite. When |	kab| � h̄�(2), the above
equation is still accurate for matrix elements ξ�(2),o

β,kab . However,
when |	kab| � h̄�(2) (� means smaller than or comparable
to), i.e., for two degenerate or near-degenerate states |ka〉
and |kb〉 (a 
= b), this equation may introduce notable errors
of ξ�(2),o

β,kab . Therefore, �(2) plays the role of a “smooth” de-
generacy threshold for matrix elements ξ o

β,kab, i.e., ξ o
β,kab are
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kept and neglected when |	kab| � h̄�(2) and |	kab| � h̄�(2),
respectively. Practically, for ρkab with small 	kab, i.e., the
off-diagonal elements of the density matrix between two states
with close energies, h̄�(2) are often relatively large and of
order 0.01–0.1 eV due to the electron-phonon and electron-
impurity scattering processes, but they can be small in certain
cases, e.g., at low temperatures in clean samples, or for states
close to Dirac cones.

Using Eq. (77) above and Eq. (A20) in Appendix A,
Eq. (75) becomes

σ dc,c,β,oo
α1α2

(ω) = −e3V −1
cell N

−1
k

2h̄

×
∑
kab

ξ o
α1;β,kabξ

o
α2,kba f eq

kabd�
kba(ω)

+ [(α1,−ω) ↔ (α2, ω)], (78)

where ξ o
α;β is the so-called “generalized derivative”

[16,17,21,37] of matrix ξ o
α along direction β:

ξ o
α;β =dξ o

α

dkβ

− i
[
ξ d
β , ξ o

α

]
. (79)

Since d�
kba(ω) can be separated into the principal and Dirac

δ parts

d�
kab(ω) = − P� 1

h̄ω + 	kab
− iπδ� (h̄ω + 	kab), (80)

P� 1

h̄ω
= h̄ω

(h̄ω)2 + (h̄�)2
, (81)

σ dc,c,β,oo
α1α2

(ω) can also be separated into the principal and Dirac
δ parts. From symmetry analysis, the principal part is purely
imaginary under T (time-reversal) symmetry, so that it is
absent for linearly polarized light under T symmetry, and
it is purely real under PT symmetry (P is parity or spatial
inversion operation).

Next we focus on the Dirac δ part, which reads

σ dc,c,β,oo,δ
α1α2

(ω) = σ shift,c,β
α1α2

(ω) + iσ gyr,c,β
α1α2

(ω), (82)

where σ shift,c,β
α1α2

(ω) is the well-known shift current term, and

σ
gyr,c,β
α1α2 (ω) is the gyration current term:

σ shift,c,β
α1α2

(ω) = −πe3V −1
cell N

−1
k

4h̄

∑
kab

f eq
kabδ

� (h̄ω − 	kab)

× Im
{
ξ o
α1;β,kabξ

o
α2,kba + ξ o

α2;β,kabξ
o
α1,kba

}
, (83)

σ gyr,c,β
α1α2

(ω) = πe3V −1
cell N

−1
k

4h̄

∑
kab

f eq
kabδ

� (h̄ω − 	kab)

× Re
{
ξ o
α1;β,kabξ

o
α2,kba − ξ o

α2;β,kabξ
o
α1,kba

}
. (84)

Other equivalent forms of σ shift,c,β
α1α2

(ω) and σ
gyr,c,β
α1α2 (ω) are

given in Appendix A. From symmetry analysis, the gyra-
tion/shift current is absent under T /PT symmetry.

From Eqs. (83) and (84), the role of � in d�
k (±ω) of

ρ̃E ,(1)
α (±ω) is simply introducing Lorentzian smearing to the

BPVE spectra due to the shift and gyration current, which is
completely different from that of �(2).

F. Comparison with the conventional Wannier-function-based
method of BPVE

According to Sec. II E, within the Wannier-function ap-
proach, the implementations of the dd , od , and do parts of
σ dc,c,β

α1α2
(ω) are all trivial, since the required electronic quanti-

ties are all well-defined. For the oo part, in the conventional
Wannier-function-based method, the generalized derivative
ξ o
α;β is computed using nondegenerate perturbation theory

[16,17], which may introduce gauge-dependent errors. In this
work, we implemented the conventional method of the shift
current based on the JDFTx package, the same as our method
using the covariant derivative.

In the conventional method, a parameter called the degen-
eracy threshold tdeg is necessary for dealing with 1/(εa − εb),
and it can be defined in two ways: (i) 1/(εa − εb) is set to
zero if |εa − εb| < tdeg. This is a natural choice of the standard
conventional method of the shift and gyration current. This
treatment has been widely employed, e.g., in Ref. [17]; (ii)
1/(εa − εb) is regularized as its principal value broadened by
tdeg, (εa − εb)/[(εa − εb)2 + (tdeg)2], which was suggested in
Ref. [16]. Here we use the latter, but we have seen that two
treatments lead to quite similar results with the same tdeg.

The standard formulas of the conventional method are
derived in the weak-scattering limit using the nondegenerate
perturbation theory, so that theoretically the tdeg → 0 limit
needs to be taken, and small tdeg should be preferred in
numerical simulations. On the other hand, according to the
above discussions about the oo part of BPVE in Sec. II E, the
quantity �(2) in the BPVE formulas of our method, which is
the relaxation rate of ρkab with small 	kab, can be physically
regarded as a “smooth” degeneracy threshold [see discussions
below Eq. (77)]. Therefore, in this aspect, tdeg = h̄�(2) is
probably a proper choice, although tdeg and h̄�(2) are not the
same in theory, and tdeg seems to appear in more places in the
BPVE formulas [16,17] of the conventional method than �(2).
Numerically, we indeed find that if tdeg = h̄�(2) is satisfied,
the theoretical results of BPVE coefficients obtained by our
method and by the conventional method are quite similar for
GaAs and GeS (but not for bilayer AFM MBT, which will be
discussed later).

For BPVE, our method requires the computations of HW ,
vW , ξW , dHW

dk , and dvW

dk on uniform k meshes. Similarly, the

conventional method requires [16,17] HW , ξW , dHW

dk , dξW

dk , and
d2HW

dk2 on the same k meshes. Therefore, the computational
complexities of our method and the conventional method are
similar. However, our method has the following advantages:
(i) It includes all charge/spin photocurrent mechanisms in
general cases (with finite and state-resolved � in both semi-
conductor and metals). (ii) It is free from the degeneracy issue.
(iii) It applies well in other types of weak-field charge/spin
photocurrent such as THG.

III. COMPUTATIONAL DETAILS

The ground-state electronic structure is first calculated
using DFT with relatively coarse k meshes. The DFT calcula-
tions use 12 × 12 × 12, 12 × 12, 12 × 12, 12 × 12, 18 × 18,
and 6 × 6 × 6k meshes for GaAs, graphene-hBN, WS2, GeS,
MBT, and RhSi, respectively. We use the Perdew-Burke-
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Ernzerhof exchange-correlation functional [40]. For bilayer
AFM MBT, the DFT + U method is adopted to treat the
d orbitals of Mn atoms with Hubbard U parameter 4.0 eV,
and its lattice structures and internal geometries are fully
relaxed using the DFT+D3 correction method [41] for disper-
sion interactions. For graphene-hBN, the DFT+D2 correction
method [42] with scale factor s6 = 0.5 is used to be consistent
with our previous work [43]. For monolayer materials studied
here, we have not considered van der Waals corrections, as
their effects are found to be weak (within 1%) on lattice
constants. For GaAs, we use the experimental lattice constant
of 5.653 Å as in our previous work [26]. For RhSi, we use
an experimental lattice constant [44] of 4.67 Å. For WS2 and
GeS, we use the fully relaxed lattice constants. We use opti-
mized norm-conserving Vanderbilt (ONCV) pseudopotentials
[45,46]. The plane-wave cutoff energies are 76, 74, 62, 78, 82,
and 80 Ry for GaAs, graphene-hBN, WS2, GeS, MBT, and
RhSi, respectively. For all 2D systems, the Coulomb trunca-
tion technique [47] developed by Sundararaman and Arias is
employed to accelerate convergence with vacuum sizes, and
the vacuum sizes are 20 bohr (additional to the thickness of
the 2D systems), which leads to quite similar optimized lattice
constants and band structures compared with 60 bohr vacuum
size.

We then transform all quantities from the plane-wave
basis to the basis of maximally localized Wannier func-
tions, and we interpolate them to substantially finer k
meshes [30,31]. For the photocurrent calculations, the fine k
meshes are 480 × 480 × 480, 12 000 × 12 000, 2400 × 2400,
2400 × 2400, 1080 × 1080, and 240 × 240 × 240 for GaAs,
graphene-hBN, WS2, GeS, MBT, and RhSi, respectively. For
simplicity, the elements of the relaxation rate matrices �k are
all set to the same constant, which, unless specified otherwise,
is 0.001 eV/h̄ for graphene-hBN and 0.01 eV/h̄ for other
materials, corresponding to a relaxation time of 666 and 66
fs, respectively. All calculations are done based on the open-
source plane-wave DFT code JDFTx [48–51].

IV. RESULTS AND DISCUSSIONS

Before presenting our theoretical results, we would like to
clarify two points: (i) We simulate the photocurrent within the
RTA, so that the ballistic current is absent. (ii) The signs of
optical susceptibilities and LPGE/CPGE coefficients depend
on the definitions of x, y, and z directions. For CPGE, the sign
of κ

c/sγ ,β

λ depends on the definition of F(ω). Therefore, when
comparing with other theoretical works, we should be careful
about these definitions.

A. First benchmark: GaAs

GaAs is a typical semiconductor with broken inversion
symmetry, which allows the presence of the second-order
photocurrent—BPVE and SHG. Due to its symmetry, LPGE
of GaAs is allowed while CPGE is not. Without considering
the ballistic current, LPGE of GaAs is determined by shift
current. GaAs was the first piezoelectric crystal whose shift-
current spectrum was evaluated using modern band-structure
methods [37] and later simulated in other method papers

[16,38]. Therefore, we first carry out benchmark calculations
of LPGE coefficients of GaAs.

In Figs. 1(a) and 1(b), we compare DFT and Wannier
band structures and find that they agree perfectly. This en-
sures the accuracy of the photocurrent calculation based on
Wannier functions. From symmetry analysis, it is known that
LPGE coefficients ηcβ

α1α2
are only nonzero for permutations

βα1α2 of xyz. Indeed, in Fig. 1(b), numerically we find that
ηcx

yz 
= 0 while η
cy
yz and ηcz

yz almost vanish. Our calculated ηcx
yz

are in agreement with previous theoretical results [16,38],
which indicates the reliability of the implementation of
our method.

In Fig. 1(c), we compare LPGE coefficients obtained
by our method using the covariant derivative (labeled as
“this method”) with different �(2), which is the relaxation
rate of ρkab with small 	kab and appearing in d�

k (0) =
1/(−	k + ih̄�) of the second-order perturbative density
matrix ρ̃E ,(2)

α1α2
(−ω,ω) [Eq. (37)], and by the conventional

Wannier-function-based method using nondegenerate pertur-
bation theory (labeled as “conv. method”) with different
degeneracy thresholds tdeg. From Fig. 1(c), we find that theo-
retical results obtained by our and the conventional methods
are identical with converged k meshes for different �(2) and
tdeg. Note that in all simulations, the relaxation rate � [in
d�

k (±ω) = 1/(∓h̄ω − 	k + ih̄�) of ρ̃E ,(1)
α (±ω)] is fixed as

0.01 eV/h̄, which is also the Lorentzian smearing parameter
of the conventional method.

Moreover, we examine theoretical results obtained by both
methods with different k meshes in Figs. 1(d)–1(g). We find
that with larger h̄�(2) and tdeg of 10−2 eV, results obtained
by both methods show fast k-point convergence—results with
120 × 120 × 120 k meshes are already close to the converged
ones. On the other hand, with smaller h̄�(2) and tdeg of 10−4

eV, results obtained by both methods show slower k-point
convergence—480 × 480 × 480 k meshes are required to
converge the LPGE spectrum, and suspicious peaks and dips
can appear with not converged k meshes. Similar phenomena
are observed for theoretical results with another Wannieriza-
tion setup (see Fig. 9), which has more WFs. The h̄�(2),
tdeg, and Wannierization dependences of theoretical results
indicate the following: When h̄�(2) and tdeg are not large,
such as 10−4 eV, there seem to be randomlike errors around
the degeneracy and near-degeneracy regions (of electronic
states) partly due to Wannier interpolation errors. For LPGE
of GaAs, such errors are avoided using relatively large h̄�(2)

and tdeg such as 10−2 eV, and they tend to be canceled out by
increasing k meshes.

More importantly, from Figs. 1(d)–1(g) and Figs. 9(c)–9(f),
we find that when tdeg = h̄�(2) is satisfied, LPGE coefficients
obtained by the two methods are always quite similar for all
sets of k meshes. For example, when tdeg = h̄�(2) = 10−4 eV
and k meshes are 120 × 120 × 120, LPGE spectra including
the suspicious peaks and dips obtained by the two different
methods are rather similar. We also find that when tdeg =
h̄�(2), the two methods predict consistent LPGE coefficients
of monolayer GeS. For monolayer WS2, the theoretical results
obtained by both methods are also found to be identical and
independent of h̄�(2) and tdeg. These all suggest setting tdeg

as h̄�(2), which leads to consistent results between the two
methods.
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FIG. 1. Theoretical results of GaAs. (a) DFT and Wannier band structures. (b) LPGE coefficients ηcβ
α1α2

obtained by our method using
the covariant derivative compared with ηcx

yz from previous theoretical results—“Ref. A” and “Ref. B.” (c) ηcx
yz by our method (labeled as

“this method”) with h̄�(2) = 0.01 eV and h̄�(2) = 10−4 eV, compared with ηcx
yz obtained by the conventional Wannier-function-based method

(labeled as “conv. method”) using nondegenerate perturbation theory with different degeneracy thresholds tdeg. Subfigures (b) and (c) use
480 × 480 × 480 k meshes. Panels (d) and (f) are ηcx

yz obtained by our method with h̄�(2) = 0.01 eV and h̄�(2) = 10−4 eV, respectively. Panels
(e) and (g) are ηcx

yz obtained by the conventional methods with tdeg of 10−2 and 10−4 eV, respectively. The implementation details of the
conventional method are given in Sec. II F. �(2) is the relaxation rate � of the off-diagonal elements of the density matrix between two states
with close energies and appearing in d�

k (0) = 1/(−	k + ih̄�) of the second-order perturbative density matrix ρ̃E ,(2)
α1α2

(∓ω,±ω) [Eq. (37)]. See
the detailed discussions of �(2) in Sec. II E below Eqs. (76) and (77). “Ref. A” and “Ref. B” correspond to theoretical results of Refs. [16]
and [38], respectively. A scissor correction is included using the same method as Refs. [16] and [39] to enlarge the theoretical band gap to the
experimental value 1.43 eV. The relaxation rate � = 0.01 eV/h̄, which is also the Lorentzian smearing parameter of the conventional method.

However, for bilayer AFM MBT with the so-called PT
symmetry, we find that randomlike errors of CPGE spectra
are introduced by the conventional method and the errors
cannot be removed by changing tdeg or increasing k meshes.
Note that theoretically, even for nonmagnetic systems, it is
not guaranteed that setting tdeg = h̄�(2) always makes the
results obtained by the two methods consistent. Therefore, our
method is numerically better than the conventional method,
since it completely avoids the degeneracy issue. Additionally,
the degeneracy issue in the conventional Wannier-function-
based method has not been well examined for other types of
(spin) photocurrent; future theoretical studies are needed to
achieve a better understanding.

B. A 2D material: LPGE and LHG of graphene-hBN

Since the discovery of graphene, the low-frequency nonlin-
ear optical response of graphene has attracted a lot of attention
from both theorists and experimentalists [8,13,52–55]. Here
we simulate low-order optical susceptibilities of graphene-
hBN. The hBN substrate is introduced to break the inversion
symmetry to allow nonzero LPGE and SHG.

Three types of photocurrent simulations using three types
of electronic Hamiltonians are carried out:

(i) “TB”: Minimum tight-binding Hamiltonian (as in
Ref. [55]) with two atomic orbitals (in the unit cell) and two
energy parameters—a gap Eg = 0.0416 eV (same as our DFT
value) and a nearest-neighbor hopping parameter t = 2.8 eV.
A t around 2.8 eV has been commonly used to model
graphene. Note that if we choose Eg = 0.03 eV as in Ref. [55],
we can reproduce their LPGE and LHG spectra.

(ii) “Wannier A”: Minimum ab initio Wannier-interpolated
Hamiltonian with two WFs (in the unit cell), which repro-
duces DFT eigenvalues within the energy window (EF − 1 eV,
EF + 3 eV). From Fig. 2(a), it can be seen that “Wannier A”
nicely reproduces DFT bands with tiny errors around Dirac
cones.

(iii) “Wannier B”: Ab initio Wannier-interpolated Hamilto-
nian with 20 WFs, which reproduces DFT eigenvalues within
(EF − 6 eV, EF + 7.7 eV). From Fig. 2(a), it can be seen that
“Wannier B” perfectly reproduces DFT bands.

From Figs. 2(b)–2(d), we find that “Wannier A” and
“Wannier B” results of LPGE, SHG, and THG coefficients
(susceptibilities) are identical, and TB leads to qualitatively
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FIG. 2. Theoretical results of graphene-hBN. (a) DFT and Wannier band structures. “Wannier A” and “Wannier B” correspond to two types
of Wannier-interpolated Hamiltonians with 2 and 20 WFs (in the unit cell), respectively. Panels (b), (c), and (d) are optical susceptibilities of
LPGE [Reσ cy

yyy(ω,ω, ω)], SHG [Reσ cy
yy (ω,ω)], and THG [Reσ cy

yyy(ω,ω, ω)], respectively, calculated using three types of Hamiltonians—a two-
band tight-binding (TB) Hamiltonian, “Wannier A,” and “Wannier B”. See more details on TB, “Wannier A,” and “Wannier B” in Sec. IV B.
Three special photon energies satisfying ω, 2ω, 3ω = Eg, corresponding to one-, two-, and three-photon processes, respectively, are labeled in
(b), (c), and (d) using vertical dashed lines. � = 0.001 eV/h̄.

similar results. The curves of TB results have the same shapes
as ab initio results based on Wannier functions, but there are
quantitative differences, and the ratios of TB results to ab
initio results range from 63% to 123%. Therefore, our results
indicate that a minimum TB model and a minimum Wannier-
ization setup are good for qualitative studies and quantitative
simulations, respectively, of LPGE and LHG (within the RTA)
of graphene-hBN. This conclusion, however, may not be ap-
plicable if band structures are complicated and/or if spin-orbit
coupling plays a crucial role, in which case sophisticated ab
initio Wannierization setups are required. Additionally, it is
found that TB results are insensitive to the nearest-neighbor
hoping parameter t (not shown), so that to cure the differences
between TB and ab initio results, the so-called “̂r-hopping”
corrections [56] and/or farther-neighbor hoppings are proba-
bly needed.

We next investigate the response of several different photon
processes for low-frequency LPGE and LHG of the semicon-
ducting graphene-hBN. From Fig. 2(b), the LPGE spectrum
shows a one-photon resonant peak—a peak right above ω =
Eg. This is consistent with the fact that the formula of LPGE
coefficients contains a δ-like function d�

kab(1ω) [according to
Eqs. (34), (36), and (37)], which has a resonant energy at

ω = 	kab. For SHG shown in Fig. 2(c), it is found that its
spectrum shows three peaks—two one-photon resonant peaks
around ω = Eg, and one two-photon resonant peak right above
2ω = Eg. This is because the formula of SHG coefficients
[Eqs. (39), (38), and (34)] contains both d� (2ω) and d� (1ω).
For THG, its spectrum [Fig. 2(d)] has a sharp three-photon
resonant peak right above 3ω = Eg corresponding to d� (3ω)
in the formula of THG [Eqs. (41), (40), (38), and (34)]. On the
other hand, the THG spectrum shows less clear features for
two-photon processes and no obvious features for one-photon
processes: (i) The second peak of the THG spectrum is a
bit away from 2ω = Eg and relatively broad; (ii) THG coef-
ficients around ω = Eg are much weaker than its maximum
value.

C. A 2D material: (Spin) LPGE of monolayer WS2

In addition to graphene, transition-metal dichalcogenides
(TMDs) are another important class of 2D materials. Optical
(spin-)current generation is critical to the TMD-based elec-
tronic and spintronic applications, and it has been extensively
studied experimentally and theoretically [12,17,57–59].
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FIG. 3. Theoretical results of monolayer WS2. (a) Top and side views of the structure. (b) DFT (black lines) and Wannier (red lines) band
structures. (c) LPGE coefficients ηcy

yy with and without spin-orbit coupling (SOC) compared with previous theoretical results without SOC.
“Ref. C” is Ref. [17]. (d) LPGE coefficients obtained by our method with SOC, compared with ηcy

yy obtained by the conventional method
(labeled as “conv. method”) implemented by us with tdeg = 10−2 eV. (e) Spin LPGE (SLPGE) coefficients with SOC. � = 0.01 eV/h̄.

Here we study both LPGE and spin LPGE (SLPGE) of
monolayer 2H WS2. As shown in Fig. 3(b), a high-quality
Wannierization is achieved, which ensures the accuracy of our
ab initio simulations. We first investigate the effects of SOC
on LPGE coefficients. From Fig. 3(c), our calculated LPGE
spectrum is in agreement with previous theoretical results
[17] and the SOC effects are found to be significant. Most
importantly, the first peak near ω = Eg of the LPGE spectrum
without SOC is split into two by SOC [labeled as “V1” and
“V2” in Fig. 3(c)], and the splitting of two peaks is close to
the SOC band splitting between the two highest valence bands
at K, ∼0.43 eV.

Therefore, we include SOC in further ab initio simulations
of LPGE and SLPGE coefficients of monolayer WS2, shown
in Figs. 3(d) and 3(e). Note that spin current is only present
when SOC is turned on. We find that charge and spin currents
are perpendicular to each other—charge current is along the
y direction while spin current is along the x direction under
linearly polarized light. This means a pure spin current (along
the x direction) is generated by SLPGE. This phenomenon is
due to the different selection rules on charge and spin currents
in the presence of the in-plane mirror symmetry Mx: kx →
−kx, which leads to the absence of ηcx

xx , ηcx
yy , η

szy
xx , and η

szy
yy [12].

Additionally, in Fig. 3(d), we compare LPGE coefficients,
which are fully determined by the shift current for undoped
WS2, calculated by both our and the conventional methods

with the same computational setups. It is found that the two
methods predict identical results. Different from GaAs, we
find that theoretical results are almost independent of �(2) and
tdeg, indicating that the degeneracy errors are negligible for
WS2.

D. A 2D material: LPGE and CPGE of 2D ferroelectric GeS

Recently, ferroelectric group-IV monochalcogenide mono-
layers have attracted growing interest due to their exciting
properties, such as selective valley excitations, valley Hall ef-
fects, and persistent spin helix behavior [60]. They also show
interesting nonlinear optical properties including an unusually
strong SHG intensity and large BPVE [60].

Here we study LPGE, SLPGE, and CPGE of a group-IV
monochalcogenide monolayer, namely monolayer GeS. Our
results shown in Fig. 4 are in agreement with previous the-
oretical results [16,61,62], e.g., our calculated LPGE is in
agreement with that of Ref. [16] [Fig. 4(d)]. We also com-
pare LPGE obtained by our method and by the conventional
method [Fig. 4(d)]. It is found that with tdeg = h̄�(2) = h̄� =
0.01 eV, two methods predict very similar results. This ob-
servation is similar to the GaAs case. Additionally, we find
that with tdeg = h̄�(2) = 10−4 eV and h̄� = 0.01 eV, theoret-
ical results obtained by the two methods are also consistent
but are slightly different from those with tdeg = h̄�(2) =
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FIG. 4. Theoretical results of monolayer GeS. (a) Top and side views of the structure. (b) DFT (black lines) and Wannier (red lines) band
structures. (c) LPGE coefficients. (d) ηcy

yy obtained by our method and the conventional method with tdeg = 10−2 eV, compared with previous
theoretical results. Ref. A is Ref. [16]. Panels (e) and (f) are calculated SLPGE and CPGE coefficients, respectively. � = 0.01 eV/h̄.

h̄� = 0.01 eV when k meshes are converged, as we have
checked. Therefore, calculated LPGE coefficients obtained by
our method and by the conventional method are �(2)- and tdeg-
dependent, respectively, which indicates that the treatment
of near-degenerate subspaces has important effects on LPGE
coefficients.

Similar to monolayer WS2, from Figs. 4(c) and 4(e), we
find pure spin currents perpendicular to charge currents, which
is again due to the presence of in-plane mirror symmetry Mx:
kx → −kx. Further, we observe strong CPGE [Fig. 4(f)], 40
times stronger than LPGE. According to previous theoreti-
cal works [2,21,62], as monolayer GeS is nonmagnetic, its
CPGE is mainly attributed to the injection current, which is
the intraband-interband contribution to BPVE (see Sec. II E).
Strong CPGE due to injection current has been predicted in
ferroelectric group-IV monochalcogenide monolayers includ-
ing GeS, GeSe, SnS, and SnSe, and it is attributed to various
factors in these materials, such as anisotropy, in-plane polar-
ization, and wave-function delocalization [62].

It is well known that optical susceptibilities due to injection
current are proportion to relaxation time τ = 1/� if � > 0
[21]. Therefore, we next examine the � dependence of CPGE
coefficients as well as LPGE and SLPGE. From Fig. 5(a), it is
found that LPGE is independent of �. This is because LPGE
of a nonmagnetic semiconducting material such as monolayer
GeS should be dominated by the shift current contribution,
which is known to be independent of � [2,21]. Calculated
CPGE coefficients κc are found to be proportional to 1/�

[Fig. 5(c)], as expected. Calculated SLPGE coefficients ηsz are
found to be proportional to 1/� [Fig. 5(d)], which is probably

because SLPGE is also dominated by the injection current (the
same as CPGE), as discussed in Ref. [63].

E. A magnet: Bilayer AFM MBT

Recently, various exotic BPVE properties have been pre-
dicted for AFM systems with the so-called PT symmetry,
which means the systems are invariant if inversion opera-
tion P and time-reversal operation T are applied together
[7,12,21]. Here we apply our method to simulate LPGE and
SLPGE of bilayer AFM MBT, which has PT symmetry.
Similar to Ref. [12], we have the following observations from
Fig. 6: (i) SOC affects both band structure and BPVE sig-
nificantly. (ii) Pure spin currents are present regardless of
SOC. This is due to the different selection rules on charge and
spin-z currents in the presence of the PMx symmetry [12].
(iii) With SOC, the charge current is present [see Fig. 6(b)]
and perpendicular to spin-z current [see Fig. 6(d)]. However,
without SOC, the charge current, which is the sum of the
spin-up and spin-down currents, is absent [see Figs. 6(e) and
6(f)]. This is because the so-called inversion-spin-rotation PS
symmetry is satisfied without SOC but is broken if SOC is
turned on, according to Ref. [12].

In Fig. 7, we show CPGE coefficients κcx, due to the gyra-
tion current [Eq. (84)], calculated by our and the conventional
methods. Due to the PMx symmetry, κcx

z and κcx
y should be

zero and κcx
x can be nonzero [12]. From Fig. 7(a), we first

find that calculated κcx
x are quite large and the differences of

κcx
x obtained by two methods are small compared with the

magnitudes of κcx
x . However, for κcx

z and κcx
y , we find that

theoretical results obtained by two methods have non-
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FIG. 5. Relaxation rate � dependence of calculated (a) LPGE, (b) SLPGE, and (d) CPGE coefficients of monolayer GeS.

negligible differences. Results obtained by our method are
found to be zero, as expected (with a maximum error ∼0.5
a.u.). On the other hand, results obtained by the conventional
method show non-negligible errors (with maximum error ∼25
a.u.), and the errors cannot be removed by changing tdeg or
increasing k meshes, as we have checked. Moreover, from
Figs. 7(b) and 7(c), it is found that κcx obtained by our method
are independent of the Wannierization setups. However, for
the conventional method, κcx

x with different Wannierization
setups have non-negligible differences around ω = 1.3 eV,
and κcx

z (κcx
y ) with different Wannierization setups are com-

pletely different.

Considering that all bands of bilayer AFM MBT are
Kramers-degenerate due to the PT symmetry, the tdeg-
independence and the Wannierization-setup dependence of
the CPGE results obtained by the conventional method proba-
bly indicate gauge-dependent (here gauge means the choice of
eigenstates) numerical errors within the Kramers-degenerate
subspaces. A similar conclusion was previously made for
bilayer AFM CrI3 with the PT symmetry in Ref. [36]. Our
results indicate that compared with the conventional method,
our method may significantly reduce numerical errors of
the BPVE simulations of magnetic systems with the PT
symmetry.

FIG. 6. Theoretical results of bilayer AFM MBT. (a) Side and top views of its crystal structure. The system has so-called PT symmetry, i.e.,
the system is invariant if inversion operation P and time-reversal operation T are applied together. The inversion center (without considering
magnetic moments) is located between two layers (black square). Red and blue arrows indicate the magnetic moment directions of the top and
bottom MBT layers, respectively. (b) Band structures with (black lines) and without (red lines) SOC. Panels (c) and (d) are calculated LPGE
and SLPGE coefficients with SOC, respectively. Panels (e) and (f) are calculated LPGE coefficients for spin-up and spin-down states without
SOC respectively. � = 0.01 eV/h̄.
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FIG. 7. Calculated CPGE coefficients κcx of bilayer AFM MBT. (a) κcx obtained by our method (labeled as “This” or “This method”) and
the conventional method (labeled as “Conv.” or “Conv. method”). (b),(c) κcx obtained by our method and the conventional method, respectively,
with two Wannierization setups—“Wann. A” and “Wann. B.” (d) κcx

x obtained by our method with and without SOC. “Wann. A” and “B” have
the same number of WFs and energy window but use different random initial WFs. κcx

z and κcx
y are multiplied by 4 to make their corresponding

numerical errors clearer. Note that both κcx
z and κcx

y are expected to be zero due to the combined PMx symmetry of bilayer AFM MBT [12].
Mx means an in-plane mirror symmetry.

Additionally, we show the SOC effects in Fig. 7(d). It can
be seen that κcx

x becomes zero if SOC is turned off, similar to
the SOC effects of LPGE discussed above.

F. A topological Weyl semimetal: Quantized CPGE in RhSi

CPGE serves as an invaluable tool to detect the chirality,
topological charge, symmetries, and other properties of topo-
logical Weyl semimetals [4,5,11,19]. Previously, quantized
CPGE has been studied theoretically considering only the
injection current contribution, and via model Hamiltonians
[4] or Wannier-function-based ab initio methods with the so-
called diagonal tight-binding approximation (DTBA) [11,19],
in which ξW is treated approximately [16].

The so-called quantized-CPGE suggests that the relation
Tr[β(ω)] = iπ e3

h2 CL, with CL the topological charge, is satis-
fied in a certain photon-frequency range [4,19]. For the injec-
tion current (which dominates quantized CPGE) with a finite
relaxation time τ = 1/�, β(ω) = i�κc(ω) [2,21]. Therefore,
the quantized-CPGE relation becomes 4πTr[�κc] = CL in
atomic units.

In this work, we apply our ab initio method to simulate
CPGE of RhSi at various temperatures and chemical
potentials. We have gone beyond DTBA and considered
photocurrent contributions beyond just the injection current.
From our calculated CPGE spectra in Fig. 8, we observe
that 4πTr[�κc(ω)] ≈ 4 is satisfied in a relatively wide
photon-energy range [0.3, 0.6] eV at both low [Fig. 8(b)] and
high [Fig. 8(c)] temperatures, if the chemical potential is not
too low. Our results suggest that it seems easier to observe
quantized CPGE at lower temperatures and higher chemical
potentials.

V. SUMMARY AND OUTLOOKS

We have developed an ab initio method based on Wan-
nier functions for simulating weak-field BPVE and LHG in
solids. The method is of great predictive power and widely
applicable to semiconductors and metals with arbitrary band
structures for both linearly and circularly polarized light. We
have demonstrated its power through its applications in the
simulations of (S)LPGE, (S)CPGE, and LHG in various types
of systems.

064315-14



AB INITIO WANNIER-REPRESENTATION-BASED … PHYSICAL REVIEW B 110, 064315 (2024)

FIG. 8. Theoretical results of RhSi with SOC. (a) Band structure. E4f is the energy of the fourfold-degenerate point. Panels (b) and (c) are
traces of CPGE coefficients κc multiplied by a factor of 4π� at different chemical potentials (μ) at 10 and 300 K, respectively. � = 0.01 eV/h̄.

This method has the potential to be greatly improved in
various directions: (i) By introducing a static electric field,
which can be done straightforwardly, the so-called jerk current
[64] can be simulated. (ii) The scattering term within the
RTA with a global constant relaxation time τ = 1/� can be
replaced by the fully ab initio sophisticated scattering term
developed in our previous works [26,27], so that the energy-,
k-, and transition-resolved relaxation and decoherence are
properly considered. This generation may have important ef-
fects on quantized CPGE, which is predicted within the RTA
with a global constant τ . (iii) By solving the density matrix
nonperturbatively via real-time dynamics, the photocurrent at
stronger fields can be simulated.
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APPENDIX A: THE DERIVATIONS OF THE EXPLICIT
FORMS OF DIFFERENT CONTRIBUTIONS TO BPVE

From Eq. (34) and Appendix C, we have

ρ̃
E ,(1),d
α,kaa (ω) = ie

−h̄ω + ih̄�

df eq
ka

dkα

, (A1)

ρ̃
E ,(1),o
α,kab (ω) = − eξα,kab f eq

kabd�
kab(ω), (A2)

f eq
kab = f eq

ka − f eq
kb , (A3)

where we have assumed that �kab are all equal to the same
constant � for simplicity. Note that ρ

(1),o
α,kab(ω) = 0 when εka =

εkb.
Then, we can obtain different parts of σ dc,c,β

α1α2
(ω):

(i) The dd intraband-intraband part. From Eqs. (37) and
(36), this part reads

σ c,β,dd
α1α2

(−ω,ω) = − eV −1
cell Tr

{
vd

β ρ̃E ,(2),dd
α1α2

(−ω,ω)
}

= − ie2V −1
cell

× Tr

{
vd

β

[
Dρ̃E ,(1),d

α2
(ω)

Dkα1

� d� (0)

]}
.

(A4)

Then, from (A1) and (10), we obtain

σ c,β,dd
α1α2

(−ω,ω) = e3V −1
cell N

−1
k

h̄2i�(−ω + i�)

∑
ka

vβ,kaa
d2 f eq

ka

dkα1 dkα2

,

(A5)
thus

σ dc,c,β,dd
α1α2

(ω) = 1

2

(
σ c,β,dd

α1α2
(−ω,ω) + σ c,β,dd

α2α1
(ω,−ω)

)
,

= −e3V −1
cell N

−1
k

h̄2(ω2 + �2)

∑
ka

vβ,kaa
d2 f eq

ka

dkα1 dkα2

. (A6)

(ii) The od interband-intraband part. This part reads

σ c,β,od
α1α2

(−ω,ω) = − ie2V −1
cell

× Tr

{
vo

β

(
Dρ̃E ,(1),d

α2
(ω)

Dkα1

� d� (0)

)}
.

(A7)

From (A1), (10), and (C2), we then obtain

σ c,β,od
α1α2

(−ω,ω) = − e2V −1
cell

× Tr
{
vo

β

([
ξα1 , ρ̃

E ,(1),d
α2

(ω)
] � d� (0)

)}
= −e3V −1

cell

−h̄ω + ih̄�

× Tr

{(
ξ o
β � 	

)([
df eq

dkα

, ξα1

]
� d� (0)

)}
= e3V −1

cell N
−1
k

−h̄ω + ih̄�

×
∑
k,ab

ξ o
β,kbaξ

o
α1,kab

df eq
kab

dkα2

	kabd�
kab(0). (A8)
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(iii) The do intraband-interband part. This part reads

σ c,β,do
α1α2

(−ω,ω) = − ie2V −1
cell

× Tr

{
vd

β

(
Dρ̃E ,(1),o

α2
(ω)

Dkα1

� d� (0)

)}
.

(A9)

From Eqs. (A2) and (10), we then obtain

σ c,β,do
α1α2

(−ω,ω) = −e2V −1
cell

ih̄�
Tr

{
vd

β

[
ξα1 , ρ̃

E ,(1),o
α2

(ω)
]}

= −e2V −1
cell

ih̄�
Tr

{[
vd

β, ξα1

]̃
ρE ,(1),o

α2
(ω)

}
= ie3V −1

cell N
−1
k

h̄�

∑
kab

ξα1,kbaξα2,kab

× (vβ,aa − vβ,bb) f eq
kabd�

kab(ω), (A10)

thus

σ dc,c,β,do
α1α2

(ω) = ie3V −1
cell N

−1
k

2h̄�

∑
kab

(vβ,aa − vβ,bb) f eq
kab

×
{

ξα2,kabξα1,kbad�
kab(ω)

+ξα1,kabξα2,kbad�
kab(−ω)

}

= ie3V −1
cell N

−1
k

2h̄�

∑
kab

ξα2,kabξα1,kba

× (vβ,aa − vβ,bb) f eq
kab

× {
d�

kab(ω) + d�
kba(−ω)

}
. (A11)

Since

d�
kab(ω) + d�

kba(−ω) = −2ih̄�

(−h̄ω − 	kab)2 + (h̄�)2
(A12)

and

δ� (h̄ω) = 1

π

h̄�

(h̄ω)2 + (h̄�)2
, (A13)

we have

σ dc,c,β,do
α1α2

(ω) = e3πV −1
cell N

−1
k

h̄�

∑
kab

ξα2,kabξα1,kba

× (vβ,kaa − vβ,kbb) f eq
kabδ

� (h̄ω + 	kab).
(A14)

(iv) The oo interband-interband part. This part reads

σ c,β,oo
α1α2

(−ω,ω) = − ie2V −1
cell

× Tr

{
vo

β

(
Dρ̃E ,(1),o

α2
(ω)

Dkα1

� d� (0)

)}

= e2V −1
cell

h̄
Tr

(
ξ�,o
β

Dρ̃E ,(1),o
α2

(ω)

Dkα1

)
, (A15)

where

ξ�,o
β,kab = − ih̄vo

β,kabd�
kba(0),

= ξ o
β,kab

	kab

	kab + ih̄�
. (A16)

Since the relation Tr{A DB
Dk } = −Tr{DA

Dk B} is satisfied for
arbitrary matrices A and B, we have

σ c,β,oo
α1α2

(−ω,ω) = −e2V −1
cell

h̄
Tr

{
Dξ�,o

β

Dkα1

ρ̃E ,(1),o
α2

(ω)

}

= e3V −1
cell N

−1
k

h̄

×
∑
kab

(
Dξ�,o

β,k

Dkα1

)
ba

ξα2,kab f eq
kabd�

kab(ω).

(A17)

To obtain the standard formulas of the shift and gyration
current [21], we need to take the weak-scattering limit � → 0,
so that Eq. (76) is approximated as

ξ�,o
β ≈ ξ o

β. (A18)

Using Eq. (77), we obtain

σ c,β,oo
α1α2

(−ω,ω) = −e2V −1
cell

h̄
Tr

{
Dξ o

β

Dkα1

ρ̃E ,(1),o
α2

(ω)

}
= e3V −1

cell N
−1
k

h̄

×
∑
kab

(
Dξ o

β,k

Dkα1

)
ba

ξα2,kab f eq
kabd�

kab(ω).

(A19)

Using the relation (derived using ξα,kab = i〈uka| dukb
dkα

〉 and

ξ = ξ d + ξ o) (
Dξ o

β

Dkα1

)o

=ξ o
α1;β, (A20)

we have

σ c,β,oo
α1α2

(−ω,ω) = −e3V −1
cell N

−1
k

h̄

×
∑
kab

ξ o
α1;β,kabξ

o
α2,kba f eq

kabd�
kba(ω). (A21)

Then, our obtained σ dc,c,β,oo
α1α2

(ω) = (σ c,β,oo
α1α2

(−ω,ω) +
σ c,β,oo

α2α1
(ω,−ω))/2 is exactly the same as Eq. 93 of

Ref. [21], considering that their q is −e and they expand
ρ(t ) = ∑

m ρ(mω)e−imω different from our Eq. (21).
As mentioned in Sec. II E, σ dc,c,β,oo

α1α2
(ω) can be separated

into the principal and Dirac δ parts. We focus on the Dirac
δ part σ dc,c,β,oo,δ

α1α2
(ω). By replacing d�

kba(ω) with −iπδ� (h̄ω +
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	kab), we obtain

σ dc,c,β,oo,δ
α1α2

(ω) = iπe3V −1
cell N

−1
k

2h̄

×
∑
kab

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ o
α1;β,kabξ

o
α2,kba

× f eq
kabδ

� (h̄ω + 	kba)

+ξ o
α2;β,kabξ

o
α1,kba

× f eq
kabδ

� (h̄ω − 	kba)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= iπe3V −1

cell N
−1
k

2h̄

×
∑
kab

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ o
α1;β,kabξ

o
α2,kba

× f eq
kabδ

� (h̄ω − 	kab)

+ξ o,∗
α2;β,kabξ

o,∗
α1,kba

× f eq
kbaδ

� (h̄ω − 	kab)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= iπe3V −1

cell N
−1
k

2h̄

∑
kab

f eq
kabδ

� (h̄ω − 	kab)

× {
ξ o
α1;β,kabξ

o
α2,kba − ξ o,∗

α2;β,kabξ
o,∗
α1,kba

}
.

(A22)

Therefore, the shift current contribution to σ dc,c,β
α1α2

(ω) is the
real part of σ dc,c,β,oo,δ

α1α2
(ω):

σ shift,c,β
α1α2

(ω) = Re
[
σ dc,c,β,oo,δ

α1α2
(ω)

]
= −πe3V −1

cell N
−1
k

2h̄

∑
kab

f eq
kabδ

� (h̄ω − 	kab)

× Im
{
ξ o
α1;β,kabξ

o
α2,kba + ξ o

α2;β,kabξ
o
α1,kba

}
.

(A23)

This is the same as the shift current formula or Eq. 104 of
Ref. [21], again considering that their q is −e and they expand
ρ(t ) = ∑

m ρ(mω)e−im different from our Eq. (21).
Equivalently by swapping a and b, we have

σ shift,c,β
α1α2

(ω) = −πe3V −1
cell N

−1
k

2h̄

∑
kab

f eq
kbaδ

� (h̄ω − 	kba)

× Im
{
ξ o,∗
α1;β,kabξ

o,∗
α2,kba − ξ o

α2;β,kabξ
o
α1,kba

}
= −πe3V −1

cell N
−1
k

2h̄

∑
kab

f eq
kabδ

� (h̄ω + 	kab)

× Im
{
ξ o
α1;β,kabξ

o
α2,kba + ξ o

α2;β,kabξ
o
α1,kba

}
.

(A24)

Then, we also have

σ shift,c,β
α1α2

(ω) = −πe3V −1
cell N

−1
k

4h̄

×
∑
kab

f eq
kab{δ� (h̄ω + 	kab) + δ� (h̄ω − 	kab)}

× Im
{
ξ o
α1;β,kabξ

o
α2,kba + ξ o

α2;β,kabξ
o
α1,kba

}
.

(A25)

Similarly, the gyration current contribution to σ dc,c,β
α1α2

(ω) is
the imaginary part of σ dc,c,β,oo,δ

α1α2
(ω):

σ gyr,c,β
α1α2

(ω) = Im
[
σ dc,c,β,oo,δ

α1α2
(ω)

]
= πe3V −1

cell N
−1
k

2h̄

∑
kab

f eq
kabδ

� (h̄ω − 	kab)

× Re
{
ξ o
α1;β,kabξ

o
α2,kba − ξ o

α2;β,kabξ
o
α1,kba

}
.

(A26)

Equivalently by swapping a and b, we have

σ gyr,c,β
α1α2

(ω) = −πe3V −1
cell N

−1
k

2h̄

∑
kab

f eq
kabδ

� (h̄ω + 	kab)

× Re
{
ξ o
α1;β,kabξ

o
α2,kba − ξ o

α2;β,kabξ
o
α1,kba

}
.

(A27)

Then, we also have

σ gyr,c,β
α1α2

(ω) = −πe3V −1
cell N

−1
k

4h̄

×
∑
kab

f eq
kab{δ� (h̄ω + 	kab) − δ� (h̄ω − 	kab)}

× Re
{
ξ o
α1;β,kabξ

o
α2,kba − ξ o

α2;β,kabξ
o
α1,kba

}
.

(A28)

APPENDIX B: THE PROOF OF EQ. (10)

From ρW = UρU † and Eq. (59), D = U † dU
dk , we have

dρW

dk
= dUρU †

dk

= dU

dk
ρU † + U

dρ

dk
U † + Uρ

dU †

dk

= U

(
dρ

dk
+ Dρ + ρD†

)
U †

= U

{
dρ

dk
+ [D, ρ]

}
U †. (B1)

With Eq. (58), ξ = iD + U †ξWU , we then have

Dρ

Dk
= dρ

dk
− i[ξ, ρ]

= dρ

dk
− i[iD + U †ξWU, ρ]

= dρ

dk
+ [D, ρ] − i[U †ξW U, ρ]

= U † dρW

dk
U − i[U †ξW U,U †ρW U ]

= U †

(
dρW

dk
− −i[ξW , ρW ]

)
U

= U † DρW

Dk
U . (B2)
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FIG. 9. Theoretical results of GaAs with a different Wannierization setup from that for Fig. 1. This Wannierization setup and that for Fig. 1
have 12 and 8 WFs, respectively. Their energy windows (relative to VBM energy) are [−8 eV, 9.3 eV] and [−8 eV, 7.9 eV], respectively.
(a) DFT and Wannier band structures. (b) ηcx

yz by our method with h̄�(2) = 0.01 eV and h̄�(2) = 10−4 eV, compared with ηcx
yz obtained by

the conventional method with different degeneracy thresholds tdeg. Subfigure (b) uses 480 × 480 × 480 k meshes. Panels (c) and (e) are ηcx
yz

obtained by our method with h̄�(2) = 0.01 eV and h̄�(2) = 10−4 eV, respectively. Panels (d) and (f) are ηcx
yz obtained by the conventional

method with tdeg of 10−2 and 10−4 eV, respectively. The relaxation rate � = 0.01 eV/h̄, which is also the Lorentzian smearing parameter of
the conventional method.

APPENDIX C: THE COMPUTATION OF D f eq

Dk WITHOUT
FINITE DIFFERENCES

From Eqs. (3) and (12), we have

vkab = 1

h̄

(
DH0

k

Dk

)
ab

= 1

h̄

dεka

dk
δab + i

h̄
ξkab	kab, (C1)

so that

ξab = −i
h̄vkab

	kab
if 	kab 
= 0. (C2)

Then, we have

−i
[
ξk, f eq

k

]
ab = iξkab

(
f eq
ka − f eq

kb

)
= iξkab

(
f eq
ka − f eq

kb

)(
1 − δεka,εkb

)
= h̄vkab

f eq
ka − f eq

kb

εka − εkb

(
1 − δεka,εkb

)
. (C3)

Therefore, (
D f eq

k

Dk

)
ab

=
(

	 f eq

	ε

)
kab

h̄vkab, (C4)(
	 f eq

	ε

)
kab

=
(

df eq
ka

dε

)
δab (C5)

+ f eq
ka − f eq

kb

εka − εkb
(1 − δεka,εkb ). (C6)

As df eq
ka

dε
= (kBT )−1 f eq

ka ( f eq
ka − 1) can be evaluated ana-

lytically, numerical finite differences are avoided for the
computation of D f eq

Dk . Numerically, we have found that com-

puting D f eq

Dk via Eq. (67) with finite differences and via
Eq. (C4) leads to almost the same results. Equation (C4) is
preferred since it is computationally convenient.

APPENDIX D: THE COMPUTATION OF ξ [Eq. (60)]

The accuracy of ξ k seems sometimes a bit worse when
DFT meshes are not so dense, compared with Hk , vk , and
sk , whose accuracy is good even when DFT k meshes for
constructing WFs are quite coarse [30], e.g., 4 × 4 × 4 [31].
This is because in the usual implementation of ξW

k [Eq. (61),
which determines ξ ] using the plane-wave DFT method, fi-
nite differences of uW

k on DFT coarse meshes are required.
Although uW

k is smooth over k, too coarse k meshes may still
lead to some errors. This issue can be removed by increasing
DFT k meshes or by using another implementation of ξW

k
without finite differences [31].

Here we introduce another technique to improve the accu-
racy of ξ :
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From Eqs. (3), (12), and (67), we have

vkab = 1

h̄

(
DH0

k

Dk

)
ab

=
(

1

h̄
U †

k

dHW
k

dk
Uk − i

h̄
[ξ k, εk]

)
ab

. (D1)

Therefore,

ξ kab =
h̄vkab −

(
U †

k
dHW

k
dk Uk

)
ab

i	kab
if εka 
= εkb. (D2)

Since dHW

dk can be computed accurately and efficiently
without finite differences [31], the computation of ξ kab for

the elements satisfying εka 
= εkb by Eq. (D2) above is also
accurate and efficient.

APPENDIX E: GAAS RESULTS WITH A DIFFERENT
WANNIERIZATION SETUP

In Fig. 9, we show theoretical results of GaAs with a
Wannierization setup having more WFs and a larger en-
ergy window than that for Fig. 1. Similarly to Fig. 1, we
find that results obtained by the two methods with differ-
ent �(2) and tdeg agree well when k meshes are converged,
and the k-point convergence of our method and the con-
ventional method with relatively large h̄�(2) and tdeg of
10−2 eV is much faster than that with smaller h̄�(2) and
tdeg of 10−4 eV. By comparing Fig. 9 with Fig. 1, it can
be seen that when k meshes are not converged and with
smaller h̄�(2) and tdeg of 10−4 eV, theoretical results are
Wannierization-dependent.
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