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Extended unitarity and absence of skin effect in periodically driven systems
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One of the most striking features of non-Hermitian quasiperiodic systems with arbitrarily small asymmetry
in the hopping amplitudes and open boundaries is the accumulation of all the bulk eigenstates at one of the
edges of the system, termed in the literature as the skin effect (SE), below a critical strength of the potential. In
this work, we uncover that a time-periodic drive in such systems can eliminate the SE up to a finite strength of
this asymmetry. Remarkably, the critical value for the onset of SE is independent of the driving frequency and
approaches to the static behavior in the thermodynamic limit. We find that the absence of SE is intricately linked
to the emergence of extended unitarity in the delocalized phase, providing dynamical stability to the system.
Interestingly, under periodic boundary condition, our non-Hermitian system can be mapped to a Hermitian
analog in the large driving frequency limit that leads to the extended unitarity, irrespective of the hopping
asymmetry and the strength of the quasiperiodic potential, in stark contrast to the static limit. Additionally,
we numerically verify that this behavior persists at all frequencies of the drive. Based on our findings, we
propose a possible experimental realization of our driven system, which could be used as a switch to control
the light-funneling mechanism.

DOI: 10.1103/PhysRevB.110.064314

I. INTRODUCTION

In recent years, non-Hermitian Hamiltonians have garnered
widespread attention due to their ability to accurately mimic
experimental procedures involving interactions with the en-
vironment. They also offer possibilities for exotic phases
of quantum matter that are typically absent in their Hermi-
tian counterparts. Unlike Hermitian systems, the reality of
eigenenergies and stable unitary dynamics is guaranteed only
in specific classes of non-Hermitian Hamiltonians that possess
either PT symmetry [1,2] or pseudo-Hermiticity [3,4].

Among the non-Hermitian systems, the paradigmatic
Hatano-Nelson (HN) Hamiltonian with asymmetric hopping
amplitude [5,6] stands out as another class of non-Hermitian
systems of particular interest. This interest stems from a
unique phenomenon known as the skin effect (SE), which
refers to the exponential localization of all bulk eigenstates
at the edges of a lattice with an open boundary [7–12]. Inter-
estingly, the spectral behavior in these systems is drastically
sensitive to the choice of boundary conditions [13]. Moreover,
recent studies have illustrated the existence of SE accompany-
ing a delocalization-localization (DL) phase transition in such
non-Hermitian quasicrystals [14].

In parallel, the exploration of a diversified range of period-
ically driven systems has been triggered due to the presence
of rich and intriguing features typically absent in their tem-
porally static counterparts [15–19]. The underlying quantum
mechanics and the general understanding of such systems
influenced by some external time-periodic drive (generally
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known as Floquet systems) have gained interest in recent
years due to their applications in ultrafast spintronics [20,21],
quantum optics [22], ultracold atomic systems [23,24], and
trapped ions [25]. On the other hand, the interplay between
periodic driving and non-Hermiticity has led to several novel
findings in recent years [26–33]. It has been demonstrated that
a time-periodic drive can induce SE in systems with an on-site
loss [34]. Additionally, Floquet engineering has been utilized
to control the direction of edge modes [35]. Furthermore, it
has been pointed out that a time-periodic drive can stabilize
the dynamics of a two-level non-Hermitian Rabi model [36],
where the Floquet quasienergies turn out to be real, leading to
extended unitarity (EU) at the end of each complete driving
period.

In this work, we unveil that a time-periodic drive can
lead to the EU condition in HN quasicrystals, with a con-
current disappearance of the SE up to a finite strength of
the nonreciprocity in the hopping amplitudes. In the limit
of high frequency in the drive, we illustrate analytically that
such a time-periodic modulation reduces the non-Hermitian
system to a Hermitian equivalent counterpart under the pe-
riodic boundary condition (PBC), giving rise to completely
real Floquet quasienergies irrespective of the strength of the
potential and the asymmetry in the hopping amplitude, at each
stroboscopic time period. This is in stark contrast to static
HN quasicrystals, where the energy spectrum undergoes a
complex to real transition at a critical value of the potential,
although both of these systems manifest a DL transition. How-
ever, unlike the situation under PBC, the EU condition persists
only up to a critical strength of the nonreciprocity in the
delocalized regime under an open boundary condition (OBC).
Interestingly, we demonstrate that the emergence of EU de-
stroys the SE. Moreover, contrary to the static limit, where the
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energies are real in the SE phase, we find that in time-periodic
systems, it can exist when the Floquet quasienergy spectrum
is complex. These counterintuitive results on the relationship
between the SE and the eigenenergies completely alter our
understanding of conventional HN systems.

In practice, from the perspective of experimentalists, it
is noteworthy that the dynamics in such systems has found
wide realizations in photonics and in quantum systems by
enhancing the extent of optical sensing [37,38]. Additionally,
the dynamics in a Hamiltonian with asymmetric hopping has
recently been studied experimentally in photonic lattices to
focus an incident light at a desired location, irrespective of
the point of excitation, a phenomenon termed as light funnel-
ing [39]. In this work, we propose an experimental setup that
can exploit our findings to tune the light-funneling effect.

The rest of the work is organized as follows. We begin
by introducing our non-Hermitian time-periodic Hamiltonian
in Sec. II A. Such driven systems are described within the
framework of Floquet formalism, as elaborated in Sec. II B.
The numerical technique used to locate the DL transition is
elucidated in Sec. III. In the subsequent part of our work,
we have demonstrated the important findings on the DL
transition analytically in the regime of a large driving fre-
quency in Sec. IV A, followed by the estimation of the phase
boundaries in our driven system in Sec. IV B. In the next
section (Sec. IV C), the absence of SE and its connection
to the EU is established numerically, and the system-size
behavior of SE is discussed. An experimental realization of
the time-periodic Hamiltonian is proposed in Sec. V. Finally,
the important highlights in this work are outlined in Sec. VI.

II. THE PERIODICALLY DRIVEN SYSTEM

A. The non-Hermitian quasiperiodic system under a drive

We consider a time-dependent version of the single-particle
quasiperiodic non-Hermitian Hamiltonian [14,40] defined as

H(t ) =
N−1∑
n=1

(Jehcos(ωt )c†
n+1cn + Je−hcos(ωt )c†

ncn+1)

+
N∑

n=1

V cos(2παn)c†
ncn, (1)

where c†
n and cn denote the fermionic creation and annihilation

operators, N represents the number of sites in the lattice, and n
is the site index. The lattice size L = Na, where a is the lattice
period of translation (considered to be 1 in arb. units). In the
prototypical static HN Hamiltonian, the asymmetric hopping
of the fermions towards the left and the right is incorporated
in the tight-binding notation using an imaginary magnetic
vector potential by the terms e−h and eh, respectively. In this
work, we consider continuous temporally cosine modulated
nonreciprocal hopping amplitudes, as indicated in the first
term of the above Hamiltonian. The second term characterizes
the on-site quasiperiodic potential of the Aubry-André-Harper
(AAH) type [41,42], where α defines the incommensurability,
set as (

√
5 − 1)/2 throughout this work.

B. The Floquet theory

From the Hamiltonian described in Eq. (1), it is evident
that after a stroboscopic period T , H(t ) = H(t + T ). For such
time-periodic Hamiltonians, the Floquet theory has been in-
strumental in determining the states after a time T . According
to the Floquet theory, the Floquet propagator for one complete
period and an initial time t0 = 0 is defined as

U (T, 0) = T e−(i/h̄)
∫ T

0 H(t )dt = e−iHF T/h̄, (2)

where T takes care of the time ordering of the Hamiltonians
at different instants of time. In the above equation, HF is the
Floquet Hamiltonian, whose eigenstates can be obtained by
the exact diagonalization of U (T, 0). The reduced Planck’s
constant (h̄) is considered to be of unit magnitude throughout
this work. In general, U (T, 0) is nonunitary when the ele-
mental Hamiltonian is non-Hermitian and can be constructed
using the biorthogonal formalism [43].

The eigenvectors and eigenvalues of U (T, 0) on exact di-
agonalization yield the eigenspectrum of HF given as

U (T, 0) =
∑

n

En |ψnR〉 〈ψnL| and En = e−iεF
n T , (3)

where En, |ψnR〉, and |ψnL〉 are the eigenenergies and the right
and left eigenvectors, respectively. The Floquet quasienergies
εF

n satisfy the relation HF ψn = εF
n ψn (defined modulo h̄ω).

The solutions to the time-dependent Hamiltonian to ascertain
the physical properties can mostly be attained numerically
using the Floquet eigenstates and quasienergies as described
above [44].

III. CHARACTERIZATION
OF THE DELOCALIZATION-LOCALIZATION

(DL) PHASE TRANSITION

To identify the delocalized and localized phases in the
system, the concept of inverse participation ratio (IPR) [45,46]
is widely used in the literature. The IPR has been ex-
tended in non-Hermitian systems, where a new measure of
bidirectional-IPR (BIPR) for an eigenstate labeled “ j” has
been introduced recently [47] and is defined as

BIPR j =
∑N

n=1

∣∣ψ j
nLψ

j
nR

∣∣2

(∑N
n=1

∣∣ψ j
nLψ

j
nR

∣∣)2 , (4)

where the sum of the weights of the wave vectors is over all
the lattice sites indicated by n. 〈BIPR〉 signifies the average of
BIPR over all the eigenstates. The 〈BIPR〉 is O(L−1) when the
states are completely delocalized, and O(1) in the localized
regime. For all the subsequent details and the findings on
our periodically driven system, we have considered J = 1 (in
arb. units), L = 144, and the Trotter time step as �t = 0.001,
unless specifically stated.

IV. RESULTS AND DISCUSSIONS

The aim of this work is achieved in two steps. We first ex-
plore the behavior of the DL transition of the time-dependent
HN system under PBC in the parameter space of h and V for
different driving frequencies. In the subsequent analysis, we
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assess the sensitivity of the energy spectrum to the boundary
conditions along with the investigation of the existence of SE.

A. Analytical understanding of the DL transition
in the high-frequency regime

In the following, we demonstrate that the critical point of
the DL transition under the PBC can be obtained analytically
in the regime of a large frequency of the drive. The analytical
expression of the phase boundary is derived by retrieving
an effective Floquet Hamiltonian upon time averaging the
original Hamiltonian, as discussed in earlier works [48–51].
Such an expression of the effective Floquet Hamiltonian
was originally derived starting from the spatially periodic
Schrödinger equation in Hermitian systems, which obey the
well-known bulk-boundary correspondence [48]. However,
the non-Hermitian system as considered in this work alters
the nature of the bulk states depending on the choice of the
boundary conditions, violating such a bulk-boundary corre-
spondence. Naturally, the analytical results obtained under the
PBC cannot predict the nature of the states and its dynamics
under the OBC, except the critical point for the localization
transition. The effective Hamiltonian, which can only be ob-
tained when the frequency of the drive is large enough, is
written as follows:

HF = 1

T

∫ T

0
H(t )dt . (5)

To evaluate HF as given in Eq. (5), we first consider the
hopping towards the right, which is given by

1

T

∫ T

0

∑
n

(Jehcos(ωt )c†
n+1cn)dt . (6)

In the above equation,
∫ T

0 ehcos(ωt )dt can be identified as the
generating function of the modified Bessel equation, i.e.,∫

e
z
2 (x+ 1

x )dx with z = h and x = exp(iωt ). Integration over the
entire time period yields the effective Floquet Hamiltonian for
this part, and is given as∑

n

[JI0(h)]c†
n+1cn, (7)

where I0 is the zeroth-order modified Bessel function. It is
interesting to note that the above expression is independent
of ω. Similarly, for the hopping in the opposite direction
(towards the left), the other part of the effective Hamiltonian
can be written as ∑

n

[JI0(−h)]c†
ncn+1. (8)

It is easy to see that I0(h) = I0(−h). The effective Floquet
Hamiltonian can then be explicitly written as

HF =
∑

n

[JI0(h)](c†
n+1cn + c†

ncn+1)

+
∑

n

V cos(2παn)c†
ncn. (9)

Remarkably, from Eq. (9), it becomes quite evident that the
effective Floquet Hamiltonian for the HN systems with a
drive in the magnetic vector potential reduces to a Hermitian

AAH Hamiltonian with a rescaled hopping amplitude given as
JI0(h) in the regime of high frequency. Thus, we expect the
DL transition to occur at a critical value of the quasiperiodic
potential determined by the self-duality of the AAH Hamilto-
nian in the Hermitian limit, expressed as

Vc = 2J ′, where J ′ = JI0(h). (10)

B. Phase diagram at different driving frequencies

Figures 1(a)–1(d) illustrate the phase diagram of the time-
periodic version of the HN Hamiltonian as discussed in Eq. (1)
under the PBC. In sharp contrast to the static system, interest-
ingly, we observe from Figs. 1(a)–1(d) that the DL transition
(indicated by a transition from blue to a different color) does
not follow the critical value of the undriven system (indicated
by the solid red line) determined from the condition Vc =
max[Jeh, Je−h], as demonstrated in Ref. [40]. From the phase
diagrams, it is evident that the transition from delocalized to
localized states strongly depends on the driving frequency.

In Figs. 1(a)–1(d), we have indicated the analytically ob-
tained phase boundary in Eq. (10) by a black dotted line. It is
clear that as we approach to a higher value of the driving fre-
quency (ω = 4π ), the numerically determined critical value
for the DL transition agrees excellently with the analytical re-
sult in the entire parameter space. However, for lower driving
frequencies, the numerical critical points follow the analytical
expression only up to a certain strength of the asymmetry.
In addition, the effect of the periodic drive in such systems
is to shift the DL transition to a lower value of Vc, as com-
pared to its static counterpart [demonstrated by the red line in
Figs. 1(a)–1(d)]. Moreover, our analytical result suggests that
the Floquet quasienergies in the entire parameter space of h
and V should be real for high driving frequencies under PBC,
due to the exact mapping of the original non-Hermitian system
to the Hermitian AAH Hamiltonian. We have numerically
verified this assertion. Surprisingly, however, the reality of the
quasienergies persists for all frequencies of the drive. This is
in complete contrast to the static HN Hamiltonian under the
PBC, where the DL transition is concurrent with a spectral
transition from complex to real. In our case, the existence
of the real quasienergies irrespective of the strength of the
potential (refer to Fig. 6 in Appendix A more details) and
non-Hermiticity, which is the hallmark for EU, suggests that
our system becomes dynamically stable after a stroboscopic
driving period.

C. Skin effect under the drive

In such non-Hermitian systems with asymmetric hopping,
a change in the boundary condition from PBC to OBC drasti-
cally alters the behavior of electronic states and eigenenergies,
especially in the delocalized phase. In the static HN coun-
terparts, it has been well demonstrated that under the OBC,
in the delocalized regime, the eigenenergies lie on the real
axis [11], along with the appearance of SE. Naturally, one
of the most important question that arises is whether such
a correspondence between the quasienergies and SE exists
under the time-periodic drive. We address this question in the
subsequent discussion.
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FIG. 1. Projected 〈BIPR〉 as a function of h and V for the driven HN system at different driving frequencies: (a) ω = π/2, (b) ω =
π , (c) ω = 2π , and (d) ω = 4π . The blue region in all the phase diagrams indicates the delocalized phase. The red solid line depicts the
critical point for the DL transition in the static HN Hamiltonian. The black dotted lines manifest the critical value under the drive as obtained
analytically from the expression in Eq. (10). The DL transition is demonstrated for a lattice with 144 sites and under the PBC. The white data
markers superposed in all the phase diagrams separate the regions with and without the SE, obtained under OBC. The spectral behavior in the
different regimes under both PBC and OBC is also indicated.

In analogy with the static system, one can naively antici-
pate that the SE would persist in the entire delocalized regime
[represented in blue in Figs. 1(a)–1(d)] retaining the reality
of the Floquet quasienergies. However, we demonstrate that
this expectation is in complete contradiction when the system
is driven. From Figs. 2(a) and 2(c), it is evident that for
weak asymmetry in the hopping, the periodic drive leads to
real Floquet quasienergies under both the periodic and open
boundary conditions. However, remarkably, we find that under
the OBC, the time-periodic drive demolishes the SE regardless
of the driving frequency [Figs. 2(b) and 2(d)], contrary to the
undriven systems where the SE exists for an arbitrarily weak
strength of the imaginary magnetic vector potential.

To further understand the dependence of the SE on h, we
consider a slightly greater amplitude of the asymmetricity in
the Hamiltonian. In this case, the quasienergy spectrum under
the PBC still exhibits real eigenvalues, similar to a Hermitian
system, as demonstrated in Figs. 3(a) and 3(c), manifesting
EU as indicated previously. This is in accordance with the
finding in Eq. (9). However, with an increase in the value in h,
the spectrum under OBC lies on the complex plane and does
not satisfy the EU condition. Surprisingly, when the spectrum
becomes complex under OBC, the system exhibits SE irre-
spective of the driving frequency, as illustrated in Figs. 3(b)
and 3(d). This is in stark contrast to the static systems. From

these findings, it is clear that there exists a critical value hc at
which the SE appears.

Furthermore, from the above findings, it is easy to see that
the states dynamically accumulate at the boundaries after a
stroboscopic time evolution when the extended unitarity is
broken. This can be understood from the Floquet propagator
(U = e−iHF T ). When the Floquet quasienergies of HF are
real, the propagator accumulates real phase factors, which do
not alter the mechanism of localization in the regime that
we label as EU. However, when HF gives rise to complex
quasienergies (in the broken EU regime), there is a growth or
decay of the wave functions governed by the Floquet propaga-
tor. This is similar to the basic phenomenon required for SE,
i.e., an amplification in one direction and a decay towards the
other direction. This exponential growth/decay results in the
localization of the modes towards the edge of the lattice, i.e.,
the SE, when the EU condition is broken.

We have numerically determined hc in the entire parameter
space of h and V . Our findings are summarized in Figs. 1(a)–
1(d) for different frequencies of the drive. It is remarkable that
hc is independent of the driving frequency and the quasiperi-
odic potential. The numerical value of hc is estimated to be
h � 0.20 with an error of ±0.01. The preceding discussions
clearly indicate that the emergence of EU and disappear-
ance of SE are closely linked in such driven systems. The
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FIG. 2. The Floquet quasienergy spectrum under the PBC (red) and OBC (blue) for the driven system at a low value of the imaginary vector
potential, i.e., h = 0.1 and V = 0.5 at (a) ω = π/2 and (c) ω = 4π . (b),(d) Lattice-site resolved |ψ |2 for all the eigenstates corresponding to
the two parameters in (a) and (c), respectively, indicating the absence of SE under the OBC. L = 144 in all the cases.

determination of hc for the different driving frequencies has
been elucidated in Fig. 7 in Appendix B.

It is important to note that the critical strength of the asym-
metricity for the onset of SE in such driven systems strongly
depends on the size of the lattice. In order to get a comprehen-
sive idea of this system-size dependence, in Fig. 4 we present
hc as a function of 1/L for different driving frequencies. It
is evident that hc scales inversely with the system size. In
addition, hc becomes independent of the driving frequency
when the size of the lattice is large enough. Furthermore, it
can be easily observed that hc approaches to the static limit of
HN Hamiltonian for L → ∞.

The existence of hc for the SE and EU condition along
with its system-size dependence can be understood from the
behavior of the instantaneous eigenstates of the original time-
dependent Hamiltonian given in Eq. (1). We find that at t = 0,
the Hamiltonian possesses a greater hopping amplitude to-
wards the right. For any given driving frequency and a fixed
L, it is easy to see that within a stroboscopic period, there
are two sign changes in the hopping amplitude terms, i.e.,
Jehcos(ωt ) and Je−hcos(ωt ). This suggests that after a complete
stroboscopic period, the states will be accumulated towards
the right edge, which agrees with our observation reported
for h > hc. However, for h < hc, a detailed observation re-
veals that the difference between the two asymmetric hopping
amplitudes remains close to zero for larger instances of time
due to the small value of h. Moreover, the amplitude of

the skin modes is found to be pretty weak. Therefore, the
time averaging washes out the effect of the asymmetry in
the hopping amplitudes. On the other hand, for large h, the
difference in the hopping asymmetry is large enough for most
instances of time, thereby giving rise to larger amplitude of
the skin states and an overall right unidirectionality at the end
of the complete driving period. In addition, for a fixed value
of h, at any instant of time, we find that the wave-function
amplitude decreases as we move away from the edge (which
is an anticipated behavior owing to the SE). This is, in general,
true for all system sizes. However, we found that as the system
size becomes smaller, say L = 89, the amplitudes at far away
sites do not completely vanish. Therefore, on time averaging,
the SE effectively vanishes in smaller systems because of a
comparable magnitude at all lattice sites. On the other hand, at
the same value of h, with an increase in the size of the lattice,
say L = 233, the wave-function probabilities at sites distant
to the edges fall off to zero. Since in an entire stroboscopic
period the system has a greater tendency towards the right
for most of the time instances, the time averaging results
in vanishingly small amplitudes away from the right edge,
eventually giving rise to a SE at the right. This results in a
decrease in the value of hc with an increase in L.

Our findings in this work reveal that although the SE ap-
pears at even an arbitrarily small strength of the asymmetry
in static HN Hamiltonian, a time-periodic drive can eliminate
the SE up to some critical strength of asymmetricity, i.e., hc,
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FIG. 3. The Floquet quasienergy spectrum under the PBC (red) and OBC (blue) for the driven system at h = 0.2 and V = 0.5 at
(a) ω = π/2 and (c) ω = 4π . (b),(d) Lattice-site resolved |ψ |2 for different eigenstates for the two parameters corresponding to (a) and
(c), demonstrating the presence of SE under the OBC. The lattice consists of 144 sites in all the cases.

at least up to a certain finite size of the driven lattice. Our
result paves the way to control the SE either by controlling
the strength of the asymmetry in the hopping or the size
of the lattice. An interesting experimental implementation of
regulating the SE using these two mechanisms is presented in
Sec. V.

FIG. 4. System-size behavior of hc for the onset of SE as a
function of inverse lattice size in different regimes of the Floquet
drive, i.e., at ω = π/2 (green), ω = 4π (blue), and ω = 8π (red).
The data are obtained for L = 55, 89, 144, and 233 under the OBC.

V. EXPERIMENTAL IMPLEMENTATION: SWITCH
FOR LIGHT FUNNELING

In this discussion, we propose a possible experimental im-
plementation of the system considered in this work from the
point view of its application in controlling the light-funneling
effect. Similar to the recent realizations of the nonreciprocal
lattices in photonic systems as demonstrated in Refs. [39,52],
we consider a setup with two optical fibers with anisotropic
hopping in either direction, separated by an interface as il-
lustrated in Fig. 5. The driven HN system can be replicated
by changing the anisotropy in the hopping with the help of a
frequency-dependent beam splitter [53], and selectively using
the desired beam of light. Such an unidirectionality in the two
fibers causes the incident light that is impinged on the lattice
to be pushed towards the interface due to SE, resulting in a
funneling effect of the output light. Since the value of h can
be tuned with the anisotropic beam splitter and our results
suggest the existence of hc for the onset of SE, it is easy to
understand that the SE can be turned on or off by controlling
the beam splitter or by simply choosing an appropriate lattice
size, effectively acting as a switch to tune the light-funneling
effect.

VI. CONCLUSIONS

In conclusions, this work demonstrates that a time-periodic
drive can fundamentally alter the behavior of the paradig-
matic quasiperiodic HN systems. By introducing a drive,
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FIG. 5. Schematic of light funneling using two oppositely di-
rected static HN chains. The interface is formed at n = 0. The chains
on the left and right sides of the interface have greater unidirectional-
ity towards the right and left directions, respectively. The output light
traverses through the funnel-like structure where it is collected.

we unfold that under PBC, the Floquet Hamiltonian in the
large-frequency limit becomes equivalent to a Hermitian AAH
counterpart, giving rise to the extended unitarity and real
Floquet quasienergies in the entire parameter space of the
Hamiltonian, in stark contrast to the static limit. We find that
the driven system undergoes a DL transition similar to the
static case, albeit at a lower strength of the potential for a given
asymmetry in the hopping, determined by the self-duality
condition of the effective Hermitian AAH Hamiltonian. Under
OBC, however, we find that the EU condition survives only
up to a critical value of the asymmetry in the hopping, hc,
along with the disappearance of SE within that asymmetry. In
complete contrast to the static limit, the SE appears above this
critical value with complex Floquet quasienergies. Remark-
ably, for a given system size, hc is found to be independent
of the driving frequency and quasiperiodic potential. Further-
more, we find that hc scales inversely with the system size

approaching to the static behavior in the thermodynamic limit.
Our work deepens the understanding of the DL transition
under the PBC, Floquet quasienergies, and its connection to
the SE under the OBC in HN systems. Finally, we provide an
experimental setup that can utilize the findings of this work to
control the light-funneling mechanism.
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APPENDIX A: EXISTENCE OF EXTENDED UNITARITY
IN THE LOCALIZED REGIME

In Figs. 1(a)–1(d) of the main text, we have illustrated the
phase diagrams of the driven HN Hamiltonian considered in
our work. It is well known that the delocalization-localization
phase transition in the static Hatano-Nelson (HN) systems
is accompanied by a complex to real transition in the en-
ergy spectrum under the periodic boundary condition (PBC).
Under the open boundary condition (OBC), such systems
exhibit the SE, as discussed in the main text. However, as we
have demonstrated, in the driven systems and under the PBC,
the Floquet quasienergies are always real in the delocalized
regime, satisfying the extended unitarity (EU) condition, as
shown in Figs. 2(a) and 2(c) and Figs. 3(a) and 3(c) in the main
text for h = 0.1 and h = 0.2, respectively. This is contrary
to the behavior of static HN systems. Moreover, under the
OBC, the Floquet quasienergy spectra changes from real [in
the presence (absence) of EU (SE)] to complex [in the absence
(presence) of EU (SE)]. To assess the behavior of the EU in
the localized regime of the phase diagram, we have presented
the quasienergy spectrum under both the PBC and OBC in
Figs. 6(a) and 6(b). It is evident that for any frequency in the
drive, the Floquet quasienergies satisfy the EU condition in
the localized regime of the phase diagram under both of the

FIG. 6. The Floquet quasienergy spectrum in the complex plane under the PBC (in red) and OBC (in blue) at h = 0.1 and V = 2.5
(localized regime) at: (a) ω = π/2, (b) ω = 4π . L = 144 as considered in the main text.
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FIG. 7. |ψ |2 for all the eigenstates projected over the lattice sites at (a),(e) ω = π/2, (b),(f) ω = π , (c),(g) ω = 2π , and (d),(h) ω = 4π .
The figures in the upper panel correspond to the value of h just before the onset of SE, whereas the ones in the lower panel correspond to the
value of h at which the SE appears (determined within an error of ±0.01). We have considered the OBC in a lattice with 144 sites.

boundary conditions. We have verified that this EU condi-
tion persists irrespective of the strength of the quasiperiodic
potential and asymmetric hopping amplitude, as illustrated in
Figs. 6(a) and 6(b).

APPENDIX B: DEMONSTRATION OF SE
IN THE DRIVEN HN SYSTEMS

To find out the critical value of hc for the onset of
SE, we resort to the conventional method of determining
whether all of the eigenstates localize at one end of the lat-
tice using the wave-function probabilities as demonstrated in

Figs. 7(a)–7(h). In an unidirectional system, all the eigenstates
under the OBC pile up at one of the edges towards which there
is a greater directionality of the fermionic hopping. Therefore,
in our system, since the amplitude of hopping towards the
right dominates over the left hopping amplitude, we say that
our system possesses SE when all the states are localized
towards the right end. It is clear from the upper panel of
Figs. 7(a)–7(d), a few eigenstates are localized in the bulk of
the system. Therefore, we do not consider them as skin modes.
We have clearly illustrated the value of hc at 0.20 ± 0.01 for
different driving frequencies in a lattice with 144 sites, as
discussed in the main text.
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