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Signatures of quantum integrability and exactly solvable dynamics
in an infinite-range many-body Floquet spin system
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In a recent work [Sharma and Bhosale, Phys. Rev. B 109, 014412 (2024)], an N-spin Floquet model with
infinite-range Ising interaction was introduced. In this paper, we generalize the strength of interaction to J , such
that the J = 1 case reduces to the aforementioned work. We show that for J = 1/2 the model still exhibits
integrability only for an even number of qubits. We analytically solve the cases of 6, 8, 10, and 12 qubits, finding
the eigensystem, the dynamics of the entanglement for various initial states, and the unitary evolution operator.
These quantities exhibit the signature of quantum integrability (QI). For the general case of even N > 12 qubits,
we conjuncture the presence of QI using numerical evidence such as spectrum degeneracy and the exact periodic
nature of both the entanglement dynamics and the time-evolved unitary operator. We numerically show the
absence of QI for odd N by observing a violation of the signatures of QI. We analytically and numerically find
that the maximum value of time-evolved concurrence (Cmax) decreases with N , indicating the multipartite nature
of entanglement. Possible experiments to verify our results are discussed.
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I. INTRODUCTION

Long-range interactions are encountered in various sci-
entific domains, including statistical physics [1–3], quantum
mechanics [4,5], cosmology [6–9], atomic and nuclear
physics [10], plasma physics [11], hydrodynamics [12–14],
and condensed matter physics [15]. This interaction can now
be replicated in a quantum simulator [16–18] with artifi-
cial ion crystals [19–21], cold atoms in cavities [22], polar
molecules [23], dipolar quantum gases [24–26], Rydberg
atoms [27], magnetic atoms [28–30], nonlinear optical media
[31], and solid-state defects [32]. It is also present between
genomic elements which can be detected by using the chro-
mosome conformation capture method [33] and in adatoms of
graphene [34]. Long-range interactions are pervasive and give
rise to qualitatively new physics, e.g., the emergence of novel
quantum phase and dynamical behaviors [35,36]. Addition-
ally, they play a crucial role in enabling speedup in quantum
information processing [37,38]. Long-range interactions have
been proven to be very useful in quantum technology applica-
tions like the quantum heat engine [39], quantum computing
[40,41], quantum metrology [42], and ion traps [43].

Entanglement stands out as perhaps the most distinctive
feature of quantum mechanics, giving rise to unique nonlocal
correlations that find no counterpart in the classical domain.
Long-range interactions have the potential to profoundly in-
fluence the dynamics of correlated systems [1]. Due to the
breakdown of quasilocality in long-range interaction various
phenomena arise such as its faster entanglement generation
[38,44,45] than the Lieb-Robinson bound [46] and dynamical
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phase transitions [47,48]. Numerous studies have delved into
the examination of entanglement in such systems [49–57].
The time evolution of multipartite entanglement measured
using quantum Fisher information (QFI) and scrambling in a
spin chain has been studied with these interactions [58]. They
have been measured in experiments too [59].

The long-range interaction decays with distance r ac-
cording to a power law (1/rα). Corresponding to different
values of α, these interactions in the natural system fall into
categories such as Rydberg atoms (α = 6, van der Waals
interactions), magnetic atoms (α = 3, dipole- dipole interac-
tion), Coulomb interactions (α = 1), atoms coupled to cavities
(α = 0), etc. The case α = 0 corresponds to a category of
infinite-range or all-to-all interactions [23,60–71]. Models
with α < d are categorized as long-range interaction, where d
is the physical dimension of the system [1,15]. In such inter-
actions, the energy is not extensive [1,3,15]. There are models
corresponding to infinite-range interaction that are integrable,
such as the Lipkin-Meshkov-Glick (LMG) model [72] and the
model with Ising interaction in a transverse field [73]. The
main theme of this paper revolves around integrability in one
such recently introduced model [73].

From the perspective of classical mechanics, integrability
can be understood by the connection between the degree
of freedom and a sufficient number of constants of motion
[74,75], whereas the quantum integrability [76–81] is typi-
cally associated with an exact solution of models, for example,
based on the solution of the Yang-Baxter equation found by
obtaining the transfer matrix [77,82–86], and techniques like
the Bethe ansatz [87–90]. Alternatively, it can be identified
through other features, for instance, the existence of a set of
an infinite number of conserved quantities and/or Poissonian-
level statistics after taking conserved quantities into account
[91,92]. In various studies, the indication of integrability in
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systems is revealed through signatures like the exact peri-
odicity of entanglement dynamics and time evolution of the
Floquet operator and degenerated spectra or the level crossing
[76,77,79,93–96].

In a very recent work [73], we introduced a many-body
Floquet spin model with an infinite-range Ising interaction.
We showed that it exhibits quantum integrability. In Ref. [73],
we analytically calculated the eigensystem, reduced density
matrix, time evolution of the unitary operator, and entan-
glement dynamics for 5 to 11 qubits. We measured the
entanglement dynamics using linear entropy and concurrence.
For the general case N > 11 qubits, we resorted to numerical
methods due to the complexity and fairly large calculation,
as analytical solutions pose mathematical challenges. The
Hamiltonian was defined as follows:

H (t ) =
∑
l<l ′

σ z
l σ z

l ′ +
∞∑

n=−∞
δ(n − t/τ )

N∑
l=1

σ
y
l ,

where the first term represents the Ising interaction with unit
strength, while in the second term, τ is the period at which
the magnetic field is applied periodically along the y axis. In
various studies, the integrability in the system was identified
through signatures such as the periodicity of the entanglement
dynamics [94–97] and that of the Floquet operator dynamics
[95] and highly degenerated spectra [79,96]. In Ref. [73] we
used the same signatures to show integrability in our model for
any value of N . In that study, we reported that the integrability
in the system is found for a specific value of the parameter
τ = π/4, and for τ �= π/4 it was not. Our findings revealed
that the pairwise entanglement using concurrence remains
zero for various initial states, indicating the multipartite nature
of the entanglement. Furthermore, the signatures of integra-
bility show the same behavior (depending on the parity of
N) for any value of N . We showed that the special case of
this model is connected to the one with the nearest-neighbor
Ising interaction model [94,96–100] as well as to the well-
known quantum chaotic kicked top (QKT) model for specific
values of parameters [101]. Once it was mapped with QKT,
the integrability in the system was limited to only four qubits
[102], whereas in our earlier work, we generalized it to any N
using these signatures [73].

In this work, we generalize this model to include any value
of the strength of Ising interaction to J . In the context of inte-
grability, we utilize the same signatures for the same value of
τ as reported in our previous work [73]. We analytically obtain
the eigenvalues and eigenvectors for an even number of qubits
ranging from 6 to 12. We explicitly derive the expression for
entanglement measures, such as linear entropy and entangle-
ment entropy, for various initial unentangled states. Here, we
also find that these quantities exhibit a periodic nature for
specific values of J other than 1 [73]. We also observe the
periodic behavior of the time evolution of the unitary operator
for the aforementioned cases. However, for cases involving 5,
7, 9, and 11 qubits, we numerically demonstrate the absence
of these signatures. For the general case, N > 12, we provide
sufficient numerical evidence of integrability for any even
number of qubits and the absence of quantum integrability for
any odd qubits by using the absence of the same signatures
[73]. We also observe the decay of the maximum value of

concurrence with N , indicating the increasing multipartite
nature of entanglement.

The rest of this paper is organized as follows. In Sec. II,
we give a brief introduction to the model investigated. In
Sec. III, we give an exact analytical solution for entangle-
ment measures such as linear entropy, entanglement entropy,
and concurrence for six qubits for various initial unentangled
states. In Sec. IV, the results for the analytical expression
for entanglement and eigenvalues of the time-evolved unitary
operator for N = 8, 10, and 12 qubits are presented. In Sec. V,
we provide sufficient numerical evidence of the signature of
quantum integrability for the general case of even N > 12
qubits and the absence of the quantum integrability (QI) for
odd N > 12 qubits. In Sec. VI, a summary of the results and
conclusions are given.

II. MODEL

The generalization of the Hamiltonian model from
Ref. [73] is given as follows:

H (t ) = HI +
∞∑

n=−∞
δ(n − t/τ ) Hk, (1)

where δ(t ) is a Dirac delta function and we define

HI = J
∑
l<l ′

σ z
l σ z

l ′ , Hk =
N∑

l=1

σ
y
l . (2)

Here, the first term represents the Ising interaction with a field
strength J , while the second term corresponds to the periodi-
cally applied magnetic field along the y axis, with a period of
τ . Using Pauli matrix algebra, it can be shown easily that the
two terms in Eq. (1) do not commute, i.e., [HI , Hk] �= 0. The
case J = 1 corresponds to the Hamiltonian from Ref. [73].
The corresponding Floquet operator is given as follows:

U = exp [−i τHI ] exp [−i τHk]

= exp

(
−i J τ

∑
l<l ′

σ z
l σ z

l ′

)
exp

(
−i τ

N∑
l=1

σ
y
l

)
. (3)

The Ising interaction in this model is uniform and all to
all. The nearest-neighbor interaction (NN) model, a special
case of our model, has been extensively studied [94–100].
It exhibits permutation symmetry under the exchange of
spins. Due to the presence of symmetries in the model, its
effective Hilbert dimension reduces from 2N to N + 1. Scram-
bling in models similar to ours was extensively explored in
Refs. [103–108]. In Ref. [73], we showed that the model
exhibits signatures of quantum integrability for the parameters
τ = π/4 and J = 1. The main objective of this work is to find
the values of parameters at which the model shows quantum
integrability. From that perspective, we restricted ourselves to
the same τ while varying the field strength J . We find that the
model shows identical signatures for the parameter J = 1/2.
The Floquet operator corresponding to Eq. (1) with τ = π/4
and J = 1/2 is given as follows:

U = exp

(
−i

π

8

∑
l<l ′

σ z
l σ z

l ′

)
exp

(
−i

π

4

N∑
l=1

σ
y
l

)
. (4)
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Throughout this paper, we consistently employ the param-
eter values J = 1/2 and τ = π/4 unless otherwise stated.
In our earlier study [73], we reported that this model has
a close connection to the very well known QKT model
[101,109,110] and shows quantum integrability up to four
qubits. In Refs. [102,110], this model was extensively studied
for a smaller number of qubits (N = 2, 3, and 4) for these
parameters. Its Hamiltonian is given by

HQKT(t ) = p

τ ′ J̃y + k

2 j
J̃2

z

∞∑
n=−∞

δ(t − nτ ′). (5)

The Floquet operator in Eq. (4) also has a connection to
this model for the parameters p = π/2, k = jπ/2 (= Nπ/4),
and τ ′ = 1 and using many-qubit transformation J̃x,y,z =∑2 j

l=1 σ
x,y,z
l /2, where σ

x,y,z
l are the standard Pauli matrices.

After this transformation Eqs. (4) and (5) are related by
exp(−i HQKT) = exp(−i NJτ ) × U . The overall phase (global
phase) exp(−i NJτ ) = exp(−i Nπ/8) for J = 1/2 and τ =
π/4 does not alter the entanglement dynamics. However, the
effect of this phase can be observed on the time period of
operator dynamics when it is periodic.

In this work, we will study the time evolution from the
initial states, which are localized in spherical phase space.
They lie on the unit sphere with spherical coordinates (θ0, φ0).
These states are the standard SU(2) coherent states and are
given as follows [111,112]:

|θ0, φ0〉 = ⊗N [cos(θ0/2)|0〉 + e−iφ0 sin(θ0/2)|1〉]. (6)

The entanglement dynamics as a function of time can be
studied by evolving these initial states using the Floquet op-
erator U . Our study utilizes various measures such as linear
entropy [113], von Neumann entropy [114,115], and concur-
rence [116,117] to quantify the entanglement in the system.
The commutation relation [U ,⊗N

l=1σ
y
l ] = 0 implies that the

system possesses a symmetry which is an up-down or parity
symmetry (see the Supplemental Material of Ref. [73] for a
detailed proof of the commutation relation). In this work, we
utilize the same general basis as in Ref. [73] to solve the
system analytically for any N number of qubits. The basis
when N is odd is given as follows:

|φ±
q 〉 = 1√

2

(|wq〉 ± i(N−2q)|wq〉
)
, 0 � q � 2 j − 1

2
, (7)

whereas for even N it is

|φ±
r 〉 = 1√

2
[|wr〉 ± (−1)( j−r)|wr〉], 0 � r � j − 1,

|φ+
j 〉 =

⎡
⎣1/

√(
N

j

)⎤⎦∑
P

(⊗ j |0〉 ⊗ j |1〉)P , (8)

where |wq〉 = [1/
√(N

q

)
]
∑

P (⊗q|1〉 ⊗(N−q) |0〉)P and |wq〉 =
[1/
√(N

q

)
]
∑

P (⊗q|0〉 ⊗(N−q) |1〉)P , both of which are defi-

nite particle states [118]. The
∑

P denotes the sum over
all possible permutations. These basis states |φ±

j 〉 are the
eigenstates of parity operators having eigenvalues ±1, i.e.,
⊗N

l=1σ
y
l |φ±

j 〉 = ±|φ±
j 〉. In this permutation symmetric basis,

U is block diagonalized in two blocks, U+ and U−. Due to

block diagonalization, it becomes easy to compute its nth
power, which can simplify further analysis. We analytically
calculate the entanglement dynamics for the coherent states
|θ0 = 0, φ0 = 0〉 and |θ0 = π/2, φ0 = −π/2〉. These states
have special importance when the classical phase space of the
QKT model is considered [102].

III. EXACT SOLUTION FOR SIX QUBITS

By using Eq. (8) for N = 6, the permutation symmetric
basis in which U is block diagonal are given as follows:

|φ±
0 〉 = 1√

2
(|w0〉 ∓ |w0〉), (9)

|φ±
1 〉 = 1√

2
(|w1〉 ± |w1〉), (10)

|φ±
2 〉 = 1√

2
(|w2〉 ∓ |w2〉), (11)

|φ+
3 〉 = 1√

20

∑
P

|000111〉, (12)

where |w0〉 = |000000〉, |w0〉 = |111111〉, |w1〉 =
1√
6

∑
P |000001〉P , |w1〉 = 1√

6

∑
P |011111〉P , |w2〉= 1√

15∑
P |000011〉P , and |w2〉= 1√

15

∑
P |001111〉P . The

seven-dimensional (N + 1) space splits into a 4 ⊕ 3 subspace
whose operators are U±. The unitary operator is given by

U =
(U+ 0A

0B U−

)
, (13)

where U+ and U− are (4 × 4) and (3 × 3)-dimensional ma-
trices and 0A and 0B are null matrices of dimensions 4 × 3
and 3 × 4, respectively. The U+ and U− are written in the
positive and negative parity subspaces {φ+

0 , φ+
1 , φ+

2 , φ+
3 } and

{φ−
0 , φ−

1 , φ−
2 }, respectively, and are obtained as follows:

U+ = −e
iπ
8

2
√

2

⎛
⎜⎜⎜⎜⎜⎝

0
√

3 0
√

5√
3 e

iπ
4 0

√
5 e

iπ
4 0

0
√

5 0 −√
3

−√
5 e

iπ
4 0

√
3 e

iπ
4 0

⎞
⎟⎟⎟⎟⎟⎠, (14)

U− = e
iπ
8

4

⎛
⎜⎜⎝

1 0
√

15

0 4 e
iπ
4 0√

15 0 −1

⎞
⎟⎟⎠. (15)

The eigenvalues of U+ and U− are {−1,−1, 1, 1} and
{−(−1)1/4,−(−1)3/4, (−1)1/4}, and the eigenvectors are
{[

√
3
5 ,

√
3
5 , (−1)3/8

2

√
5
2 ,− (−1)3/8

2

√
5
2 ]T ,

[−2(−1)1/8
√

2
5 , 2(−1)1/8

√
2
5 , 0, 0]T , [1, 1,− (−1)3/8

2

√
3
2 ,

(−1)3/8

2

√
3
2 ]T , [0, 0, 1, 1]T } and {[−

√
3
5 ,

√
5
3 , 0]T , [0, 0, 1]T ,

[1, 1, 0]T }, respectively. Thus, the nth time evolution of the
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blocks U± is given as follows:

Un
+ = e

inπ
4

16

⎡
⎢⎢⎢⎢⎣

an(3 + 5e
inπ
2 ) 2

√
6 bne

7iπ
8 4i

√
15 e

3inπ
4 sin

(
nπ
4

)
cos
(

nπ
2

)
2
√

10 bn e( inπ
2 + 3iπ

8 )

−2
√

6 bn e
iπ
8 8an −2

√
10 bn e

iπ
8 0

4i
√

15 e
3inπ

4 sin
(

nπ
4

)
cos
(

nπ
2

)
2
√

10 bne
7iπ
8 an(5 + 3e

inπ
2 ) −2

√
6 bn e( inπ

2 + 3iπ
8 )

−2
√

10 bn e( inπ
2 + 5iπ

8 ) 0 2
√

6 bn e( inπ
2 + iπ

8 ) 8an e
inπ
2

⎤
⎥⎥⎥⎥⎦ (16)

and

Un
− = e

inπ
8

8

⎡
⎢⎢⎣

5 + 3 einπ 0
√

15(1 − einπ )

0 8 e
inπ

4 0√
15(1 − einπ ) 0 3 + 5 einπ

⎤
⎥⎥⎦, (17)

where an = 1 + einπ and bn = 1 − einπ . From Eqs. (16) and (17), we can observe the periodic nature of Un
+ (Un

−) with period 8
(16). Hence, the unitary operator shows periodicity with period 16, i.e., Un = Un+16. In Refs. [73,95] it was found that when the
Hamiltonian is integrable, the corresponding unitary operator shows a periodic nature. Now, it is straightforward to perform the
time evolution of any initial state and, consequently, study various quantum correlations. We further conduct a detailed analysis
of two states, |0, 0〉 and |π/2,−π/2〉, deriving exact expressions for the linear entropy, von Neumann entropy of a single-qubit
reduced density matrix (RDM), and the concurrence between any two qubits.

A. Initial state |000000〉 = |θ0 = 0, φ0 = 0〉

Let us first start with the state |000000〉. The nth time evolution of the unitary operator in this state is given by

|ψn〉 = Un|000000〉 = Un|w0〉 = Un(|φ+
0 〉 + |φ−

0 〉)/
√

2 = (Un
+|φ+

0 〉 + Un
−|φ−

0 〉)/
√

2

= 1√
2

(a1|φ+
0 〉 + a2|φ+

1 〉 + a3|φ+
2 〉 + a4|φ+

3 〉 + a5|φ−
0 〉 + a6|φ−

2 〉), (18)

where a1=[ e
inπ
4

16 (3 + 5 e
inπ
2 )(1 + einπ )], a2 = e

iπ
8 + inπ

4

4

√
3
2 (−1 + einπ ), a3 = i

√
15 einπ

8 [sin( nπ
4 ) − sin( 3nπ

4 )], a4 = e( 5iπ
8 + 3inπ

4 )

4

√
5
2 (−1 +

einπ ), a5 = e
inπ

8

8 (5 + 3einπ ), and a6 = √
15 e

inπ
8 (1 − einπ )/8. From |ψn〉, we will obtain the single-qubit RDM [ρ1(n) =

Tr �=1(|ψn〉〈ψn|)] and the two-qubit RDM [ρ12(n) = Tr �=1,2(|ψn〉〈ψn|)].

1. Linear entropy and entanglement entropy

Linear entropy and entanglement entropy are measures used to quantify entanglement in quantum states. To calculate these
measures, we obtain the single-qubit RDM ρ1(n), which is given as follows:

ρ1(n) = 1

4

(
2 + an wn

w∗
n 2 − an

)
, (19)

where

an = 1

4
cos
(nπ

8

)
cos
(nπ

2

)[
2 − 4 cos

(nπ

4

)
+ 5 cos

(nπ

2

)
+ 5 cos(nπ )

]
and

wn = (−1)1/8 e− 13
8 inπ (−1 + einπ ){(5 + 5i)

√
2 + 5[−1 + (−1)1/4]e

inπ
8 + 5 i[(−1 + i) +

√
2]e

9inπ
8

− 2 e
3inπ

4 − 10(−1)1/4einπ−10 ie
5inπ

4 − 2 (−1)3/4e
3inπ

2 + [(1 + 5i) − (2 + 3i)
√

2](e
5inπ

8 + e
13inπ

8 )

+10 e
7inπ

4 + 5 [−i + (−1)3/4]e
17inπ

8 + 10 (−1)3/4e
inπ
2 + 10 i e

9inπ
4 }/64.

The eigenvalues of ρ1(n) are λn and 1 − λn, where

λn = 1

2
− 1

16

{
17 + 8(2 +

√
2) cos

(nπ

4

)
+ 8(2 −

√
2) cos

(
3nπ

4

)
+15

[
cos
(nπ

2

)
−sin

(nπ

2

)]

−8
√

2

[
sin
(nπ

4

)
+ sin

(
3nπ

4

)]} 1
2

.
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FIG. 1. Correlations (analytical values) using linear entropy (cir-
cles) and entanglement entropy (squares) are plotted for (a) 6 qubits,
(b) 8 qubits, (c)10 qubits, and (d) 12 qubits for the initial state ⊗N |0〉.

Using these eigenvalues, we can obtain the linear entropy
[113] given by 2λn(1 − λn), which is plotted in Fig. 1. The
entanglement entropy [114,115] can also be calculated using
−[λn ln λn + (1 − λn) ln(1 − λn)] and is plotted in Fig. 1. It
can be shown from the expressions and Fig. 1 that both the
linear and entanglement entropy have a periodic nature with
a period of 8, i.e., S(n + 8) = S(n). This periodic nature was
previously observed in integrable systems, particularly those
involving periodically kicked spin chains [73,94,96,97]. For
this particular state, we provided analytical proof that the
entanglement content remains unchanged for consecutive odd
and even values of n (see the Supplemental Material [119]
and Refs. [73,102] therein), i.e., S(6)

(0,0)(2n − 1) = S(6)
(0,0)(2n),

which is shown in Fig. 1. The linear and entanglement entropy
attain their maximum upper bound values of 0.5 and ln 2 ≈
0.6932 for the parameters τ = π/4 and J = 1/2, which was
also observed in the previous study on this model [73] with
the same τ but J = 1. We can observe from Fig. 1 that the
entanglement content takes more time (n = 3) to reach the
maximum upper bound value compared to the previous work
(n = 1) in Ref. [73].

2. Concurrence

The linear entropy measures the entanglement between a
single qubit with the rest of the qubits in a pure state, while
the concurrence measures the entanglement between any pair
of qubits within the system (pure or mixed). Regardless of
which particular qubits are chosen, the presence of permu-
tation symmetry in the state results in only one concurrence
value [116,117]. The concurrence is given by

C(ρ12) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (20)

where λl are eigenvalues in decreasing order of (σy ⊗
σy)ρ12(σy ⊗ σy)ρ∗

12, where ρ∗
12 is complex conjugation in the

standard (σz) basis. The two-qubit RDM ρ12 is given as fol-

lows:

ρ12(n) = 1

4

⎛
⎜⎜⎜⎜⎝

bm am am d∗
m

a∗
m em em a∗

m

a∗
m em em a∗

m

dm am am fm

⎞
⎟⎟⎟⎟⎠, (21)

where the coefficients are

bm = 1

16

[
22 + 6 cos

(nπ

8

)
+ 10 cos

(
3nπ

8

)
+ 4 cos

(nπ

2

)

+10 cos

(
5nπ

8

)
+ 6 cos

(
7nπ

8

)
+ 6 cos(nπ )

]
,

fm = 1

4

[
58 + 94 cos

(nπ

8

)
+ 78 cos

(nπ

4

)
+ 62 cos

(
3nπ

8

)

+56 cos
(nπ

2

)
+ 46 cos

(
5nπ

8

)
+ 46 cos

(
3nπ

4

)

+26 cos(nπ ) + 46 cos

(
7nπ

8

)]
sin2

(nπ

16

)
,

dm = 1

16

{
4 cos

(nπ

2

)
− 6 cos(nπ ) − 2 i

[
i − 4 i sin

(nπ

2

)

+ sin
(nπ

8

)
+sin

(
3nπ

8

)
−sin

(
5nπ

8

)
−sin

(
7nπ

8

)]}
,

em = 1

8

[
3 sin

(nπ

4

)
+ sin

(
3nπ

4

)]2

,

am = (−1)3/8e− 13
8 inπ (−1 + einπ )

[
6
√

2 + e
inπ
8 ((2 − 2i)

−3
√

2 + 6 i
√

2e
3inπ

8 + 4(−2 + √
4 − 3 i) cos

(nπ

2

)
−(4 − 4 i) (e

5inπ
8 − e

−3inπ
8 ) + (4 − 6e

iπ
4 ) einπ

−6
√

2 e
7inπ

8 − (4 + 4 i) (e
9inπ

8 − e
inπ

8 ) + 2 i
√

2

e
−5inπ

8 + i(−2 + 2 i) − 3 i
√

2)
]
/64

√
2.

By evaluating the eigenvalues of (σy ⊗ σy)ρ12(σy ⊗ σy)ρ∗
12,

we obtain fairly long expressions (please see the Supple-
mental Material [119] for their numerical values and also
Refs. [114,116,117] therein). Using these values in Eq. (20),
the computed concurrence values are plotted in Fig. 2. Sim-
ilarly, concurrence is also periodic in nature, and it remains
the same for consecutive odd and even values of n [119],
which can be seen in Fig. 2, whereas in Ref. [73] the pairwise
concurrence remained zero for all values of n. Thus, all the
entanglement measure quantities are periodic in nature, which
is the signature of quantum integrability [73,94–97].

B. Initial state | + + + + + +〉 = |θ0 = π/2, φ0 = −π/2〉
Let us now focus on another state, | + + + + + +〉y,

where |+〉y = 1√
2
(|0〉 + i|1〉) is an eigenstate of σy with an

eigenvalue of +1. The evolution of this state is entirely con-
fined to the positive parity subspace of the seven-dimensional
permutation symmetric space of six-qubit Hilbert space. It can
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FIG. 2. The concurrence (circles) is plotted for (a) 6 qubits, (b) 8
qubits, (c) 10 qubits, and (d) 12 qubits for the initial state ⊗N |0〉.

be expressed as

⊗6|+〉y = 1

4
√

2
|φ+

0 〉 + i
√

3

4
|φ+

1 〉 −
√

15

4
√

2
|φ+

2 〉 − i
√

5

4
|φ+

3 〉.
(22)

The state |ψn〉 can then be obtained by applying n iterations
of unitary operator U to it as follows:

|ψn〉 = Un
+|++++++〉

= e
inπ
4 (α′

n|φ+
0 〉 + β ′

n|φ+
1 〉 + γ ′

n|φ+
2 〉 + ζn|φ+

3 〉), (23)

where the coefficients can be expressed as

α′
n = e− 3

4 inπ

16
√

2
[3(−1 + e

3iπ
8 ) + 5(1 + e

7iπ
8 )e

inπ
2

−3(1 + e
3iπ
8 )einπ − 5(−1 + e

7iπ
8 )e

3inπ
2 ],

β ′
n =

√
3 e− 3

4 inπ

8
[i − e

i π
8 + (i + e

iπ
8 )einπ ],

γ ′
n = i e− 3

4 inπ

16

√
15

2
[1 − e

3i π
8 + (i + e

3i π
8 )e

inπ
2 ]

×[i + (1 + i)e
inπ
2 + einπ ],

ζn =
√

5 e− 1
4 inπ

8
[−i + e

5i π
8 − (i + e

5i π
8 )einπ ].

1. Linear and entanglement entropy

The ρ1(n) is given as follows:

ρ1(n) = 1

2

[
1 Zn

Z∗
n 1

]
, (24)

where Zn = −i{3[1 + cos(nπ )] + √
2[1 − cos(nπ )] +

10 cos( nπ
2 )}/16. The eigenvalues of ρ1(n) are λn and 1 − λn,

where λn = [8 −√18 + 30 cos( nπ
2 ) + 16 cos(nπ )]/16. The

linear entropy and entanglement entropy can be calculated

FIG. 3. Correlations using linear entropy (circles) and entangle-
ment entropy (squares) are plotted for (a) 6 qubits, (b) 8 qubits, (c) 10
qubits, and (d) 12 qubits for the initial state ⊗N |+〉y.

by using eigenvalues λn and are plotted in Fig. 3. The
entanglement content is periodic in nature with a period of 4.

2. Concurrence

The ρ12(n) for this state is given as follows:

ρ12(n) = 1

2

⎛
⎜⎜⎜⎜⎝

h1 h4 h4 h2

h∗
4 h3 h3 h6

h∗
4 h3 h3 h6

h∗
2 h∗

6 h∗
6 h1

⎞
⎟⎟⎟⎟⎠, (25)

where the coefficients are

h1 = 1

8

{
5 −

[
cos
(nπ

2

)
+ sin

(nπ

2

)]}
,

h2 = −1

8

[
1 + 3 cos

(nπ

2

)
− sin

(nπ

2

)]
,

h3 = 1

8

[
3 + cos

(nπ

2

)
+ sin

(nπ

2

)]
,

h6 = (1 − i)

64

{
3(1 − i)[1 + cos(nπ )] + 2

√
2[1 − cos(nπ )]

+10(1 − i) cos
(nπ

2

)}
,

h4 = −(1 + i)

64

{
3(1 + i)[1 + cos(nπ )] + 2

√
2[1 − cos(nπ )]

+10(1 + i) cos
(nπ

2

)}
.

The eigenvalues of (σy ⊗ σy)ρ12(σy ⊗ σy)ρ∗
12 are

{ 1
4 sin4( nπ

4 ), 1
256 [23 − 6 cos( nπ

2 ) − 17 cos(nπ ) ±4{cos2( nπ
2 )

[−5 + cos(nπ )][(−41 + 16
√

2) cos(nπ ) − 109 + 16
√

2 +
2(−69 + 16

√
2) cos( nπ

2 )] sin4( nπ
4 )} 1

2 ], 0}. The computed
concurrence values are plotted in Fig. 4. It can be observed
that it is periodic in nature with a period of 4, whereas in
Ref. [73] the pairwise concurrence remains zero. The periodic
nature of entanglement dynamics and operator dynamics is
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FIG. 4. The concurrence (circles) is plotted for (a) 6 qubits, (b) 8
qubits, (c) 10 qubits, and (d) 12 qubits for the initial state ⊗N |+〉y.

the signature of integrability [73]; hence, for six qubits the
model is integrable for these parameters as well.

IV. EXACT SOLUTIONS FOR 8, 10, AND 12 QUBITS

We followed a process similar to that in Sec. III to solve
the analytical cases involving N= 8, 10, and 12 qubits at the
particular values of J = 1/2 and τ = π/4. We created distinct
tables for states ⊗N |0〉 (see Tables I and II) and ⊗N |+〉 (see
Table III) to show the analytical expression for the eigenvalues
and linear entropy for 8, 10, and 12 qubits. Using these expres-
sions, it can be shown that they exhibit a periodic behavior.
For the initial state ⊗N |0〉 and the cases of 6 and 10 qubits
the period is 8, whereas for 8 and 12 qubits it is 24. This
can be observed in Fig. 1. We observe that each correlation
is the same for consecutive odd and even values of n [102].
We plot the analytically obtained concurrence in Fig. 2. From
the values and Fig. 2, we observe that it shows a periodic
nature. For N = 6 and 10 (8 and 12), we find T = 4 (12).
The maximum values of concurrence (Cmax) for N = 6, 8, 10,
and 12 are 0.05618622, 0.029509, 0.0038762, and 0.0019455,
respectively (all values are close up to 12 decimal places).
The reduction of Cmax with N shows an increased multipartite
nature of entanglement. The signatures of QI are obtained by
limiting n to only positive integers. The data points in all the
figures in this paper correspond to n ∈ N+.

Table III presents the analytical expressions for the eigen-
values and linear entropy for the initial state ⊗N |+〉. Using
these eigenvalues, the expression for entanglement entropy

TABLE I. The eigenvalues for the initial state ⊗N |0〉 and various values of N .

N Eigenvalues λ(n)

8 λ(n) = 1
2 ± 1

96

{[
5 + 7 cos

(
2nπ

3

)]2[
4 cos2

(
3nπ

8

)
+ 8 cos

(
3nπ

8

)
cos
(

5nπ

8

)
+ 4 cos2

(
5nπ

8

)]
+ sin2

(
nπ

2

)[
9 cos2

[
1
8 (3 + 4n)π

]
+147

{
cos2

[
1

24 (9+5n)π
]
+cos2

[
1

24 (9+13n)π
]}

+sin
[

1
24 (9+5n)π

]{
− 98

√
3 cos

[
1

24 (9+13n)π
]
+49 sin

[
1

24 (9+5n)π
]

−280 sin
[

1
8 (3+7n)π

]}
+49

√
3 sin

[
1

12 (9+5n)π
]
+280

√
3 cos

[
1

24 (9+37n)π
]

sin
[

1
8 (3+7n)π

]
+400 sin2

[
1
8 (3+7n)π

]
− sin

[
1

24 (9 + 13n)π
]{

98 sin
[

1
24 (9 + 5n)π

]
− 280 sin

[
1
8 (3 + 7n)π

]
− 49 sin

[
1
24 (9 + 13n)π

]}
− 14 cos

[
1

24 (9 + 5n)π
]

(
21 cos

[
1

24 (9+37n)π
]
+√

3

{
20 sin

[
1
8 (3+7n)π

]
+7 sin

[
1
24 (9+13n)π

]})
− 49

√
3 sin

[
1

12 (9+13n)π
]
+sin

[
1
8 (π+4nπ )

]
{

18 cos
[

1
8 (3 + 4n)π

]
+ 9 sin

[
1
8 (π + 4nπ )

]}]} 1
2

.

10 λ(n) = 0.5 ± 0.5 cos(nπ )

{
0.2509765625+0.426776695296637 cos

(
nπ

4

)
+0.073223304703364 cos

(
3nπ

4

)
−

0.176776695296637
[
sin
(

nπ

4

)
+ cos

(
3nπ

4

)]
+ 0.2490234375

[
cos
(

nπ

2

)
− sin

(
nπ

2

)]} 1
2

.

12 λ(n) = 0.5 ±
{

0.041748046875 + 0.040916791185 cos
(

nπ

12

)
+ 0.035634186961

(
cos nπ

4

)
+ 0.06243896484375 cos

(
nπ

3

)
+0.026199786034 cos

(
5nπ

12

)
+ 0.01542619052857 cos

(
7nπ

12

)
+ 0.02081298828125 cos

(
2nπ

3

)
+ 0.0061138599142 cos

(
3nπ

4

)
+ 0.00070918537814 cos

(
11nπ

12

)
− 0.0053867977527

[
sin
(

nπ

12

)
+ sin

(
11nπ

12

)]
− 0.0147601635233

[
sin
(

nπ

4

)
+ sin

(
3nπ

4

)]
− 0.036049153161

[
sin
(

nπ

3

)
+ sin

(
2nπ

3

)]
− 0.020103802903

[
sin
(

5nπ

12

)
+ sin

(
7nπ

12

)]} 1
2

.
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TABLE II. The linear entropy S(n) for the initial state ⊗N |0〉 and various values of N .

N S(n)

8 S(8)
(0,0)(n) = 1

2

(
1 − 1

576

[
5+7 cos

(
2nπ

3

)]2[
cos
(

3nπ

8

)
+cos

(
11nπ

8

)]2
+sin2

(
nπ

2

){
− (18 − 9

√
2) cos(nπ )+378 sin

[
1

12 (3+5n)π
]

+560
[
cos
(

2nπ

3

)
+ √

3 sin
(

2nπ

3

)]
+ 196

[
cos
(

4nπ

3

)
− √

3 sin
(

4nπ

3

)]
+ 378

√
3 sin

[
1

12 (9 + 13n)π
]

+ 9(−90 + √
2)

−378
√

3 sin
[

1
12 (9 + 5n)π

]
+ 378 sin

[
1

12 (3 + 13n)π
]

− 792 sin
[

1
4 (π + 7nπ )

]})

10 S(10)
(0,0)(n) = 0.37451171875 − (0.21338834765) cos

(
nπ

4

)
− 0.036611652352 cos

(
3nπ

4

)
+0.088388347649

[
sin
(

nπ

4

)
+sin

(
3nπ

4

)]
−0.12451171875

[
cos
(

nπ

2

)
− sin

(
nπ

2

)]
.

12 S(12)
(0,0)(n) = 1

16

(
8 − 0.1953125e−inπ (1 + einπ )2

[
cos
(

3nπ

8

)
+ 1.1 cos

(
25nπ

24

)
+ 1.1 cos

(
41nπ

24

)]2
− 0.1667096466

{
cos
(

nπ

8

)
− cos

(
7nπ

8

)
− 0.4142135623731

[
sin
(

nπ

8

)
+ sin

(
7nπ

8

)]
+ [1 − cos(nπ )]

[
−0.944591414368 cos

(
29nπ

24

)
−0.15540858564 cos

(
13nπ

24

)
− 1.180445403469 sin

(
13nπ

24

)
+ 0.724810484858 sin

(
29nπ

24

)]}2
)

.

can be obtained easily (not shown here). These correlations
are plotted in Fig. 3. It can be seen that they show periodic
behavior. For the cases with 6 and 10 (8 and 12) qubits the
period is 4 (12). The values of Cmax for N = 6, 8, 10. and
12 are 0.0669873, 0.0295085, 0.00392163, and 0.0019455,
respectively. Thus, for this state Cmax also decreases with N ,
displaying the multipartite nature of entanglement.

For this case we also study the dynamics of the Floquet
operator, and we observe that it shows periodic nature with
time, i.e., Un+T = Un, where n � 1 and T is the period. For N
= 8, 10, and 12 qubits, the period is 48. Through analytical
calculations, we determine the eigenvalues of U and iden-
tify degeneracy among them (see the Supplemental Material
[119]).

For the cases with 5, 7, 9, and 11 qubits, due to the
complexity and fairly large expressions, we restrict ourselves
to numerical results instead of analytical ones. We observe
that the entanglement dynamics for both initial states do not
exhibit periodic behavior (checked for n up to 1000), which
is shown in Figs. 5–8 (plotted for n up to 500). We also study
the Floquet operator dynamics, and we observe that it does
not exhibit periodic behavior for large values of n (as shown
in Fig. 12 below). The periodic behavior of entanglement
dynamics and Floquet operator dynamics and the degenerated

spectrum are the signature of integrability (as explained in the
Introduction). In the previous study [73], we showed that this
model is integrable for the parameters J = 1 and τ = π/4
using these signatures, whereas in this study we observe these
signatures only for even N ranging from 6 to 12. Thus, for
the parameters J = 1/2 and τ = π/4, the model shows in-
tegrability for 6, 8, 10, and 12 qubits and the absence of
integrability for odd N ranging from 5 to 11.

V. RESULTS FOR GENERAL N QUBITS.

Using our procedure, in principle, one can solve for the
case of any finite N , but various expressions for the eigen-
system, Floquet operator, and its nth power become more
cumbersome. Therefore, for N > 12 we restrict ourselves to
only the numerical methods. Here, we use the same signa-
tures used to establish integrability for N = 6, 8, 10, and 12
qubits. Surprisingly, we find exactly the same behavior of
these signatures for the stated parameters (J = 1/2 and τ =
π/4). Particularly, we find that the entanglement dynamics is
periodic such that for the initial state ⊗N |0〉 (⊗N |+〉y) and
N = 4m + 2 the period is 8 (4), whereas for N = 4m + 4 it
is 24 (12), where m ∈ {0, 1, 2, . . . }. The results are shown
in Fig. 9. We numerically find that Cmax tends to zero as N

TABLE III. The eigenvalues and linear entropy S(n) for the initial state ⊗N |+〉 and various values of N .

N Eigenvalues S(n)

8 1
2 ± 1

48

{
10 cos

(
nπ

4

)
+7
[
cos
(

5nπ

12

)
+cos

(
11nπ

12

)]}
S(8)

(π/2,−π/2)(n) = 1
2

{
1 − 1

144 cos2
(

nπ

4

)[
5 + 7 cos

(
2nπ

3

)]2}

10 1
2 ± 1

64

[√
258 + 510 cos

(
nπ

2

)
+ 256 cos(nπ )

]
S(10)

(π/2,−π/2)(n) = 1
2

(
1 − 1

4096

{
17[1 + cos(nπ )] + √

2[1 − cos(nπ )]

+30 cos
(

nπ

2

)}2
)

12 1
2 ± 1

64

[
11 cos

(
nπ

12

)
+10 cos

(
3nπ

4

)
+11 cos

(
17nπ

12

)]
S(12)

(π/2,−π/2)(n) = 1
2 − 1

2048

[
11 cos

(
nπ

12

)+ 10 cos
(

3nπ

4

)+ 11 cos
(

17nπ

12

)]2
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FIG. 5. Correlations using linear entropy (black) and entangle-
ment entropy (red) are plotted for (a) 5 qubits, (b) 7 qubits, (c) 9
qubits, and (d) 11 qubits for the initial state ⊗N |0〉.

increases for both the initial states. Thus, the entanglement be-
comes multipartite in nature with N . For any odd N > 11 with
the same parameter, we find that the entanglement dynamics
is not periodic at all, which is shown in Fig. 10. We observed
the same nonperiodic behavior for n up to 1000 (results not
shown here).

We also study the operator dynamics using a numerical
method. We define δ(n) =∑i, j (Ai, jA∗

i, j )/2N , where Ai, j =
Un

i, j − Ui, j [73]. Numerically, it is observed that the division
by 2N ensures the average of δ(n) is 1. For any n, δ(n) = 0
if and only if Un = U , which confirms the periodic nature
of U , implying integrability. The definition above makes sure
that δ(n) is invariant under the global unitary transformation
(for proof see the Supplemental Material [119]). A similar
definition in previous work lacked this invariance, although it
did detect the periodic behavior correctly [73]. Our parameter

FIG. 6. Correlations using linear entropy (black) and entangle-
ment entropy (red) are plotted for (a) 5 qubits, (b) 7 qubits, (c) 9
qubits, and (d) 11 qubits for the initial state ⊗N |+〉y.

FIG. 7. The concurrence (circles) is plotted for (a) 5 qubits, (b) 7
qubits, (c) 9 qubits, and (d) 11 qubits for the initial state ⊗N |0〉.

FIG. 8. The concurrence (circles) is plotted for (a) 5 qubit s, (b) 7
qubits, (c) 9 qubits, and (d) 11 qubits for the initial state ⊗N |+〉y.

FIG. 9. Correlations using linear entropy (circles), and entangle-
ment entropy (squares) and concurrence (triangles) are plotted for
(a) 1002 qubits and (b) 1000 qubits for the initial state ⊗N |0〉 and
(c) 1002 qubits and (d) 1000 qubits for the initial state ⊗N |+〉y.
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FIG. 10. Correlations using linear entropy (black) and entangle-
ment entropy (red) are plotted for (a) 101 qubits and (b) 203 qubits
for the initial state ⊗N |0〉 and (c) 101 qubits and (d) 203 qubits for
the initial state ⊗N |+〉y.

results are plotted in Fig. 11. We have checked periodicity
for N as large as 1000 and n up to 10000 (results are not
shown here). The observed period is 48 for all even N >

6. The same periodic nature could not be observed for (1)
even N and J /∈ {1, 1/2} and (2) odd N and J �= 1, which
is shown in Figs. 11 and 12 (results for odd N are shown
in Fig. 12). An additional signature of integrability can be
found with the eigenangle spectrum of U [76,79,96]. We find
that it is highly degenerate to take values from the finite
set {0,±π/4,±π/8,±3π/4,±3π/8,±5π/8,±7π/8} [see
Fig. 13(a)], whereas for odd N , J = 1/2, and τ = π/4, we
find that degeneracy disappears [see Fig. 13(b)]. In fact, we
find that the eigenangles are almost uniformly distributed
(see Fig. 14). Thus, with these signatures, we can readily

FIG. 11. The deviation δ(n) for various values of N in the inte-
grable case.

FIG. 12. The deviation δ(n) for various values of N in the nonin-
tegrable case.

conjecture that the system is quantum integrable for any even
N > 12, whereas for an odd N , it is not.

VI. CONCLUSIONS

In this paper, we generalized the recently introduced many-
body model [73]. The model consists of qubits with all-to-all
Ising interaction. Keeping the other parameters same, we
generalized this interaction to J , with J = 1 reducing to the
recent case [73]. We studied QI in the generalized version.
We found that in addition to J = 1, QI also exists for J = 1/2
and only for an even number of qubits. We analytically calcu-
lated the eigensystem, time evolution of the unitary operator,
reduced density matrix, and entanglement dynamics for an
even number of qubits ranging from 6 to 12. We used linear
entropy, von Neumann entropy, and concurrence to measure
the entanglement dynamics for various initial unentangled
states. The behavior of the entanglement dynamics and unitary

FIG. 13. Degeneracy of the quasienergies of U for (a) the inte-
grable case and (b) the nonintegrable case.
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FIG. 14. Probability distribution of quasienergies.

operator dynamics is in accordance with QI systems with Ising
interaction. Due to the fairly large expressions and complex-
ity, we restricted ourselves to numerical simulations for any
N > 12 qubits. We introduced a quantity, δ(n), to investigate
the periodic nature of the time-evolution operator numerically.
We showed that it remains invariant under the global unitary
transformation. If this quantity is zero, then it indicates the
periodic nature of the unitary operator. We observed that the
entanglement dynamics and Floquet operator dynamics show
periodic behavior for any even N , while for any odd N , they
do not. We also observed high degeneracy in the spectra for an
even number of qubits. However, for odd N , the degeneracy in
the spectra disappears. We observed that the pairwise concur-
rence tends to zero with N , indicating the multipartite nature
of entanglement. Thus, we can very well conjuncture that
the system also exhibits quantum integrability for parameters
J = 1/2 and τ = π/4 for any even number of qubits, whereas
it is absent for any odd number of qubits.

In recent work, a generalization of the Hubbard-
Stratonovich transformation was employed to get an exact an-
alytical solution for quantum-strong long-range Ising chains
[120]. Our model can be explored further in that direction.
It should be noted that our model is disorder-free (clean)
and the integrability exists only for the special values of the
parameters J and τ [73]. Applying minor perturbations in

either of the parameters can destroy the quantum integrability
by breaking the conserved quantities so the exact solutions are
no longer possible [73,121] as far as we know. This can lead to
a transition from integrable to chaotic behavior of the system.
Experimental verification of our model is possible, although it
is challenging. In fact, a disordered version of our model was
studied in detail in Ref. [121]. Experimental verification of our
results (for a smaller number of qubits) could be conducted in
various setups such as NMR [122], superconducting qubits
[123], and laser-cooled atoms [124], where the QKT has been
implemented, whereas for a large number of qubits (of the
order of hundreds), one could use ion traps [15,125]. The
validity of our conjecture could be established in this setup.

While our study has successfully identified integrability in
this model for the specified values of parameters J = 1, 1/2
and τ = π/4, we think our work raises several open ques-
tions. A few of them are as follows: (1) As the number of
qubits increases, entanglement becomes multipartite in nature.
One such measure is the Meyer and Wallach Q measure,
which is very much related to linear entropy, and we studied
it here. Further analysis using various multipartite entangle-
ment measures would be an interesting direction to pursue
[126–129]. (2) It would be interesting to determine whether
there other possible values of J that exhibit integrability
within this framework. (3) Our findings encourage further
exploration to search for other integrable systems in which
all-to-all interaction is present.
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