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Nonperturbative simulation of anharmonic rattler dynamics in type-I
clathrates with vibrational dynamical mean-field theory
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We use vibrational dynamical mean-field theory (VDMFT) to study the vibrational structure of type-I clathrate
solids, specifically X8Ga16Ge30, where X = Ba, Sr. These materials are cagelike chemical structures hosting
loosely bound guest atoms, resulting in strong anharmonicity, short phonon lifetimes, and ultralow thermal
conductivities. Presenting the methodological developments necessary for application to three-dimensional,
atomistic materials, we validate our approach through comparison to molecular dynamics simulations and show
that VDMFT is extremely accurate at a fraction of the cost. Through the use of nonperturbative methods, we
find that anharmonicity is dominated by four-phonon and higher-order scattering processes, and it causes rattler
modes to shift up in frequency by 50% (10 cm−1) and to have lifetimes of less than 1 ps; this behavior is
not captured by traditional perturbation theory. Furthermore, we analyze the phonon self-energy and find that
anharmonicity mixes guest rattling modes and cage acoustic modes, significantly changing the character of the
harmonic phonons.
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I. INTRODUCTION

Anharmonicity in the lattice vibrations of solids is re-
sponsible for temperature-dependent phonon frequency shifts
and lifetimes, thermal expansion, and crystal structure sta-
bility [1]. A microscopic understanding of anharmonicity is
essential for the emerging field of phononics, which aims to
design and control the structural and dynamical properties of
materials [2,3]. Examples include the engineering of materials
with low thermal conductivities [4], which are important for
thermal insulation or the generation of electricity from waste
heat via thermoelectrics, or ultrafast optical control of lattice
structure and dynamics [5]. From a theoretical perspective,
the accurate description of anharmonicity requires the solu-
tion of a many-body problem, demanding the development of
approximate numerical methods.

The simplest methods for describing anharmonicity are
static mean-field theories, such as self-consistent phonon
theory [6–10], which describe anharmonic systems using ef-
fective harmonic Hamiltonians with temperature-dependent
frequencies. While these methods successfully predict some
thermodynamic properties [11–15], they are not able to
account for phonon lifetimes or non-QP (quasiparticle) ef-
fects. Perturbative methods can be used to calculate lifetimes
due to phonon-phonon interactions [16–20], but they are
often limited to lowest-order perturbation theory (PT) of
three-phonon scattering processes and fail for systems with
strong anharmonicity. Molecular dynamics (MD) simulations
can describe anharmonic effects of classical nuclei ex-
actly [18–23], but the computational cost associated with such
direct simulation makes them expensive, especially for the
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large system sizes necessary to eliminate finite-size effects;
moreover, nuclear quantum dynamics can only be treated
approximately [24].

In this paper, we apply the recently developed vibrational
dynamical mean-field theory (VDMFT) [25], which is an
extension of the successful DMFT for strongly correlated
electrons [26–29]. VDMFT provides a nonperturbative de-
scription of local anharmonicity, and, as a Green’s function
theory, naturally yields both phonon frequency shifts and
lifetimes. Here, we advance VDMFT by developing the meth-
ods necessary for application to three-dimensional atomistic
solids with complex unit cells. We apply this method to
study the anharmonic vibrational structure of clathrate solids,
which are frameworks of covalently bonded atoms that host
loosely bound “guest” atoms within their cagelike structures.
The cage-guest interactions are strongly anharmonic, but their
spatial locality makes these materials an ideal testbed for
VDMFT.

We focus on the type-I clathrates Ba8Ga16Ge30 (BaGG)
and Sr8Ga16Ge30 (SrGG), which have garnered much interest
due to their ultralow thermal conductivities and promise for
thermoelectric applications [30–40], as well as the fictitious
empty clathrate Ga16Ge30 (GG). Theoretical and experimental
studies of BaGG, SrGG, and related materials have revealed
hybridization between acoustic modes of the cage lattice and
optical, rattling modes of guest atoms, showing an avoided
crossing in the harmonic dispersion relation [31,36,37] with
potential implications for the thermal conductivity. While an-
harmonicity in these materials has been studied theoretically
using analytical models [41,42], MD simulations [43,44],
mean-field theory [37,40], and lowest-order PT [36–40], this
work systematically examines anharmonicity with methods
that go beyond conventional PT and/or static mean-field
theory to determine the significance of nonperturbative
effects.
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FIG. 1. (a) Crystal structure of BaGG [45], where Ba(1) atoms
are in dodecahedral cages (gold) and Ba(2) atoms are in tetrakaidec-
ahedral cages (blue). (b) Schematic of coarse-grained model of filled
clathrates BaGG and SrGG, where the large cage atoms are colored
according to their quartic cage-guest potentials. (c) Harmonic dis-
persion relations of BaGG (left) and SrGG (right), colored by their
atomic character. The insets show the soft anharmonic interaction
(blue line) between the X (2) guest atoms and the 24-atom cages as
well as the harmonic fitting (black dashed line) and value of kBT at
300 K (gray line).

We use VDMFT to calculate the anharmonic spectral func-
tions of GG, BaGG, and SrGG at 300 K, and we find excellent
agreement with those calculated from MD simulations at
a fraction of the cost. Moreover, we find that lowest-order
PT of three-phonon scattering processes fails to describe the
short phonon lifetimes predicted by MD and VDMFT for
the systems studied in this work. These comparisons validate
VDMFT as an efficient and accurate method for describing
anharmonicity in real materials beyond PT. While the vibra-
tional structure of empty clathrates is relatively harmonic,
our results show that anharmonicity significantly affects lat-
tice dynamics of the filled clathrates studied here, especially
SrGG. Guest-dominant phonon modes in particular show
large frequency shifts, short lifetimes, and substantial mixing
with cage-acoustic modes.

II. METHODS

A. Clathrate model

To study the vibrational structure of type-I clathrates, we
first develop a coarse-grained model of the material, which is
shown in Fig. 1. Because we are not interested in the high-
frequency intracage dynamics nor the precise locations of the
alloyed Ga and Ge atoms, we replace the clathrate cages by
single “hollow” atoms. For simplicity, these cage atoms in-
teract with one another through identical Lennard-Jones (LJ)
potentials. To ensure the dynamical stability of the crystal,
these unified cage atoms are arranged on an fcc lattice, which
roughly approximates the positions of the atomistic clathrate
cages. At each fcc site, guests are described by smaller atoms
that interact with the cage atoms at those sites through an-
harmonic, quartic potentials. X (1) guest atoms (where X =
Ba, Sr) at the cube vertices interact via harder, isotropic
potentials, representing interactions with the dodecahedral
cages, while X (2) guest atoms at the cube faces inter-
act via softer, anisotropic potentials, mimicking the rattling

motions of guests in the tetrakaidecahedral cages [35]. Thus,
a single unit cell in our model consists of eight atoms: four
cage atoms and four guest atoms. The complete Hamiltonian
for our clathrate model is given by

H = 1
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where the primed summation indicates that only cages and
guests on the same lattice site interact. Here, m, n are lattice
translation vectors, α, β are indices over atoms in the unit cell,
and i is an index over the Cartesian directions. The position,
momentum, and mass of atom α in cell m are given by rmα ,
pmα , and mα , respectively.

To parametrize the above Hamiltonian, we fit the LJ pa-
rameters and the harmonic frequencies, Kα,i, of the cage-guest
interactions to reproduce the harmonic dispersion relations
from ab initio calculations [36,37,40]. The harmonic dis-
persion relation is obtained through diagonalization of the
dynamical matrix,

Dαi,β j (k) = 1√
mαmβ

∑
m

eik·(Rmα−R0β ) ∂2V
∂umαi∂u0β j

, (4)

where k is a wave vector in the first Brillouin zone (BZ),
and Rmα is the equilibrium position of atom α in cell m. The
derivative of the lattice potential, V , with respect to atomic
displacements, umαi = rmαi − Rmαi, is evaluated at the equilib-
rium lattice configuration. The dynamical matrix defines the
harmonic phonon modes,

uλ(k) = N−1/2
∑
mαi

cαi,λ(k)e−ik·Rmα
√

mαumαi, (5)

where c(k) are the eigenvectors of D(k).
The harmonic dispersion relations of our model BaGG and

SrGG are illustrated in Fig. 1(c). The low-frequency rattling
motions of X (2) guest atoms lead to flat modes that cut
through the acoustic branches of the cage lattice, leading to
the hallmark avoided crossing of these materials. Vibrations
of the X (1) guest atoms are higher in frequency, hybridizing
with the optical modes of the cage lattice. We complete the
parametrization of our Hamiltonian by choosing the quartic
anharmonicity parameters gα,i in Eq. (3) to reproduce the
behavior of ab initio cage-guest potential energy surfaces
for guest atoms Ba and Sr [32,40]. Complete details of our
clathrate model and further discussion are given in the Sup-
plemental Material (SM) [46].

B. Anharmonic lattice dynamics

To compute the anharmonic lattice dynamics of the
clathrate model defined above, we use vibrational dynami-
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cal mean-field theory (VDMFT). In VDMFT, we compute
the anharmonic phonon Green’s function (GF) [1,51] of the
periodic lattice, D(k, ω), which encodes phonon frequencies
and lifetimes. The spectral part of the GF is experimentally
measurable by inelastic neutron scattering, and computation-
ally, the GF can be used to calculate one-body averages and
approximations to thermal conductivities. Although VDMFT
can treat quantum or classical nuclei [25], here we use classi-
cal dynamics, as nuclear quantum effects are unimportant for
these clathrates at room temperature. Thus, the classical GF is

D(k, t ) = θ (t )

kBT
〈u̇(k, t )uT (−k, 0)〉, (6)

where D is a matrix, u is a column vector, and 〈·〉 indicates an
equilibrium average at temperature T . The Fourier transform
of the GF satisfies a Dyson equation,

D−1(k, ω) = D−1
0 (k, ω) − 2�(k)π(k, ω), (7)

where D0(k, ω) = [ω21 − �2(k)]−1 is the GF of the harmonic
lattice, �2(k) is the dynamical matrix [so that �2(k) = D(k)
in the atomic basis], and π(k, ω) is the self-energy that
describes anharmonicity in the lattice. VDMFT makes the
approximation of a local self-energy, π(k, ω) ≈ π(ω), which
we calculate nonperturbatively by solving a so-called impu-
rity problem. Specifically, VDMFT maps the problem of a
periodic lattice onto that of a single unit cell (the “system”)
interacting with a fictitious bath of harmonic oscillators char-
acterized by a tailored spectral density [25–27]. This impurity
problem is generally easier to solve than the full periodic
problem because of the small number of degrees of freedom
in the finite system.

The unit cell atoms that constitute the system experience
a local, anharmonic, many-body potential Vloc(u) and the
GF that describes the isolated system is given by Dsys(ω) =
[ω21 − �2 − 2�π(ω)]−1, where �2 is the system dynamical
matrix with respect to Vloc(u). The harmonic bath and system-
bath coupling are determined by the hybridization �(ω),
which describes the effect of the lattice on the dynamics of
the isolated system,

−2��(ω) = D−1
C (ω) − D−1

sys(ω), (8)

where DC (ω) = N−1
k

∑
k D(k, ω) is the cellular GF, and Nk

is the number of points sampled in the BZ. Details regarding
the definition of the impurity problem, including Vloc(u), are
given in the SM [46].

The (classical) dynamics of the system coordinates are
governed by a set of coupled generalized Langevin equa-
tions (GLEs),

ü(t ) = −∇Veff(u) −
∫ t

0
dsγ (t − s)u̇(s) + ξ(t ). (9)

Here, γ (t ) is a matrix of friction kernels that describes the
dissipative effect of the bath on the system dynamics and is
related to the hybridization,

γ (t ) = −2

√
2

π

∫ ∞

0
dω cos (ωt )

2� Im �(ω)

ω
, (10)

where Im(·) denotes the imaginary part. The effective po-
tential Veff (u) includes the bath-induced renormalization of

the local potential, and ξ(t ) is a vector of random forces
that satisfies the fluctuation-dissipation relation 〈ξ(t )ξT (s)〉 =
kBT γ (t − s).

As detailed in the SM [46], with thermal sampling of
the initial conditions, the above GLEs are solved numeri-
cally [52,53] to obtain dynamics of the system coupled to the
bath and to compute the anharmonic impurity GF, Dimp(t ) =
(kBT )−1θ (t )〈u̇(t )uT (0)〉. From this, the self-energy is
obtained as

π(ω) = 1
2�−1[D−1

imp,0(ω) − D−1
imp(ω)

]
, (11)

where Dimp,0(ω) is the harmonic impurity GF. This local self-
energy is used to calculate the lattice GF [i.e., Eq. (7) with
the impurity π(ω) in place of π(k, ω)], leading to an iterative
procedure that converges once the self-consistency condition
DC (ω) = Dimp(ω) has been reached. For the systems studied
here, we find that self-consistency is achieved in one iteration,
as shown in the SM [46].

Due to the sampling of initial conditions, the calculated
impurity GFs have statistical noise, leading to issues of
noncausality and negative spectral functions (see SM [46]).
Furthermore, converging the numerical Fourier transform re-
quires the propagation of long trajectories. Therefore, instead
of numerically Fourier transforming Dimp(t ), we fit its ele-
ments to the functional form of the GF of a damped harmonic
oscillator and perform the Fourier transform analytically. This
fitting technique, which is further described in the SM [46],
circumvents the need to run many long trajectories—making
our approach significantly more efficient while retaining
excellent frequency resolution—and ensures a causal self-
energy through simple constraints on the fitting parameters.

III. RESULTS AND DISCUSSION

We use VDMFT to calculate the anharmonic GF and spec-
tral function, A(k, ω) = −π−1 Tr[Im D(k, ω)], of GG, BaGG,
and SrGG at 300 K, which are illustrated in Fig. 2. While the
empty GG clathrate is largely harmonic, the filled clathrates
feature anharmonicity that causes peaks to shift to ener-
gies higher than those predicted by the harmonic dispersion
relation and causes them to broaden due to phonon scatter-
ing. Interestingly, anharmonicity affects modes differently;
while the cage-dominant acoustic modes remain relatively
unchanged from their harmonic dispersion, modes with an
appreciable guest character show large effects. In particular,
the flat Ba(2) rattling modes shift from 36 to 39 cm−1, and the
Sr(2) rattling modes, which have lower harmonic frequencies
and stronger quartic anharmonicity, shift from 21 to 33 cm−1

and acquire a linewidth of 8 cm−1, which corresponds to
a short lifetime of 0.67 ps. The hardening of these rattling
modes also affects the avoided crossing with the cage acoustic
modes. In the SM [46], we present the temperature depen-
dence of the VDMFT spectral function of SrGG from 50
to 600 K, showing that the Sr(2) rattling mode significantly
broadens and hardens with increasing temperature.

To evaluate the accuracy of VDMFT, we compare to the
exact spectral function computed using MD simulations of
a large supercell with periodic boundary conditions (MD
simulation details are given in the SM [46]). Figures 2
and 3 demonstrate that agreement between VDMFT and MD
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FIG. 2. Spectral functions of empty and filled clathrates at 300 K calculated using VDMFT. The rightmost panel shows the spectral function
of SrGG calculated using MD with a supercell of 8192 atoms. Black dashed lines indicate the harmonic dispersion relation.

spectral functions is excellent for SrGG at 300 K, the most
anharmonic system studied here. However, while MD offers
limited resolution of the BZ due to the finite size of the sim-
ulated supercell, the VDMFT spectral function is accessible
at all points in the BZ. Moreover, a VDMFT calculation is
significantly more affordable than MD simulations: While
using MD to compute the spectral function required the simu-
lation of 8192 atoms with periodic boundary conditions, using
VDMFT required the simulation of only 8 atoms coupled to a
bath.

Figure 3 shows the spectral function at specific points
in the BZ as well as frequency shifts and linewidths

FIG. 3. (a) The spectral function of SrGG at 300 K at k =
[ ξ

2 00] and k = [ξ00], where ξ = π/a, calculated using MD and
VDMFT. (b) Anharmonic frequency shifts (top) and linewidths
(bottom) of SrGG at 300 K obtained from the self-energy calcu-
lated using MD, VDMFT, and PT sampled on a 4 × 4 × 4 grid of
the BZ. The frequency shift is calculated as �ωλ(k) = ωeff,λ(k) −
ωλ(k), where ω2

eff,λ(k) = ω2
λ(k) + 2ωλ(k)Re πλ,λ[k, ωeff,λ(k)] and

was solved for iteratively. The linewidth is calculated as 
λ(k) =
2ωλ(k)Im πλ,λ[k, ωeff,λ(k)]/ωeff,λ(k).

calculated by both MD and VDMFT for SrGG at 300 K, again
indicating the excellent accuracy of VDMFT in describing
anharmonicity across the BZ. It is worth noting that VDMFT
is accurate for various degrees of anharmonicity, capturing
both the strong anharmonicity of the rattling modes as well as
the nearly negligible anharmonicity of the higher-energy op-
tical modes. Comparisons between VDMFT and MD for GG
and BaGG are shown in the SM [46]. Additionally, Fig. 3(b)
shows phonon linewidths computed using lowest-order PT of
three-phonon scattering processes [54] (details in SM [46]).
As shown in the SM, PT predicts accurate linewidths for the
quasiharmonic GG, but it fails to capture any broadening for
BaGG or SrGG, indicating that cage-guest anharmonicity in
the filled clathrates is dominated by four- and higher-phonon
scattering processes that cannot be described by PT but that
are inherently included in VDMFT [46].

Next, we use our VDMFT results to better understand how
anharmonicity impacts the phonon QP picture for SrGG at
300 K. To do this, we consider the diagonal approximation,
which neglects nondiagonal elements of the self-energy in
the phonon basis. Figure 4 shows that the SrGG spectral
function computed within the diagonal approximation devi-
ates remarkably from the full spectral function, especially
where the acoustic and rattling modes intersect. These results
suggest that, in addition to shifting frequencies and imparting
lifetimes, anharmonicity mixes the original phonon modes,
i.e., those defined by the harmonic dynamical matrix. To
quantify this anharmonic mode mixing, we calculate a static
and Hermitian approximation to the VDMFT self-energy, as
done for example in QP self-consistent GW [55], and use it
to determine the improved phonon modes for SrGG at 300 K.
The right panel of Fig. 4 shows the band structure of these
effective modes, which is in much better agreement with the
peak positions of the fully anharmonic spectral function. In
particular, the rattling mode is correctly shifted up by about
10 cm−1. Through analysis of the inverse participation ratio
of the QP bands, we find that cage acoustic and guest rattling
modes between 25 and 35 cm−1 show significant mode mix-
ing, as do modes near the BZ center that have both guest and
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FIG. 4. The spectral functions of SrGG at 300 K calculated using
the full self-energy (left), the diagonal approximation (DA, center),
and the QP approximation to the full self-energy (right), where effec-
tive modes are colored according to the inverse participation ratio.
Points colored in black indicate a contribution from only a single
harmonic mode while points colored in red indicate the mixing of
several harmonic modes.

cage character (Fig. 1). Some amount of mode mixing can
also be captured by static mean-field theory, which defines
a more accurate QP basis that treats both local and nonlocal
anharmonicity. Such an approach can be straightforwardly
combined with VDMFT [25], which would also increase its
applicability to materials with longer-range anharmonicity.

IV. CONCLUSIONS

In conclusion, we have developed the methodological ex-
tensions of VDMFT for real materials, which we used to
study the anharmonic lattice dynamics of clathrate solids.
By comparison with exact MD simulations, we conclude that
VDMFT is remarkably accurate and provides results of higher
resolution at significantly lower cost. By comparison with
conventional PT calculations, we find that anharmonicity in
type-I clathrates is dominated by four-phonon and higher-
order scattering processes, indicating that nonperturbative

effects matter. This result is applicable to a wide range of
symmetric host-framework structures, including perovskites,
Heusler and half-Heusler compounds, and skutterudites, sug-
gesting the importance of nonperturbative techniques in the
accurate description of anharmonicity and related material
properties, such as thermal conductivities.

The VDMFT approach introduced here is completely gen-
eral and can be applied to any material, although it is best
suited for those with strong, local anharmonicity. While this
work uses a coarse-grained classical force field, VDMFT can
be straightforwardly performed with all-atom force fields or
ab initio electronic structure theory, where the computational
savings will be even more significant.

From our application to clathrate solids, we confirm that
the introduction of guest atoms within the lattice framework
leads to significant anharmonic effects, such as the hardening
and broadening of phonon modes, that cannot be described
by PT. Additionally, we find that anharmonicity changes the
character of the phonon QPs via significant mixing between
the X (2) rattling modes and cage acoustic modes. The impact
of the strongly anharmonic rattling modes on the acoustic
modes is known to have implications for thermal conductivi-
ties [31,37,38,40], which can be computed using the VDMFT
GF and will be the subject of future work.
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