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Extended Wannier-Stark ladder and electron-pair Bloch oscillations
in dimerized non-Hermitian systems
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In the Hermitian regime, the Wannier-Stark ladder characterizes the eigenstates of an electron in a periodic
potential with an applied static electric field. In this work, we extend this concept to the complex regime for a
periodic non-Hermitian system under a linear potential. We show that although the energy levels can be complex,
they are still equally spaced by a real Bloch frequency. This ensures single-particle Bloch oscillations with a
damping (or growing) rate. The system can also support standard two-particle Bloch oscillations under certain
conditions. We propose two types of dimerized non-Hermitian systems to demonstrate our results. In addition, we
also propose a scheme to demonstrate the results of particle-pair dynamics in a single-particle two-dimensional
PT -symmetric square lattice.
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I. INTRODUCTION

Bloch oscillation is a feature of the dynamics of an electron
under a periodic potential and an external electric field [1].
Within the Hermitian regime, Bloch oscillations occur due to
the acceleration of an electron by an electric field, which is
described by the acceleration theorem in reciprocal space [2],
and subsequent Bragg reflections from the periodic lattice
potential at the boundaries of the first Brillouin zone. An
alternative description can be given in the framework of
traditional quantum mechanics. In 1960, Wannier [3] the-
oretically proved that the eigenstates of an electron in a
periodic potential with an applied static electric field can be
described by the Wannier-Stark ladder. Then, the periodic
dynamics arise from the Wannier-Stark ladder, which con-
sists of quantized equidistant energy levels separated by the
Bloch frequency [4]. As a universal wave phenomenon, it
has attracted much attention from various research areas due
to experimental observations. It has been reported that such
periodic dynamics are observed in a semiconductor superlat-
tice [5], ultracold atoms in the optical lattice [6–9], and many
other systems sequentially [10–14].

Theoretically, the investigation of the Wannier-Stark ladder
has been extended to new frontiers, such as non-Hermitian
systems [15,16]. Recent works [17–19] show that a non-
Hermitian hopping term, including asymmetrical and complex
strengths, remains the reality of the Wannier-Stark ladder. A
non-Hermitian system can exhibit exclusive dynamics that
never occur in a Hermitian system, especially when complex
energy is involved. Importantly, non-Hermitian dynamics can
be observed in experiments. In contrast to non-Hermitian
optical systems, a few-body non-Hermitian Hamiltonian can
be implemented through a scheme that is analogous to her-
alded entanglement protocols [20]. This raises the question
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of whether an extended Wannier-Stark ladder, which consists
of quantized equidistant complex energy levels, but separated
by the real Bloch frequency, can emerge in a periodic non-
Hermitian system under a linear potential.

In this work, we focus on the effects of a linear po-
tential on periodic systems, using the tight-binding model
as a framework for analysis. This model is widely used in
condensed-matter physics to describe the behavior of elec-
trons in crystalline structures. We extend the concept of the
Wannier-Stark ladder, which is traditionally used to describe
eigenstates in a periodic potential with an electric field in
Hermitian systems, to non-Hermitian systems with complex
eigenvalues. This extension is significant because it broad-
ens the analytical tools available for studying the dynamics
of such systems. Such an extension of the Wannier-Stark
ladder to the complex regime enables the analytical predic-
tion of the dynamics of many non-Hermitian systems with
a fixed number of particles. This provides the prediction
of Bloch oscillations in non-Hermitian systems without the
need for complex numerical simulations. To demonstrate
this point, two types of dimerized non-Hermitian systems
are proposed as examples to illustrate the research find-
ings. This indicates that dimerized non-Hermitian systems
can support both single-particle and two-particle Bloch os-
cillations. These oscillations are characterized by a damping
(or growing) rate, which reflects the temporal evolution of
the quantum state. Furthermore, we show that the extended
Wannier-Stark ladder concept, initially developed for one-
dimensional (1D) systems, can also be applied to 2D systems.
This broadens the applicability of the concept and opens
up new avenues for related research. We propose a scheme
involving electron-, boson-, and spinless fermion-pair dy-
namics in a single-particle 2D PT -symmetric square lattice
to demonstrate the results. Here, PT symmetry [21–28], a
combination of parity and time-reversal symmetry, is a key
concept in non-Hermitian physics [29] and can lead to real
eigenvalues under certain conditions, especially for discrete
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systems [30,31]. Our findings pave the way for further inves-
tigations into a wide variety of periodic systems under the
influence of a linear potential. This could have significant
implications for understanding and designing devices with
tailored properties. In addition, this work contributes to the
understanding of non-Hermitian systems and provides new
tools for their analysis.

This paper is organized as follows. In Sec. II, we present a
general formalism for Hamiltonians with ramped translational
symmetry and show the existence of energy ladders, referred
to as extended Wannier-Stark ladders, regardless of the Her-
miticity of the systems. In Sec. III, we propose two types
of non-Hermitian dimer systems to demonstrate the extended
Wannier-Stark ladders. In Sec. IV, we study single-particle
damping Bloch oscillations. Section V is devoted to the 2D
representation of two-electron, two-boson, and two-spinless
fermion dynamics in a 1D system. Finally, we summarize our
results in Sec. VI.

II. GENERAL FORMALISM

In this section, we present a general formalism supporting
the extended Wannier-Stark ladder. First, we propose a class
of Hamiltonians, including non-Hermitian ones, which pos-
sesses a ramped translational symmetry. Second, we show that
such Hamiltonians can have several sets of energy ladders: the
energy levels can be complex, but the level spacing can be real
valued and identical. The translational operators across two
neighboring unit cells act as ladder operators, generating a set
of eigenstates from an obtained eigenstate.

A. Model and symmetry

We start with a general tight-binding model with the
Hamiltonians in the following forms:

H = H0 + ω

∞∑
j=−∞

ja†
j a j, (1)

H0 =
∞∑

i, j=−∞
Ji ja

†
i a j, (2)

where a†
i (ai ) is the boson or fermion creation (annihilation)

operator at the ith site. It is an infinite chain lattice with a unit
cell consisting of n0 different types of sites. This means that
the Hamiltonian H0 obeys the translational symmetry

Tn0 H0T −1
n0

= H0, (3)

where Tn0 is the translational operator defined as

Tn0 a†
j T

−1
n0

= a†
j+n0

, Tn0 a jT
−1

n0
= a j+n0 . (4)

In addition, there are no other restrictions on the set of
coefficients {Ji j}. Figure 1 is a schematic of the system.
In this sense, the following conclusion still holds for the
non-Hermitian Hamiltonian H0. The non-Hermiticity arises
from the case with Ji j �= (Jji )∗, which corresponds to non-
Hermitian hopping strength for i �= j and complex on-site
potentials for i = j. In previous work [32], a simple case with
Jj( j+1) = J( j+1) j = J (n0 = 1) is considered for complex J .
The exact solution indicates that the energy levels are always
real and equidistant, in accordance with the above conclusion.

J
J

*J
*J(a)

(b)

1

1i
i

ω

ω

(c)

2ω

nE

ω

FIG. 1. Schematic illustrations of (a) the Hamiltonian in Eq. (11)
and (b) the Hamiltonian in Eq. (16), which correspond to the adjacent
hopping strengths J , J∗ and 1, i, respectively. The on-site potential is
tilted with slope ω. It is shown that the latter has PT symmetry, be-
ing a pseudo-Hermitian system. (c) Energy level structure diagrams
for the Hamiltonians of panels (a) and (b). The solid line represents
the real part of the energy level with isoenergetic distance ω for
panel (a) and 2ω for panel (b). The red and blue blocks represent the
positive imaginary part and the negative imaginary part of the energy
level, respectively. It can be seen that the energy spectrum on the
right side is composed of conjugate energy levels, which correspond
exactly to the PT symmetry of panel (b).

In general, the Hamiltonian H0 can be block diagonalized due
to translational symmetry, while it is difficult to diagonalize
the Hamiltonian H with n0 > 1, since term ω

∑∞
j=−∞ ja†

j a j

breaks the translational symmetry.

B. Ladder operators

However, the special structure of the linear potential en-
sures that H obeys

Tn0 HT −1
n0

= H − n0ω, (5)

which is referred to as a ramped translational symmetry. Al-
though this symmetry has no help in determining the explicit
form of eigenstates, it reflects the relationships between the
eigenstates.

Suppose we have a solution |ψ0〉 of the Schrödinger equa-
tion corresponding to energy E0,

H |ψ0〉 = E0|ψ0〉, (6)
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we always have

H (Tn0 |ψ0〉) = (E0 + n0 ω)(Tn0 |ψ0〉) (7)

and

H
(
T −1

n0
|ψ0〉

) = (E0 − n0 ω)
(
T −1

n0
|ψ0〉

)
, (8)

i.e., Tn0 |ψ0〉(T −1
n0

|ψ0〉) is also the eigenstate of H with
eigenenergy E0 + ω (E0 − ω). Operator Tn0 moves up the en-
ergy ladder by a step of n0ω and the operator T −1

n0
moves down

the energy ladder by a step of n0ω. We can then construct a set
of eigenstates,

|ψn〉 = (
Tn0

)n|ψ0〉, (9)

n = 0,±1,±2, . . . , with eigenenergy

En = E0 + nn0ω (10)

Thus, we can conclude that the spectrum of H has equally
spaced energy levels. The translational operator Tn0 acts as
a ladder operator. This proof is independent of {Ji j}; i.e., it
can be a complex number. We note that based on another
eigenstate, |φ0〉, another set of eigenstates can be generated
accordingly.

Applying the conclusion to the case with Jj( j+1) =
J( j+1) j = J (n0 = 1), the same result as that in Refs. [32,33]
can be obtained for complex constant J . In the following, we
focus on two types of non-Hermitian systems to demonstrate
the application of our conclusion and reveal the pair dynamics.

III. DIMERIZED NON-HERMITIAN CHAINS

In the following, we focus on non-Hermitian systems for
two cases with n0 = 2. Figure 1 is a schematic for the structure
and energy levels of two systems.

(i) J2 j(2 j+1) = J(2 j+1)2 j = J and J2 j(2 j−1) = J(2 j−1)2 j = J∗.
In this case, the Hamiltonian reads

H0 =
∞∑

l=−∞
[J (a†

2l a2l+1 + H.c.) + J∗(a†
2l−1a2l + H.c.)]. (11)

Figure 1(a) is a schematics of the system. A straightforward
derivation shows that

T2HT −1
2 = H − 2ω,

T1HT −1
1 = H∗ − ω. (12)

Starting from an arbitrary eigenstate |ψ0〉 of H , a set of eigen-
states can be generated as

|ψn〉 =
{

(T2)l |ψ0〉, n = 2l,

T (T1)2l+1|ψ0〉, n = 2l + 1,
(13)

l = 0,±1,±2, . . . , with eigenenergy

En =
{

E0 + nω, n = 2l,

E∗
0 + nω, n = 2l + 1,

(14)

or in the compact form

|ψn〉 = (T T1)n|ψ0〉,

with

En = (T )nE0(T −1)n + nω (15)

(n = 0,±1,±2, . . .), where T is the time-reversal operator
defined as T

√−1T −1 = −√−1. We can see that operator
T T1 acts as a ladder operator. Considering the eigenstates in a
single-particle invariant subspace, complete eigenstates can be
constructed from an arbitrary eigenstate. The corresponding
energy levels are complex: the real part has equal spacing,
while the imaginary part is alternatively conjugated.

(ii) J2 j(2 j+1) = J(2 j+1)2 j = 1 and J2 j(2 j−1) = J(2 j−1)2 j = i.
In this case, the Hamiltonian reads

H0 =
∞∑

l=−∞
[(a†

2l a2l+1 + H.c.) + i(a†
2l−1a2l + H.c.)]. (16)

Figure 1(b) is a schematics of the system. A straightforward
derivation shows that

T2HT −1
2 = H − 2ω,

gHg−1 = H∗, (17)

where the local gauge transformation is defined as

ga2l g
−1 = (−1)l a2l ,

ga2l+1g−1 = (−1)l a2l+1. (18)

Starting from an arbitrary eigenstate |ψ0〉 of H , a set of eigen-
states can be generated as

|ψ+
l 〉 = (T2)l |ψ0〉,

|ψ−
l 〉 = T g(T2)l |ψ0〉 (19)

(l = 0,±1,±2, ...), with eigenenergy

E+
l = E0 + 2lω,

E−
l = E∗

0 + 2lω. (20)

Here, without loss of generality, we assume that ImE0 >

0. Considering the eigenstates in a single-particle invariant
subspace, complete eigenstates can be constructed from an
arbitrary eigenstate. The spectrum indicates that the Hamil-
tonian is pseudo-Hermitian, in which complex energy levels
appear in the conjugate pair. This feature allows one to
construct a two-particle subspace with all real energy lev-
els. Considering a set of two-particle eigenstates |ψ+

l 〉|ψ−
l 〉,

including electron, boson and spinless fermion, the corrspond-
ing energy levels are 2Re(E0) + 4lω, forming a standard
Wannier-Stark ladder. Additionally, as a starting point, E0 and
|ψ0〉 can be obtained numerically for an infinite system by
using the powerful Floquet operator method [34,35]. In Fig. 2,
the plots of E0 as a function of ω and the profiles of two typical
|ψ0〉 states are presented. We find that the real part of E0 is a
linear function of ω and the width of |ψ0〉 strongly depends on
the value of ω.

IV. BLOCH OSCILLATIONS

In this section, we investigate the dynamic feature of a
system with an extended Wannier-Stark ladder. We will con-
sider the single- and double-particle dynamics driven by the
Hamiltonian in Eq. (16) with linear potential.
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FIG. 2. Plots of E0 and ψ0 defined in Eqs. (20) and (19), respectively, for the Hamiltonian system (16) in a potential with slope ω. Panel
(a) is the dependence curve of E0 on ω. Panels (b) and (c) are the eigenfunctions for the systems at points A and B, where A and B correspond
to ω = 0.2 and 1.2, respectively. It can be observed that, when ω is small, the corresponding eigenfunction is wider, which corresponds to the
pronounced Bloch oscillations that follow. When ω is larger, the eigenfunction noticeably narrows, which is not conducive to observing Bloch
oscillations. The real part of E0 is a linear function of ω.

Assuming that |ψ0〉 is a single-particle eigenstate |ψ0〉 of
H with eigenenergy E0, |ψ0〉 can be expressed in the form

|ψ0〉 =
∞∑

j=−∞
f ja

†
j |0〉. (21)

Then other eigenstates can be expressed in the forms

|ψ+
l 〉 =

∞∑
j=−∞

f j−2l a
†
j |0〉,

|ψ−
l 〉 =

∞∑
j=−∞

(−1)INT( j/2) f ∗
j−2l a

†
j |0〉, (22)

with the eigenenergy E±
l in Eq. (20). For an arbitrary single-

particle initial state

|φ(0)〉 =
∑

l

(αl |ψ+
l 〉 + βl |ψ−

l 〉), (23)

the time evolution of the state at time t is |φ(t )〉 = e−iHt |φ(0)〉.
After a sufficiently long time, we have

|φ(t )〉 = e−iE0t
∑

l

αl e
−i2lωt |ψ+

l 〉, (24)

which indicates that such a natural time evolution takes
the role of projection to rule out the component of |ψ−

l 〉.
Obviously, the state eiE0t |φ(t )〉 = ∑

l αl e−i2lωt |ψ+
l 〉 is a

periodic with period π/ω. We can conclude that an initial
state in the form

∑
l βl |ψ−

l 〉 exhibits damping Bloch os-
cillation, while state

∑
l αl |ψ+

l 〉 suffices for growing Bloch
oscillation. Notably, on the other hand, when we consider a
two-particle initial state in the form

∑
l,l ′ γll ′ |ψ+

l 〉|ψ−
l ′ 〉, a stan-

dard Bloch oscillation occurs. A simple example of such states
is |φ(t )〉|φ(t )〉∗ for large t . We investigate the two-particle
dynamics in an alternative way in the next section. To verify
and demonstrate the above analysis, numerical simulations are
performed to investigate the dynamic behavior driven by the
non-Hermitian Hamiltonian with a complex Wannier-Stark
ladder. We compute the temporal evolution for two types of

initial states: (i) a Gaussian wave-packet state in the form

|φ(0)〉 =
∑

j

e−α2( j− j0 )2
a†

j |0〉 (25)

(α = 0.3); and (ii) a site state at the j0th site in the form
|φ(0)〉 = a†

j0
|0〉. To present a complete profile of the evolved

state, we take a mapping |φ(t )〉 → e−λt |φ(t )〉 by a pref-
actor to reduce the damping (or growing) rate. Obviously,
the dynamics exhibit a normal Bloch oscillation when taking
λ = ImE0. For a given initial state, the Dirac probability dis-
tribution in real space for the evolved state |φ(t )〉 is

Pn(t ) = |〈n|e−λt |φ(t )〉|2. (26)

We plot Pn(t ) in Fig. 3 for several typical parameter values.
These numerical results agree with our above analysis: (i)
when taking λ > ImE0, the dynamics are damping periodic;
and (ii) when taking λ = ImE0, the dynamics are periodic.

V. TWO-DIMENSIONAL SIMULATOR FOR
ELECTRON-PAIR DYNAMICS

As shown above, the non-Hermitian dimerized Hamiltoni-
ans always have complex single-particle energy levels. The
corresponding dynamics are no longer periodic. However,
some many-particle energy levels can be real and equally
spaced. In this section, we investigate the Bloch oscillations
for a two-particle system and propose a 2D simulator to ob-
serve such dynamics in experiments. We consider electron,
spinless fermion, and boson systems, respectively.

(i) For the electron system, the Hamiltonian reads

He =
∑

j,σ=↑,↓
(c†

2 j,σ c2 j+1,σ + H.c.)

+ i
∑

j,σ=↑,↓
(c†

2 j−1,σ c2 j,σ + H.c.)

+ω
∑

j,σ=↑,↓
jn j,σ , (27)

where c j,σ (c†
j,σ ) is the annihilation (creation) operator for

an electron at site j and nj,σ = c†
j,σ c j,σ . Introducing a local
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FIG. 3. Plots of Pn(t ) defined in Eq. (26), obtained by numerical diagonalization for several different initial states and prefactors with
ω = 0.2 and T = π/ω. Here, panels (a1) and (a2) correspond to the initial state e−α2n2

(α = 0.3) and the prefactors λ = 0.764 and 0.787,
respectively. Panels (b1) and (b2) correspond to the initial state δn0 and the prefactors λ = 0.764 and 0.787, respectively.

transformation on electron operators

Pc2 j+1,σP−1 = (−1) jc2 j+1,σ ,

Pc2 j,σP−1 = (−1) jc2 j,σ , (28)

we have

PT He(PT )−1 = He, (29)

i.e., the system has PT symmetry.
Now, we focus on the system in a two-electron invariant

subspace with opposite spins. Based on the two-electron basis
set spanned by {|x, y〉} where

|x, y〉 = c†
x,↑c†

y,↓|0〉, (30)

the Hamiltonian can be expressed as a single-particle Hamil-
tonian on a square lattice [36,37]:

H2D =
∞∑

x,y=−∞
(|2x, y〉〈2x + 1, y| + H.c.)

+ i
∞∑

x,y=−∞
(|2x − 1, y〉〈2x, y| + H.c.)

+
∞∑

x,y=−∞
(|x, 2y + 1〉〈x, 2y| + H.c.)

+ i
∞∑

x,y=−∞
(|x, 2y − 1〉〈x, 2y| + H.c.)

+ ω

∞∑
x,y=−∞

(x + y)|x, y〉〈x, y|. (31)

Figure 4(a) is a schematic for the structure of H2D. One can
check that H2D has PT symmetry, i.e.,

[PT , H2D] = 0, (32)

due to the fact

Pc†
x,↑c†

y,↓|0〉 = (−1)[x/2]+[y/2]c†
x,↑c†

y,↓|0〉, (33)

where [x] represents the greatest integer less than or equal
to x.

(ii) For the spinless fermion system, the Hamiltonian reads

Hf =
∑

j

( f †
2 j f2 j+1 + H.c.) + i

∑
j

( f †
2 j−1 f2 j + H.c.)

+ω
∑

j

jn j, (34)

where f j ( f †
j ) is the annihilation (creation) operator for a

fermion at site j and n j = f †
j f j . The two-fermion basis set

spanned by {|x, y〉} is defined as

|x, y〉 = f †
x f †

y |0〉 (x > y), (35)

the Hamiltonian can be expressed as a single-particle Hamil-
tonian on a square lattice:

H+
2D =

∞∑
y=−∞

∞∑
x=[y/2]+1

(|2x, y〉〈2x + 1, y| + H.c.)

+ i
∞∑

y=−∞

∞∑
x=[(y+1)/2]+1

(|2x − 1, y〉〈2x, y| + H.c.)

+
∞∑

x=−∞

[x/2]−1∑
y=−∞

(|x, 2y〉〈x, 2y + 1| + H.c.)

064310-5



H. P. ZHANG AND Z. SONG PHYSICAL REVIEW B 110, 064310 (2024)

i
1

x

y(a) (b) (c)

i
1

x

y

2

2i

i
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x

y

FIG. 4. Schematic illustrations of the Hamiltonians in Eqs. (31), (36), and (39), which are tight-binding models on square lattices with
on-site potential ω(x + y). Panels (a), (b), and (c) can be used to simulate the two-electron, two-spinless-fermions, and two-boson Hamiltonian
systems shown in Eqs. (27), (34), and (37), respectively. It can be observed that panel (a) has symmetry along the diagonal direction, while
panels (b) and (c) can be obtained by the antisymmetric and symmetric transformations from panel (a), respectively.

+i
∞∑

x=−∞

[(x−1)/2]∑
y=−∞

(|x, 2y − 1〉〈x, 2y| + H.c.)

+ ω
∑
x>y

(x + y)|x, y〉〈x, y|. (36)

Figure 4(b) is a schematics for the structure of H+
2D .

(iii) For the boson system, the Hamiltonian reads

Hb =
∑

j

(b†
2 jb2 j+1 + H.c.) + i

∑
j

(b†
2 j−1b2 j + H.c.)

+ω
∑

j

jn j, (37)

where b j (b†
j) is the annihilation (creation) operator for a bo-

son at site j and n j = b†
jb j . The two-boson basis set spanned

by {|x, y〉} is defined as

|x, y〉 = b†
xb†

y|0〉 (x > y),

|x, y〉 = 1√
2

(b†
x )2|0〉 (x = y), (38)

and the Hamiltonian can be expressed as a single-particle
Hamiltonian on a square lattice:

H−
2D = H+

2D +
√

2
∞∑

y=−∞
(|2y, 2y〉〈2y + 1, 2y| + H.c.)

+
√

2
∞∑

x=−∞
(|2x + 1, 2x〉〈2x + 1, 2x − 1| + H.c.)

+
√

2i
∞∑

y=−∞
(|2y, 2y + 1〉〈2y + 1, 2y + 1| + H.c.)

+
√

2i
∞∑

x=−∞
(|2x, 2x〉〈2x, 2x − 1| + H.c.). (39)

Figure 4(c) is a schematics for the structure of H−
2D .

One can check that the lattice of H2D has reflection symme-
try about the axis x = y. Then H2D can be decomposed into
two independent sublattices, symmetric and antisymmetric.
Notably, systems H+

2D and H−
2D are just the two correspond-

ing sublattices. The underlying mechanism is the following
relation. The singlet two-electron states

1√
2

(c†
x,↑c†

y,↓ − c†
x,↓c†

y,↑)|0〉, x �= y,

c†
x,↑c†

x,↓|0〉, x = y, (40)

for He are equivalent to the two-boson states

|x, y〉 =
{

b†
xb†

y|0〉, x �= y,
1√
2
(b†

x )2|0〉, x = y,
(41)

for Hb. In parallel, the triplet two-electron states

|x, y〉 = 1√
2

(c†
x,↑c†

y,↓ + c†
x,↓c†

y,↑)|0〉, (42)

for He, are equivalent to the two-spinless-fermion states

|x, y〉 = c†
xc†

y |0〉, (43)

for Hf . In this sense, the physical properties of both two-boson
and two-spinless-fermion systems can be derived from those
of the H2D system.

In experiments, single-particle hopping dynamics can be
simulated by discretized spatial light transport in an en-
gineered 2D square lattice of evanescently coupled optical
waveguides [38]. A 2D lattice can be fabricated by cou-
pled waveguides, by which the temporal evolution of the
single-particle probability distribution in the 2D lattice can be
visualized by the spatial propagation of the light intensity. Ac-
cording to the non-Hermitian quantum theory, an eigenstate
with real energy can be written in the form of PT symmetry.

We compute the temporal evolution for 2D initial states in
the product form

|�(0)〉 = |ϕx〉|ϕy〉, (44)

where |ϕx〉 and |ϕy〉 are two normalized states for one dimen-
sion,

|ϕx〉 =
∑

x

μ(x)|x〉, (45)

|ϕy〉 = T g
∑

y

μ(y)|y〉 =
∑

y

(−1)[y/2]μ∗(y)|y〉. (46)

Here, the coefficients μ(x) can be extracted from the time
evolution for the 1D system with initial states |φ(0)〉 based
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(a) (c)

(e) (f )(d)

(b)

FIG. 5. Plots of P(x, y, t ) for several instants defined in Eq. (47) and F (t ) defined in Eq. (48), obtained by numerical diagonalization for
the initial state (−1)[y/2]μ(x)μ∗(y), where μ(x) is obtained from the long time evolved in Fig. 3(a1). The system parameter ω = 0.2. Here,
panels (a)–(e) correspond to the cases with t = 0, T/4, T/2, 3T/4, and T , respectively, and panel (f) is the plot of fidelity, indicating a Bloch
oscillation.

on the mechanism in Eq. (24). We still employ two types of
states, the Gaussian wave-packet state and the site state at the
j0th site.

We calculate the Dirac probability distribution in real space
as

P(x, y, t ) = |〈x, y|e−iH2Dt |�(0)〉|2, (47)

and we calculate the fidelity as

F (t ) = |〈�(0)|e−iH2Dt |�(0)〉|2
|e−iH2Dt |�(0)〉|2||�(0)〉|2 , (48)

for time evolution. We plot P(x, y, t ) and F (t ) in Figs. 5 and 6
for several typical parameter values. These numerical results
agree with our above analysis that the dynamics are periodic
for proper initial states. Therefore, we conclude that our result

(a) (b) (c)

(d) (e) (f )

FIG. 6. The same plots as in Fig. 5. Here μ(x) is obtained from the result in Fig. 3(b1).
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for the extended Wannier-Stark ladder in a 1D system can also
be applied to a 2D system.

VI. SUMMARY

In summary, our research has investigated the impact of a
linear potential on arbitrary periodic systems within the tight-
binding model framework, irrespective of the Hermiticity of
the system. We have extended the concept of the Wannier-
Stark ladder to the complex domain, enabling the analytical
prediction of the dynamics for numerous non-Hermitian sys-
tems with a constant particle number. We propose two types
of dimerized non-Hermitian systems to substantiate our find-
ings. Both analytical analysis and numerical simulations
indicate that these dimerized non-Hermitian systems support
single-particle Bloch oscillations characterized by a damp-
ing (or growing) rate, as well as standard two-particle Bloch

oscillations under specific conditions. Furthermore, we
demonstrate that the concept of the extended Wannier-Stark
ladder, initially developed for 1D systems, is also applicable
to 2D systems. We introduce a scheme to illustrate these
results through particle-pair dynamics within a single-particle
2D PT -symmetric square lattice. These findings lay the
groundwork for exploring a diverse range of periodic sys-
tems subjected to a linear potential. The ability to predict the
dynamics of such systems analytically is a valuable advance-
ment in the field of condensed-matter physics and quantum
mechanics.
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