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The eigenvalue of a non-Hermitian Hamiltonian often forms a self-intersecting Riemann surface, leading
to a unique mode conversion phenomenon when the Hamiltonian evolves along certain loop paths around
an exceptional point (EP). However, two fundamental problems exist with the conventional scheme of EP
encircling: the speed of mode conversion is restricted by the adiabatic requirement, and the chirality cannot
be freely controlled. Here, we introduce a method which dynamically engineers the adiabaticity in the evolution
of non-Hermitian Hamiltonians that allows for both chiral and nonchiral mode conversion on the same path. Our
method is based on quantifying and controlling the instantaneous adiabaticity, allowing for nonuniform evolution
throughout the entire path. We apply our method into the microwave waveguide system and by optimizing the
distributed adiabaticity along the evolution loop, we achieve the same quality of mode conversion as conventional
quasiadiabatic evolution in only one-fourth of the time. Our approach provides an on-demand solution to address
the speed and chirality challenges associated with EP encircling, which does not depend on specific model. It also
facilitates the dynamic manipulation and regulation of nonadiabatic processes, thereby accelerating the operation
and allowing for a selection among various mode conversion patterns.

DOI: 10.1103/PhysRevB.110.064308

I. INTRODUCTION

Non-Hermitian systems can exhibit exceptional points
(EPs) where eigenvalues and eigenstates coalesce [1–4]. EPs
have been extensively studied for their unique properties
in the field of photonics [5–9], acoustics [10–14], and be-
yond [15], which can be implemented for single-mode lasing
[16,17], loss-induced transmission enhancement [18], and
unidirectional invisibility [19,20]. The eigenvalues of these
non-Hermitian Hamiltonians form a self-intersecting Rie-
mann surface, causing the initial eigenstate to be irrecoverable
after completing a loop around an EP [21]. Mode conversion
can be achieved by adiabatically encircling an EP, but only
in one direction (e.g., counterclockwise, CCW) [22]. In the
opposite direction (e.g., clockwise, CW), the Hamiltonian
transitions to a lower imaginary Riemann sheet, leading to
a nonadiabatic jump and subsequent recovery of the initial
state [23–32]. This asymmetric mode conversion highlights
the chirality of EP encircling and has sparked significant
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research interest, particularly in applications such as opti-
cal communications [30], quantum control [31], and optical
isolators [32].

Despite notable progress, the EP encircling scheme faces
two fundamental problems. Firstly, the adiabatic require-
ment limits mode conversion speed, impacting operational
efficiency and mode decay. Recent approaches, like Hamil-
tonian hopping [33] and selected loops [29], aim to accelerate
evolution but are hindered by extreme parameters and low-
loss eigenstates, restricting broader applicability. Secondly,
controlling chirality in mode conversion is constrained. Con-
ventional schemes permit only chiral mode conversion (mode
A → B in CCW, mode A → A in CW). Recent findings shows
potential for nonchiral mode recovery (mode A → A in CCW
and CW) via a nonencircling-EP loop path [34], however, the
specific outcome depends on the path details. And nonchiral
mode conversion (mode A → B in CW and CCW) remains in-
sufficiently explored, reportedly achievable only with specific
starting points in the evolution process [28]. Addressing speed
and chirality challenges in EP encircling requires an efficient
and model-independent solution, as existing works rely on
specific models, paths, or Hamiltonians, necessitating broader
approaches. Adiabaticity offers potential solutions but lacks
adequate exploration. Existing schemes focus on maintaining
proximity to the Riemann surface throughout the encircling
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FIG. 1. The schematic diagram of fast mode conversion through adiabatic engineering along the parameter path. (a) Adiabaticity maintains
system on arch bridge surface, limiting velocity for uniform evolution. (b) Nonuniform speed function v(t) designed by considering speed
limitations to accelerate evolution. (c) Adiabatic restrictions relaxed at certain points for faster evolution toward target state. (d), (e), (f) The
corresponding cases on Riemann surface show counterclockwise evolution from branch cut, looping EP, returning to initial point, transitioning
Modes A to B. Lines depict system’s parameter space position and evolution speed variation. (d) Uniform speed v0, (e) Nonuniform speed v(t)
determined by adiabaticity at each point, (f) The “jump” evolution deviating from Riemann surface at certain points.

operation, with occasional jumps, yet fail to consider the
degree of adiabaticity at each instant. A systematic method
to quantify and control instantaneous adiabaticity is currently
absent, impeding efficiency optimization. Furthermore, nona-
diabaticity engineering has been overlooked, with previous
approaches either avoiding nonadiabatic processes in mode
conversion or limiting nonadiabatic jumps between Riemann
sheets in mode recovery. The active introduction and control
of nonadiabatic processes remain rare, limiting the ability to
accelerate operations and freely select mode conversion pat-
terns. Overall, an on-demand approach addressing the speed
and chirality challenges in EP encircling is urgently needed,
with adiabaticity playing a crucial role that requires further
attention.

We introduce dynamic adiabaticity engineering for non-
Hermitian Hamiltonian evolution, achieving equivalent qual-
ity to conventional quasiadiabatic evolution in one-fourth of
the time. Our method facilitates both chiral and nonchiral
mode conversions on a single path. By optimizing veloc-
ity at each local point based on quantified adiabaticity,
we transcend the adiabatic/nonadiabatic dichotomy, integrat-
ing both processes within a unified framework. Importantly,
our methodology allows deviation from the Riemann sur-
face, offering an alternative to strict adherence or jumps
between surfaces. Implemented in a microwave waveguide
system, our approach demonstrates superior speed and mode
purity. Moreover, it extends beyond optical systems, be-

ing applicable to various non-Hermitian systems. Our work
enhances understanding of adiabaticity in non-Hermitian sys-
tems and provides insights for advancing mode converters.
The dynamic adiabaticity engineering method is a promising
approach for achieving efficient and high-quality evolution in
non-Hermitian systems.

II. ADIABATICITY ENGINEERING

In the study of general chiral phenomena, to achieve mode
conversion, the state necessitates evolving while adhering to
the upper imaginary Riemann surface. This is typically ac-
complished by evolving slowly along a parameter path. To
quantify this speed, we introduce a function C(x) to represent
the position of a N-level system on a certain parameter path:
dC2(x) = ∑N

1 dx2
n/ρ, ∫C dC = 1, where ρ is the normaliza-

tion factor. Thus, the parameter change speed is v = dC/dt .
In most cases, the system moves at a constant speed v0 (slow
enough), as illustrated in Fig. 1(a). However, uniform evo-
lution is not optimal due to inconsistent adiabaticity. This
inconsistency can be visualized with the parameter path as
an arch bridge, where positions have varying “escape veloci-
ties”, indicating adiabaticity. Adiabatic evolution requires the
system to stay on the bridge surface.

A nonuniform evolution speed v(t) can be designed based
on the adiabatic requirement along the path: high adiabaticity
demands low speed, while low adiabaticity demands high
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speed, expediting mode conversion [Fig. 1(b)]. It appears
this adiabaticity-dependent evolution scheme is fastest if adi-
abaticity must be preserved throughout the evolution path.
However, practical scenarios require rapid evolution to a
steady state, such as stochastic heat engines [35] and geno-
type probability distribution in a population [36]. When mode
conversion effect is the focus, the process can be faster if
abandoning adiabaticity of a certain path, causing the “jump”
evolution [Fig. 1(c)]. Physically, these three different forms of
evolution are represented on the Riemann surface, as quali-
tatively depicted in Figs. 1(d) and 1(e). The evolution speed
v∗(t ) in jump evolution is anomalous:

v∗(t ) =
{
δ(t ), for positions the dwell time is zero
v(t ), for positions the dwell time is nonzero

(1)
where δ(t ) is Dirac delta function.

Different positions along the parameter path have varying
adiabaticity requirements, requiring quantification before in-
vestigating the newly proposed dynamic evolution methods.
In our study, system’s state during evolution is approximately
obtained through difference iteration after discretization:

|� j〉 =
∑

n

cn, j |ψn, j〉, (2)

|� j+1〉 =
∑

n

〈θn, j+1|� j〉e−iωn, j+1�t j |ψn, j+1〉. (3)

Here, {〈θn|} and {|ψn〉} are the normalized biorthogonal
basis of the non-Hermitian Hamiltonian. The subscript n
is sorted from the largest to the smallest according to the
imaginary part of the eigenvalue. The subscript j represents
the jth parameter point, �t j is the evolving time at the jth
parameter point, cn, j is the coefficient of eigenstate ψn, j ,
ωn, j+1 is the corresponding eigenvalue of eigenstate |ψn, j+1〉,
and 〈θn, j+1|� j〉e−iωn, j+1�t actually stands for cn, j+1. We use a
weighted eigenvalue ω̄ j to characterize the system’s state on
the Riemann surface:

ω̄ j =
∑

n

|cn, j |2∑
m |cm, j |2

ωn, j. (4)

Next, we define the proportion Pn, j of the instantaneous
eigenstate |ψn, j〉 as Pn, j = |cn, j |2/

∑
m

|cm, j |2. Adiabatic evo-

lution requires the system to predominantly occupy the
least decaying state, meaning P1, j , representing instantaneous
eigenstates with the largest imaginary parts, should not fall
below a specific value denoted as P1, j � P0. A higher P0

signifies increased adiabaticity. Varying P0 allows for differ-
ent evolutionary configurations based on distinct adiabatic
requirements. If P1, j < P0, it requires increasing the evolving
time �t j (reducing evolving speed) at the jth parameter point
to enhance adiabaticity. Conversely, if P1, j > P0, it permits
reducing evolving time (increasing evolving speed) or even
skipping the parameter point until P1 fall into P0. Note that P0

must be less than 1, as changing system parameters cause co-
efficients of the instantaneous eigenstates to change, making
complete adiabaticity unattainable.

III. STABLE CONVERSION

By setting P0 at a constant value and ensuring P1, j = P0,
we can achieve maximum velocity while maintaining high
purity of the final state under this adiabaticity constraint. This
strategy, termed “stable conversion configuration”, dynami-
cally adjusts the dominant proportion to uphold the final state’
purity. The residence time �t j at each parameter point along
the evolution path is calculated as follows: Give the current
state |� j〉, the dominant state proportion at the next parameter
point is determined by the equation:

P1, j+1 = |〈θ1, j+1|� j〉e−iω1, j+1�t j |2∑
n |〈θn, j+1|� j〉e−iωn, j+1�t j |2

. (5)

Letting P1, j+1 be equal to P0 to satisfy the adiabatic evo-
lution requirement simplifies the equation to a single-variable
form with �t j as the variable. Solving this equation yields the
residence time �t j for each parameter point, thereby obtaining
the set of evolution times {�t j} [see Note 2 in the Supplemen-
tal Material (SM)] [37].

In this study, we consider a non-Hermitian system with EP:

Ĥ =
(

x + iy 1
1 −x − iy

)
. (6)

The Hamiltonian of most two-level systems with equal
coupling, Ĥa = (a + ib e

e c + id), can be transformed into this
form (see Note 5 in the SM [37]). Here x, y, a, b, c, d
� R and e ∈ C. Since the Hamiltonian in Eq. (6) does not
involve a specific model, we could define the evolution time of
Eq. (6) as normalized time, by dividing the actual time by the
characteristic time of the system, with the coupling coefficient
e being selected as the characteristic time here: tnorm = t/e.

The results of stable conversion configuration (nonuni-
form evolution) are presented in Fig. 2, showcasing the
evolution time set {�t j} and trajectory in Figs. 2(a) and
2(b). The parameter path comprises 100 equal intervals, to-
taling 101 parameter points. Initially, P1, j=0 = 1, reflecting
the input state ψ1, j=0 and |�0〉 = |ψ1, j=0〉. This evolu-
tionary path can be bypassed until P1, j decreases to the
value of P0. In this configuration, we examined two in-
put modes and directions [Figs. 2(c) and 2(f)], where ζA,B

represents the coefficient of Mode A or Mode B: ζA,B; j =
|〈θA,B|� j 〉|2/∑

A,B |〈θA,B|� j 〉|2. Mode A and Mode B cor-
respond to the system’s two eigenstates on the imaginary
part branch cut where the eigenvalues ω1 and ω2 from
Eq. (6) satisfy Im(ω1) = Im(ω2), namely |ψA 〉 =|ψ1, j=0〉
and |ψB 〉 =|ψ2, j=0〉. For comparison, the conventional uni-
form evolution is calculated in Figs. 2(c)–2(f). There are two
approaches to comparing the efficiency of these evolution
methods. One approach is to compare the time required to
achieve the same final state purity. The other approach is
to compare the final state purity achieved within the same
time frame. In Figs. 2(c)–2(f), we presented the result of the
second approach. For the first approach, the results are given
in Figs. 3(h) and 4(f). The time required for uniform evolution
to achieve mode conversion is 5.05 normalized time, and to
achieve mode recovery is 4.53 normalized time (see Fig. S8
in the Supplemental Material).
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FIG. 2. Bimodal chiral mode conversion in nonuniform evolution. (a), (b) show evolution time set {�t j}, patterns, and evolution trajectories
(CCW and CW cases) for chiral cases in x-y parameter planes. The branch cuts where Re(ω1) = Re(ω2) and Im(ω1) = Im(ω2) are shown by
solid and dashed lines, respectively. P0 = 0.9. Gray rhombus denotes start/end point. (c)–(f) depict chiral mode conversion effect for Mode A
and B. Mode A switches to B in CCW, remains A in CW; Mode B remains B in CCW, switches to A in CW. Orange box and blue triangle
mark start and end of the actual evolved portion along parameter path. The case of uniform evolution (dashed line) is included for comparison.
Here, we assess the efficiency of uniform versus nonuniform evolution by comparing the final state purity achieved within the same time. The
higher the final state purity within the same duration, the faster the evolution is.

Both modes exhibit chiral mode conversion effects. Faster
and more pure mode conversion is achieved for Mode A
[Fig. 2(c)]. However, the transfer effect is suboptimal for
Mode B [Fig. 2(e)] due to the skipped parameter path at the
beginning of CCW evolution, which becomes the last path of
CW evolution while the evolution time set {�t j} is based on
CCW evolution. Additional constraints are required to opti-
mize the effectiveness of CW dynamic evolution. The stable
conversion configuration optimizes the conventional method,
with the underlying physics rooted in the concept of “nonadi-
abatic jump” as postulated in conventional chiral conversion.
Consequently, the framework does not allow for achieving the
nonchiral effect demonstrated in the section Swift nonchiral
mode conversion.

IV. DEMAND-DRIVEN STRATEGY FOR
DYNAMICAL EVOLUTION

The parameter variations in a time-varying system are
accompanied by changes in the instantaneous eigenvectors.
The instantaneous eigenvector ψ1(t ) at one parameter posi-
tion will decompose orthogonally into components of ψ2(t )
at the next parameter position and add to the corresponding
instantaneous eigenstate, thus altering its amplitude. The same
applies to ψ2(t ). The coefficients of these components are
complex numbers with phases that vary over time and are

coupled with each other, making their impact on amplitude
changes difficult to predict theoretically. Since the coefficients
in this process evolve in a coupled manner and cannot be opti-
mized using conventional methods, employing computational
algorithms becomes a more viable option. Utilizing the stable
conversion configuration yields two conditions during evolu-
tion: I. Instantaneous jumps between parameter points, and II.
Static evolution at a specific parameter point for �t j . While
Procedure I may overlook adiabaticity along certain evolution
paths, Procedure II compensates. Optimal results of dynamic
evolution, tailored to specific requirements, depend on the
appropriate combination of jump and static evolution points
using the evolution time set {�t j}. Thus, all dynamic evo-
lution problems can be formulated as optimization problems
within our framework, differing only in imposed constraints:
I. Enclosed parameter path; II. Evolutionary direction (CCW
or CW); III. Input mode; IV. Desired end state and its purity.
Optimizing a time-dependent Hamiltonian to convert between
desired modes is a broad and long-studies field [38]. In the
realm of optimizing the evolution of quantum states, quantum
optimal control theory stands as a highly efficacious approach
[39–41]. However, it is primarily employed for optimizing
evolutionary path [40]. While in our optimization problem,
the evolution path is fixed. The purpose of this constraint is to
eliminate other interfering factors so that we can focus on the
effect of adiabaticity adjustment itself. This strong constraint
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FIG. 3. Bimodal chiral mode conversion via genetic-SQP optimization. (a), (b) display evolution time set {�t j} and patterns in CCW
and CW parameter planes. The algorithm selects only three parameter points for evolution, skipping a substantial portion of path (red and
blue dots). (c)–(f) illustrate the chiral mode conversion for Mode A and B. (g) compares chiral effects achieved through uniform evolution,
stable conversion, and genetic-SQP optimization. Optimized evolution demonstrates advantages in speed, end state purity, chiral effect, and
robustness (chiral effect being independent of input mode). (h) compares time required to achieve 90% end state in mode conversion and mode
recovery. The time is reduced 41% and 34% for mode conversion and mode recovery, respectively.

reduces the searching space in the optimization process.
Therefore, we choose conventional optimization algorithms
which are already capable of determining the optimal solution.
It is possible to further improve efficiency or solve more com-
plex problems if the quantum optimal control theory is used.
This, however, is beyond the scope of this study. Here, we
adopt combined approach utilizing the genetic algorithm [42]
and the Sequential Quadratic Programming (SQP) algorithm
[43]. For a comprehensive algorithmic description, refer to
Note 3 in the SM [37].

V. SWIFT BIMODAL CHIRAL EVOLUTION

To demonstrate the superiority of our algorithm, we per-
formed bimodal chiral evolution and presented the results in
Figs. 3(e) and 3(f). The evolution processes of CCW and CW
directions in the parameter plane are depicted in Figs. 3(a)
and 3(b). Notably, the optimized path enables the system

to bypass most regions of the evolutionary path and remain
at specific parameter points. These parameter jumps occur
instantaneously without altering the state in the representa-
tion of Mode A/B. The mode-switching and mode-recovery
phenomena arise from static evolution at these characteristic
points, compensating for adiabaticity. By incorporating these
jumps and stagnation, the adiabaticity is modulated, resulting
in a substantial reduction in evolution time. Comparing the
outcomes with uniform evolution, we observe faster mode-
conversion or mode-recovery effects [Fig. 3(h)] and higher
purity of the end states in all four cases, validating our as-
sumption. It is important to note that these “perfect” results
are achieved through the constraints established within our
evolution framework (for further details, see Note 4 in the
Supplemental Material). In Figs. 3(a) and 3(b), it is shown
that the trajectory generated by the proposed algorithm does
not enclose the EP. This outcome arises from the algorithm
optimizing the dwell time at different parameter points along
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FIG. 4. Swift nonchiral mode conversion via genetic-SQP optimization. (a), (c) depict evolution time set {�t j} for nonchiral cases and
patterns in CCW and CW parameter planes. The algorithm selects a specific path portion (red and blue dots). (b), (d) showcase nonchiral state
evolution effect for Mode A. (e) display the change in weighted eigenvalue Im(ω̄) of system’s state on the Riemann surfaces for CCW and
CW with respect to Mode A. Orange region: Mode A dominance; blue: Mode B dominance. (f) compares time consumption of three evolution
methods for different final state purity requirements. (i), (j) Geometry and effects before and after optimization. The middle subfigures are the
geometries of waveguide, where the boundary amplitude σ is magnified (×20) for visibility. (h) Time consumption (waveguide length) for
optimized and conventional waveguide to realize mode conversion in CCW evolution. (g) Normalized electric field of Mode A and B.

a circular path around the EP. Since the optimized dwell time
at most parameter points is zero, the resulting trajectory does
not enclose the EP. Consequently, within our framework, the
concept of encircling the EP becomes less significant, as the
focus shifts to the geometric properties of the system’s Rie-
mann surface. Even for a loop that theoretically encircles the
EP, our method may select an optimized trajectory that does
not actually enclose the EP. It is consistent with previous work
realizing chiral effect without encircling an EP [34,44].

We introduced the chiral index (CI) as a metric to
evaluate the quality of the chiral mode conversion ef-
fect. The CI is calculated as the average of ζA,B for end
states in CCW and CW: CI = 1

2 max{(ζA;end, ζB;end )|CCW} +
1
2 max{(ζA;end, ζB;end )|CW}. A higher CI indicates a stronger
chirality in the process. The chiral effects of uniform evo-
lution, stable conversion configuration, and genetic-SQP
algorithm optimization for different input modes are illus-
trated in Fig. 3(g). Both the stable conversion and genetic-SQP
methods demonstrate superior chiral effects compared to uni-
form evolution. Moreover, the genetic-SQP method offers an
advantage over the stable conversion method as it is inde-
pendent of the input mode, providing greater potential for
practical chiral converters.

VI. SWIFT NONCHIRAL MODE CONVERSION

The stable and fast dynamic evolution configuration frame-
work introduced earlier has demonstrated rapid transitions,
high purity, and remarkable chiral index in chiral mode con-
version effects. It should be pointed out that our method is
a demand-orientated framework designed for dynamic evolu-

tion near EP. Beyond chiral evolution, our approach can be
extended to achieve various other dynamic evolution effects,
including nonchiral evolution, by incorporating corresponding
constraints into the optimization process.

Through adjustments in the imposed constraints (see Note
4 in the SM [37]), we achieved nonchiral evolution and
obtained faster mode conversion processes, as depicted in
Fig. 4. In this context, “chiral” refers to the distinct phenom-
ena evolving in CCW and CW directions, while nonchiral
evolution indicates identical output modes, regardless of the
evolution direction. For Mode A, we successfully realized the
mode conversion effect in both CCW [Fig. 4(b)] and CW
evolution [Fig. 4(d)], corresponding to the previously men-
tioned nonchiral mode conversion. Notably, our configuration
achieved rapid mode conversion using only a small portion
of the parameter path [Fig. 4(a)], attributed to the signifi-
cant variation in Im(ω̄) values along this segment, leading to
fast changes in the distribution of instantaneous eigenstates.
Therefore, the algorithm concentrated the evolution in this
region. In addition to the effect of variation in Im(ω̄), the
projection of instantaneous eigenstates is another vital con-
tributor for algorithm’s decision-making process (see Note 7
in the Supplemental Material). The evolutionary behavior is
also observed in the imaginary Riemann surfaces [Fig. 4(e)],
indicating the delicate balance between freeing adiabaticity
and maintaining the state’s purity along the path. We ob-
served fluctuations in Im(ω̄) on the skipped parameter path
even if the system did not evolve in certain parameters, due
to the variation in the instantaneous eigenvectors. In con-
trast, on the parameter path where the system remains, Im(ω̄)
increases.
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To highlight the advantages of our approach in term of
time consumption, we compare the evolution time required to
achieve different final state switching proportions using three
methods: Uniform evolution, Stable conversion, and genetic-
SQP algorithm optimization under varying final state purity
requirements. The results are shown in Fig. 4(f). It is evident
that the genetic-SQP algorithm optimization method exhibits
significantly reduced time consumption compared to the first
two methods. Furthermore, the growth in time consumption
is not substantial as the final state purity constraint changes.
The advantage of the genetic-SQP method becomes more
pronounced with higher requirements for final purity.

VII. MICROWAVE WAVEGUIDE SYSTEM

To validate our approach in real-world applications, we
implement it in a well-known microwave waveguide system
as a case study [23]. As a periodic waveguide, the waveguide
boundary amplitude σ and boundary wavenumber detun-
ing δ serve as our modulation parameters. Its details and
modulation are presented in the Supplemental Material. We
simplified constraints to only focus on Mode A converting
into Mode B in both the CCW and CW directions. (in a
waveguide, CCW evolution means field transmits from left
to right and CW evolution, from right to left). Mode A and
B are two eigenmodes of the periodic waveguide at starting
parameter point. Before optimization, the variables δ and σ

changes continuously and satisfy δ = δEP + δrcos(θ + π/2),
σ = σEP + σrsin(θ + π/2) for θ ∈ [0, 2π ]. After optimiza-
tion, the algorithm selects three parameters in the parameter
path of conventional scheme to evolve [part I, II, and III in
Fig. 4(i)], which are (δ1, σ1) for �tnorm1 = 0.068, (δ2, σ2) for
�tnorm2 = 0.047, (δ3, σ3) for �tnorm3 = 0.810. The total nor-
malized time required to achieve nonchiral mode conversion
after optimization is �tafter = 0.925, while �tbefore = 3.63.
The specific values of the model are included in the Note 6
of Supplemental Material. The results, depicted in Figs. 4(h)–
4(j), reveal a significant reduction in time (length) compared
to conventional methods in mode conversion. Moreover, our
method demonstrates superior performance in CW evolution,

with Mode B constituting 83% in the optimized waveguide
versus 61% in the conventional one, indicating its superiority.
Our method extends beyond waveguide systems, applying
to diverse nonHermitian systems characterized by nontrivial
geometric properties on Riemann surfaces and also to cavity
networks with time-varying coupling improved transient logic
operation response [45]. Furthermore, the optimization objec-
tive can be tailored accordingly. While our study focuses on
optimizing time, other scenarios, such as quantum heat engine
[46], may prioritize efficiency, defined as the ratio of net work
output to energy input, as the optimization target function.

VIII. CONCLUSION

We have demonstrated that strict adherence to adiabatic-
ity throughout the parameter loop is not always necessary
in the dynamic evolution of non-Hermitian systems, espe-
cially when prioritizing mode conversion results or chiral
effects. Building upon this insight, we have presented an on-
demand and model-independent method capable of realizing
both chiral and nonchiral phenomena while accommodating
any desired purity requirement for the final state. In contrast
to traditional encircling approaches, our analytical and com-
putational configuration offers notable advantages, including
enhanced speed, model independence, and the ability to gen-
erate novel effects. These findings contribute to a deeper
understanding of non-Hermitian dynamic evolution. More-
over, the potential application of our method is broad, besides
the example demonstration in waveguide system, any N-level
systems can make use of this method to optimize computa-
tional resources, modulation of intermediate process quantity,
and result reconfiguration.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program
of China under Grant No. 2022YFA1405200, the National
Natural Science Foundation of China (NNSFC) under Grants
No. 92163123 and No. 52250191, the Zhejiang Provin-
cial Natural Science Foundation of China under Grant No.
LZ24A050002.

[1] T. Kato, Perturbation Theory for Linear Operators (Springer,
New York, 1966).

[2] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[3] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry
and topology in non-Hermitian physics, Phys. Rev. X 9, 041015
(2019).

[4] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan,
Emergence, coalescence, and topological properties of multi-
ple exceptional points and their experimental realization, Phys.
Rev. X 6, 021007 (2016).

[5] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[6] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics
based on parity–time symmetry, Nat. Photonics 11, 752 (2017).
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