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Differences between quantum and classical adiabatic evolution
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Adiabatic evolution is an emergent design principle for time modulated metamaterials, often inspired by
insights from topological quantum computing such as braiding operations. However, the pursuit of classical
adiabatic metamaterials is rooted in the assumption that classical and quantum adiabatic evolution are equivalent.
We show that this is only true in the limit where the frequencies of all the bands are at infinite distance from 0
and some instances of quantum adiabatic evolution, such as those containing zero modes, cannot be reproduced
in classical systems. This is because mode coupling is fundamentally different in classical mechanics. We derive
classical conditions to ensure adiabaticity and demonstrate that only under these conditions—which are different
from quantum adiabatic conditions—do the single band Berry phase and Wilczek-Zee matrix for everywhere
degenerate bands emerge as meaningful quantities encoding the geometry of classical adiabatic evolution.
Finally, for general multiband systems we uncover a correction term in the non-Abelian gauge potential for
classical systems.
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I. INTRODUCTION

Quantum-classical analogies have grown into a vibrant re-
search domain, particularly with the emergence of topological
photonic [1] and phononic [2] metamaterials. More recently,
classical metamaterials with time and space modulation
[3–5] achieve topological pumping [6–15] and non-Abelian
physics [16–18], inspiring both fundamental research and
novel information processing concepts. At the heart of these
advancements lies quantum adiabatic evolution and the cor-
responding geometric quantities [19–24]. Until now, studies
have assumed that classical adiabatic evolution is subject to
gap conditions analogous to those in the quantum case and the
geometric quantities arising are equivalent [3,6,9,14–16,25–
29]. Our article challenges this assumption by demonstrating
fundamental differences in the mode-coupling equations aris-
ing from the fact that a time-dependent Hermitian classical
system is mapped to a time-dependent non-Hermitian quan-
tum system. This has two consequences: (i) it introduces a
correction term in the non-Abelian gauge potential and (ii)
it implies an additional condition to ensure adiabaticity in
classical systems, rendering concepts such as braiding of zero
modes untenable. Nevertheless, we identify a limit where
these differences vanish and classical adiabatic evolution ap-
proaches the quantum case.

A. Quantum adiabatic evolution

In the context of a slowly changing quantum Hamiltonian
Hq(t ) with instantaneous eigenstates |n(t )〉 and instanta-
neous eigenvalues λn(t ), a quantum state initially prepared

*Contact author: cb7454@cs.princeton.edu

as |ψq(0)〉 = |n(0)〉, and evolving under the Schrödinger
equation i|ψ̇q〉 = Hq(t )|ψq〉, remains in the nth eigen-
state, approximately described as |ψq

adia (t )〉 ≈ exp[−i�(t ) −
γ (t )]|n(t )〉 [19]. Here, �n(t ) := ∫ t

0 dt ′λn(t ′) represents the
dynamic phase and γn(t ) = ∫ t

0 dt ′〈n(t ′)|ṅ(t ′)〉 corresponds
to the geometric phase, known as the Berry phase. In
what follows we choose a parallel transport gauge, i.e.,
〈n(t )|ṅ(t )〉 = 0. Then the Berry phase can be computed as
γ (t ) = Im ln 〈n(0)|n(t )〉 [30,31]. To obtain |ψq

adia (t )〉, we
expand |ψq(t )〉 in terms of the instantaneous eigenstates
as |ψq(t )〉 = ∑

n qm(t ) exp[−i�m(t )]|m(t )〉. Substituting this
into the Schrödinger equation and contracting with 〈n|, we
integrate from 0 to t , leading to [32–35]

qn(t ) − qn(0) = −
∑
m �=n

∫ t

0
dt ′qm(t ′)〈n|ṁ〉e−i

∫ t ′
0 dt ′′λmn(t ′′ ),

(1)

where qn(0) = δnm and λmn(t ) = λm(t ) − λn(t ). The right-
hand side (RHS) can be interpreted as the error of the adiabatic
approximation due to the excitation of other modes and is
negligible if the exponential in the integrand oscillates rapidly
compared to the slowly changing other terms. This condition
is captured by the quantitative gap condition,

max
t∈[0,Tf ]

∣∣∣∣∣ 〈n|ṁ〉
λmn(t )

∣∣∣∣∣ � 1 ∀n �= m, (2)

where Tf is the final time of integration.

B. Classical adiabatic evolution

In this article we consider a classical evolution where
a dynamical matrix Hc(t ) is changed slowly. Hc(t ) is
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symmetric, positive definite, and real-valued as classical sys-
tems have real-valued couplings, but in principle the reasoning
is also valid for complex-valued Hermitian matrices. The
dynamics of the classical state vector |ψc(t )〉 is governed
by the Newtonian second-order equation |ψ̈c〉 = −Hc(t )|ψc〉.
We denote the real-valued instantaneous frequency of Hc(t )
as ωn(t ) := √

λn(t ) > 0, the dynamic phase as �n(t ) :=∫ t
0 dt ′ωn(t ′), and we choose the instantaneous eigenstates

real-valued and in a parallel transport gauge. As we will
prove shortly, for an initial condition of |ψc(0)〉 = |n(0)〉 and
|ψ̇c(0)〉 = 0, the classical adiabatic approximation reads

∣∣ψc
adia (t )

〉 ≈
√

ωn(0)

ωn(t )
cos[�n(t )]|n(t )〉. (3)

We observe that the amplitude is not conserved and increases
(decreases) as the mode becomes softer (stiffer). The Berry
phase is hidden in the eigenstates and can be extracted as
γ (t ) = Im ln 〈n(0)|n(t )〉. For a closed-loop evolution, i.e.,
Hc(T ) = Hc(0), the Berry phase is obviously quantized to
0 or π modulo 2π , protected by the fact that H is purely
real-valued and symmetric.

C. Problem statement and structure of the paper

The expression (3) has also been obtained using WKB
assymptotics in [3]. However, there and in other studies
[6,9,14,15,25–29] it is assumed that the classical adiabatic
condition is exclusively based on a frequency gap, analogous
to the quantum gap condition (2). We will show, using a quan-
tum formalism, that a gap condition (2) is not sufficient and,
more generally, quantum and classical adiabatic evolution are
different except in the limit of infinitely high frequencies.

The study is based on contrasting the quantum coupling
equations (1), with classical coupling equations, from which
we deduce the adiabatic conditions and approximations. In
Sec. II we derive the coupling equations by applying a
transformation that would symmetrize the problem in the
time-independent case but fails to do so for time-dependent
systems. In Sec. III we explore the results in the light of
biorthogonal operator theory. Then, from the coupling equa-
tions we derive classical adiabatic conditions and compare
them to quantum conditions in Sec. IV. We find fundamental
differences and identify a limit where they become equivalent.
In particular, setting Hc := H and Hq := √

H , we will show
that, while generally different, in the limit where the full spec-
trum of H is at infinite distance from 0, both the nonadiabatic
and adiabatic dynamics of Hq and Hc will be the same. In
Sec. V we further study energy consumption of adiabatic
evolution. We then present a simple numerical example in
Sec. VI. Finally, in Sec. VII we generalize our findings to the
multiband, non-Abelian case and discuss the appearance of a
correction term to the non-Abelian gauge potential in classical
systems in comparison to quantum systems. Conclusions are
drawn in Sec. VIII.

II. DERIVATION USING COORDINATE
TRANSFORMATION

It is well known [2,36] that, in time-independent systems,
symmetric classical equations of motion can be mapped to a

Hermitian Schrödinger equation. However, as we now demon-
strate, this is not the case for time-dependent problems. The
resulting Schrödinger equation is non-Hermitian because the
coordinate transformation does not commute with the time
derivative.

To see this we first define |
c(t )〉 = [|ψc(t )〉, |ψ̇c(t )〉]T ,
such that the classical equation of motion can be transformed
to first order

|
̇c〉 =
[

0 1

−H (t ) 0

]
|
c〉. (4)

We now introduce the transformation [2,36]

T (t ) =
[√

H (t ) 0

0 i1

]
, (5)

which would symmetrize Eq. (4), i.e., mapping it to a Hermi-
tian Schrödinger equation, for time-independent H .

Let us further define |
̃c〉 := T (t )|
c〉 and

H̃ (t ) :=
[

0
√

H (t )
√

H (t ) 0

]
. (6)

Then, transforming Eq. (4) under T (t ), we obtain the equa-
tion of motion for |
̃c〉 as

i| ˙̃
c〉 = [H̃ (t ) + iṪ (t )T −1(t )]|
̃c〉. (7)

The inverse transformation, T −1, exists because H is assumed
to be positive definite. This is a non-Hermitian Schrödinger
equation because

iṪ (t )T −1(t ) = i

[ ˙√
H (t )

√
H (t )

−1
0

0 0

]
(8)

is in general non-Hermitian. All the differences between
quantum and classical adiabatic evolution and mode coupling
arise from this term. We now expand the general (nonadia-
batic) solution in the instantaneous, adiabatic eigenbases of
H̃ , i.e.,

|
̃c(t )〉 =
∑
m,σ

cσ,m(t )
√

ωm(0)ωm(t )e−iσ�m (t )|σ, m(t )〉, (9)

where |σ, m(t )〉 := 1/
√

2[|m(t )〉, σ |m(t )〉]T are the orthonor-
mal instantaneous eigenstates of H̃ (t ) in a parallel transport
gauge, i.e., 〈m(t ), σ |σ, ṁ(t )〉 = 〈m(t )|ṁ(t )〉 = 0, and corre-
sponding instantaneous eigenfrequencies are σωm(t ), with
σ = ±1 labeling the subspace corresponding to the positive or
negative eigenfrequencies [36]. While for time-independent
systems these two subspaces are always decoupled (as are
eigenstates in general), in the time-dependent case this is
no longer true. Inserting this expansion into Eq. (7), con-
tracting with 〈m(t ), τ |, and integrating from 0 to t , one
arrives at the classical version of Eq. (1) (see Supplemental
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Material [37])

cτ,n(t ) − cτ,n(0) = −
∑
m �=n

∫ t

0
dt ′cτ,m(t ′)〈n|ṁ〉1

2

√
ωm(0)

ωn(0)

(√
ωn(t ′)
ωm(t ′)

+
√

ωm(t ′)
ωn(t ′)

)
eiτ�−

nm (t ′ )

−
∑
m �=n

∫ t

0
dt c−τ,m(t ′)〈n|ṁ〉1

2

√
ωm(0)

ωn(0)

(√
ωn(t ′)
ωm(t ′)

−
√

ωm(t ′)
ωn(t ′)

)
e−i(−τ )�+

nm (t ′ )

+
∫ t

0
dt c−τ,n(t ′)

1

2

ω̇n(t ′)
ωn(t ′)

eiτ2�n (t ′ ), (10)

where cτ,n(0) = δnmδτσ 〈n(0), τ |T (0)|
c(0)〉/ωn(0),
�−

nm(t ) := �n(t ) − �m(t ), and �+
nm(t ) := �n(t ) + �m(t ).

Again, the RHS can be identified as the error to the adiabatic
approximation. Clearly, if the RHS is approximately 0, so
is the left-hand side, i.e., cτ,n(t ) ≈ cτ,n(0). Substituting this
result back into (9), applying the inverse transformation, i.e.,
T −1(t )|
̃c(t )〉, and taking the real part results in the adiabatic
approximation (3).

Because the transformation does not commute with the
time derivative operator, Hermitian classical systems funda-
mentally map to non-Hermitian quantum systems giving rise
to differences in the (adiabatic) evolution for finite frequen-
cies, as analyzed in Sec. IV.

III. DERIVATION USING BIORTHOGONAL FORMALISM

It is customary to treat non-Hermitian systems in the
biorthogonal formalism, directly starting from Eq. (4) [38].
Now we show that such a treatment produces the same cou-
pling equations (10) which we demonstrate to be well-defined
despite the time-dependent norm ambiguity of biorthogonal
basis functions.

Let us define

G :=
[

0 1

−H (t ) 0

]
, (11)

such that Eq. (4) reads

|
̇c〉 = G|
c〉. (12)

The mth instantaneous eigenvalue-eigenstate pair of H (t ) is
denoted by [λm(t ) = ω2

m(t ), |m(t )〉]. Without loss of general-
ity, we again choose |m(t )〉 in a parallel transport gauge such
that 〈m|ṁ〉 = 0. Let us introduce the biorthogonal left and
right eigenvectors of G [39]. It is easy to check that

|σ, M(t )〉 := 1√
2

[ |m(t )〉
−σ iωm(t )|m(t )〉

]
,

βm(t ) := −σ iωm(t ),

(13)

for σ = ±1 is a right eigenstate-eigenvalue pair of the non-
Hermitian operator (11). Its corresponding left eigenstate is
given by

〈N̂ (t ), τ | := 1√
2

[〈n(t )| iτ
ωn(t ) 〈n(t )|], (14)

with corresponding eigenvalue

β̂n(t ) = β∗
n (t ) := τ iωn(t ), (15)

where ∗ denotes complex conjugation. Note that because H (t )
is assumed to be positive definite and symmetric, we have
λm(t ) > 0 and hence ωm(t ) ⊂ R+, implying that the instan-
taneous non-Hermitian system is purely oscillatory.

We further note that degeneracies in H carry over to de-
generacies in G. We assume that respective eigenstates of
H have been orthogonalized so that corresponding left and
right eigenstates are naturally biorthogonal. The left and right
eigenstates satisfy the biorthogonality relation

〈N̂ (t ), τ |σ, M(t )〉 = 1

2

(
〈n|m〉 + τσ

ωm(t )

ωn(t )
〈n|m〉

)
= δnmδστ .

(16)

Biorthogonal eigenstates of non-Hermitian operators do
not only have an arbitrary phase but also an arbi-
trary norm [38,40]. Hence, for any at least once differ-
entiable fσ,m(t ) ∈ C, the right f -transformed eigenstates
|σ, M(t )〉 → fσ,m(t )|τ, M(t )〉 and left f -transformed eigen-
states 〈 ˆN (t ), τ | → 〈N̂ (t ), τ |1/ f ∗

τ,n(t ) also form a complete
biorthogonal basis. Furthermore, because here we are inter-
ested in parallel transporting |m〉 rather than |τ, M(t )〉, in
general there is no further restriction on fσ,m(t ) (see [38] for
more in detail discussion).

To that end we use the following nonadiabatic ansatz:

|
c(t )〉 =
∑
m,σ

bσ,m(t )e−iσ�m (t ) fσ,m(t )|σ, M(t )〉. (17)

We substitute the ansatz into the equations of motion (12) and
contract with 〈N̂, τ |1/ f ∗

τ,n, where from now on we omit to
show the time dependence explicitly. We obtain (see Supple-
mental Material [37])

ḃτ,n fτ,n
√

ωn

= −bτ,n ḟτ,n
√

ωn − bτ,n fτ,n
1

2

ω̇n√
ωn

−
∑

m

bτ,m fτ,m〈n|ṁ〉1

2

√
ωn

(
1 + ωm

ωn

)
eiτ�−

nm

−
∑

m

b−τ,m f−τ,m〈n|ṁ〉1

2

√
ωn

(
1 − ωm

ωn

)
eiτ�+

nm

+ b−τ,n f−τ,n
1

2

ω̇n√
ωn

ei2τ�n . (18)

To demonstrate that the results obtained in this study are
well defined we have to show that the coupling equations (18)
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are independent of the arbitrary choice of { fσ,m}. We will show
that this is indeed the case, as the choice of { fσ,m} will just turn
out to be a time-dependent scaling, which is compensated by
the corresponding coefficients.

To that end we define aτ,n := bτ,n fτ,n
√

ωn with

ȧτ,n = ḃτ,n fτ,n
√

ωn + bτ,n fτ,n
1

2

ω̇n√
ωn

+ bτ,n ḟτ,n
√

ωn. (19)

We further use bτ,n = aτ,n/( f ∗
τ,n

√
ωn) and, because

ḃτ,n fτ,n
√

ωn = ȧτ,n − aτ,n
1

2

ω̇n

ωn
− aτ,n

ḟτ,n
f ∗
τ,n

, (20)

all the diagonal terms in Eq. (18) vanish and all f terms
are absorbed into the coefficients aτ,n such that the coupling
equations for aτ,n read

ȧτ,n =−
∑

m

aτ,m〈n|ṁ〉1

2

(√
ωn

ωm
+

√
ωm

ωn

)
eiτ�−

nm

−
∑

m

a−τ,m〈n|ṁ〉1

2

(√
ωn

ωm
−

√
ωm

ωn

)
eiτ�+

nm

+ a−τ,n
1

2

ω̇n

ωn
ei2τ�n . (21)

We note that the above equations are equivalent to (10)
up to factors of

√
ωn(0)/ωm(0), which can be pulled out and

absorbed in the coefficients.
Therefore, upon time integration, these coupling equa-

tions for {aτ,n(t )} are equivalent to Eq. (10) for the coefficients
{cτ,n(t )}. The ambiguous scaling factors { fσ,m} do not appear
in the coupling equation, meaning that they are well defined.

The choice of { fσ,m} results in a scaling of the coefficients
that leave the overall, generally nonadiabatic state invariant.
To see this, we observe that T (t )

√
ωm(0)/ωm(t )|σ, M(t )〉 =√

ωm(0)ωm(t )|σ, m(t )〉. Therefore, in Sec. II we use the
biorthogonal basis with f̂τ,n(t ) = f̂n(t ) = √

ωm(0)/ωm(t ) and
transform it under T (t ). Hence, if we backtransform the
ansatz (9) with T −1(t ) we get

|
c(t )〉 =
∑
m,σ

cσ,m(t )

√
ωm(0)

ωm(t )
e−iσ�m (t )|σ, M(t )〉. (22)

Comparing this ansatz with the one chosen in (17), we find
that the different coefficients are related by a scaling of
bσ,m(t ) fσ,m(t )

√
ωm(t )/ωm(0) = aσ,m(t )/

√
ωm(0) = cσ,m(t ).

Solving for bσ,m and substituting the expression back into
(17), we see that fσ,m vanishes and therefore conclude that
|
c(t )〉 is independent of the choice of { fσ,m}, as expected.

In summary, a choice of { fσ,m}, here { f̂σ,m}, results in a
unique set of coefficients. The coupling between these co-
efficients is independent of { fσ,m}. Furthermore, while the
time-dependent scaling of the coefficients depends on { fσ,m},
|
c(t )〉 does not. In Sec. II, the coefficients {cσ,m} were chosen
such that in the adiabatic limit they remain constant.

An extensive discussion about the scaling issue, which is
about how to define the population of biorthogonal eigen-
states, can be found in [38]. In this article we focus on the
mode coupling, which is well defined, despite the ambiguity
of the norm of the biorthogonal eigenstates.

IV. CLASSICAL VS QUANTUM ADIABATIC EVOLUTION:
DIFFERENCES AND A LIMIT WHERE THEY MEET

We now analyze the differences between quantum and
classical adiabatic evolution by comparing the RHS of the
classical coupling equations (10) and (21) to the RHS of the
quantum mechanical couplings (1). (i) The first RHS term
in Eq. (10) resembles the quantum mechanical coupling to
other modes of the same subspace τ . In the classical case,
however, the square root ratio of the tracked and all the other
instantaneous frequencies scales this error term. If any mode
(tracked or not tracked) approaches a zero frequency, this
term diverges, requiring ever slower time evolution of H (t ).
(ii) The second sum is the error due to coupling to other
modes of the other subspace, denoted with −τ . It will be
clear shortly that if the first term is negligibly small, so is
the second term. (iii) Finally, the last term is the coupling to
the same mode of the other subspace which can lead to ampli-
tude pumping through parametric amplification. Because this
last term holds simultaneously for all cτ,n, small transition
errors to a near-zero mode, cτ,0, may grow over time. This
is exactly the situation in Figs. 1(c) and 1(d), as discussed
shortly.

Following the same logic used to derive the quantum gap
condition (2), we can now establish two classical conditions
ensuring that the integrals in Eq. (10) become negligible thus
implying the validity of the adiabatic approximation (3):

max
t∈[0,Tf ]

∣∣∣∣∣ 〈n|ṁ〉
ω−

mn(t )

1

2

√
ωm(0)

ωn(0)

(√
ωn(t )

ωm(t )
+

√
ωm(t )

ωn(t )

)∣∣∣∣∣ � 1

∀m �= n

(23)

and

max
t∈[0,Tf ]

∣∣∣∣∣1

4

ω̇n(t )

ω2
n(t )

∣∣∣∣∣ � 1. (24)

We stress that condition (23) implies also that the second sum
in Eq. (10) is small because the absolute difference of the
positive ratios is smaller than their sum and the same applies
to the more rapid oscillations, i.e., ω−

nm(t ) = ωn(t ) − ωm(t ) <

ω+
nm(t ) = ωn(t ) + ωm(t ). The first condition resembles the

quantum mechanical gap condition, however, scaled by the
frequency ratios. The second condition is a condition on the
distance from the zero frequency line.

Note that for a single degree of freedom (DOF) harmonic
oscillator there is only one coupling to its mirrored mode
partner, the last line in Eq. (10). In the Supplemental Material
[37] we apply our study to the single DOF case in detail.

In Eqs. (10) we can identify the limit ωn → ∞, ∀n where
the classical time-dependent dynamics under H (t ) approach
the dynamics of a quantum system under

√
H (t ). In this limit√

ωn(t )/ωm(t ) → 1, which implies that

1

2

√
ωm(0)

ωn(0)

(√
ωn(t ′)
ωm(t ′)

+
√

ωm(t ′)
ωn(t ′)

)
→ 1 (25)

and

1

2

√
ωm(0)

ωn(0)

(√
ωn(t ′)
ωm(t ′)

−
√

ωm(t ′)
ωn(t ′)

)
→ 0. (26)
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FIG. 1. Numerical simulation of a 2 × 2 system defined in Eq. (27), where Hc = h2 and Hq = h. Row 1 displays the band structures, while
row 2 shows the time evolution of the classical and quantum mode coefficients. The coefficients are initialized in the excited mode for various
values of η and w, while s = 3 and T = 10 are fixed. (a), (b) In the presence of a large gap and the absence of a zero mode, both the classical
and quantum systems exhibit adiabatic behavior. (c), (d) With a small amount of energy transitioning to the lower mode, the classical system
violates adiabatic conditions due to interactions between c+,0 and c−,0. In contrast, the quantum system remains adiabatic. (e)–(h) The classical
system approaches quantum behavior as the spectrum is shifted to higher frequencies. In (e), (f), nonadiabatic interactions occur due to the
small band gap (quantum) and the combination of a small gap and a near-zero mode (classical). Shifting the spectrum to higher frequencies in
(g), (h) results in the classical system where only the gap matters and the frequency ratios approach unity. Consequently, the modes from the
negative frequency axis are no longer excited and the full nonadiabatic dynamics closely approximates that of the quantum system.

Finally, the last line in Eq. (10) approaches 0; therefore, the
coupling dynamics reduces to the quantum case (1) and the
classical adiabatic conditions to the quantum conditions. Note
that this limit requires all the bands to be at sufficiently large
frequencies; it does not apply to a subset of bands at high
frequencies. In general, any arbitrary high frequency mode
can couple to any near zero mode.

V. ENERGY CONSUMPTION

The energy consumption of adiabatic driving is nontrivial
as the norm is not conserved. From the classical adiabatic ap-
proximation (3) we see that the average instantaneous energy

for a system with time-independent, unit mass is given by
〈E (t )〉 = 1

4ωn(0)ωn(t ). Therefore, the adiabatic energy cost of
transforming an initial state |n(0)〉 into a final state |n(T )〉 is
�E = 1

4ωn(0)[ωn(T ) − ωn(0)], with �E = 0 for a flat band.
Furthermore, for a closed loop, where ωn(T ) = ωn(0), the
total energy cost is also zero, meaning that adiabatically ac-
cumulating a Berry phase does not consume any energy.

VI. EXAMPLE

The following example illustrates the phenomena dis-
cussed above using a simple 2 × 2 system. To this end, we
slightly reformulate the system considered in [41]. We define
the following matrix:

h(t ) :=
[
η + s + [w + (s − w) cos(t/T + π )] (s − w) sin(t/T + π )

(s − w) sin(t/T + π ) η + s − [w + (s − w) cos(t/T + π )]

]
, (27)

and identify the quantum and classical systems as Hq = h and
Hc = h2, respectively (hence Hq = √

Hc). By squaring the
operator, the eigenstates and hence the Berry phase remain
unchanged, while the eigenvalues are squared. This implies
that the quantum and classical states oscillate with the same
frequency. The parametrization of h is chosen such that chang-
ing η allows us to shift the spectrum without altering the gap.
Furthermore, for 0 < w < s/2 (s > w > s/2), the first (sec-
ond) band has a Berry phase of π (0). The transition from 0 to
π of both bands occurs at w = s/2, where the gap closes. Fi-
nally, T controls the slowness of integration. The parameters s
and T are fixed to 3 and 10, respectively. The classical system

has four modes |+, 0〉, |+, 1〉, |−, 0〉, and |−, 1〉 with corre-
sponding coefficients c+,0, c+,1, c−,0, and c−,1. The quantum
modes are |0〉 and |1〉 with coefficients q0 and q1. In the
following, we always initialize the system in the excited mode,
|+, 1〉 and |1〉, respectively, setting c+,1(0) = q1(0) = 1 and
c+,0(0) = c+,1(0) = c−,0(0) = c−,1(0) = q0(0) = 0. We nu-
merically integrate Eqs. (1) and (10) and display the norm of
the coefficients over five periods in Fig. 1. In panels (a),(b),
we set η = 2,w = 0.3. We observe that the adiabatic approx-
imation is well justified for both the quantum (due to the large
gap) and the classical (due to the large gap and no near-zero
mode) system. In (c),(d), we set η = 0.0005, thereby shifting
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the lower band closer to zero. This has, as expected, no effect
in the quantum case, which remains adiabatic. However, in
the classical case, the small amount of energy that scatters
to c+,0(t ) and c−,0(t ) amplifies because the second condition
(24) is violated for |+, 0〉 and |−, 0〉. Finally, panels (e)–(h)
demonstrate how the classical system approaches the quantum
system by shifting the spectrum to higher frequencies: in
(e),(f), the parameters are chosen as η = 0.1,w = 1.2. The
larger w and hence smaller gap result in a nonadiabatic tran-
sition to the lower mode. Because the lower band is still close
to zero, the classical coupling to the other modes, particularly
the nonvanishing coupling to the negative frequency subspace,
presents a different picture in the classical than in the quantum
case. As predicted, shifting the spectrum to large enough
frequencies (g),(h) such that

√
ω0(t )/ω1(t ) → 1, the classical

mode coupling behavior approaches that of the quantum sys-
tem, which is, once again, left invariant by a spectrum shift.

VII. MULTIBAND CASE

We now treat the case of generally interacting bands and
also reduce it to the case where a set of bands are everywhere
degenerate. Let us first recall the quantum behavior: let S be
a subspace of interacting bands that are well separated by an
energy gap from all other bands such that

max
t∈[0,Tf ]

∣∣∣∣∣ 〈s|ṁ〉
λsm(t )

∣∣∣∣∣ � 1 ∀s ∈ S, ∀m �∈ S. (28)

Then Eq. (1) can be solved for the coefficients of the subspace,
qS , using the evolution operator Uq(t ) := Uq(t, 0) [20,21],
i.e.,

qS (t ) = Uq(t )qS (0), (29)

with

Uq(t ) = P exp

(
−

∫ t

0
dt ′Q(t ′)A(t ′)Q−1(t ′)

)
, (30)

where P denotes the path ordering operator and Ass′ := 〈s|ṡ′〉
denotes the non-Abelian gauge field which is transformed
under Qss′ (t ) := exp[i�s(t )]δss′ . In the case of everywhere
degenerate bands one obtains Q(t )A(t )Q−1(t ) → A(t ) and
Uq(t ) → U (t ) = P exp[− ∫ t

0 dt ′A(t ′)] is the Wilczek-Zee
matrix whose trace is the gauge invariant Wilson loop [42].
To treat the classical system we denote coefficients of the par-
ticular frequency subspace, τ , corresponding to states of the
subspace as [cτ

S ]s = cτ,s. We introduce the classical evolution
operator for the coefficients, U c(t ) := U c(t, 0), such that

cτ
S (t ) = U c(t )cτ

S (0). (31)

In the Supplemental Material [37] we show that

U c(t ) = P exp

(
−

∫ t

0
dt ′C(t ′)[A(t ′) + A�(t ′)]C−1(t ′)

)
,

(32)

with the classical transformation Css′ (t ) :=
exp[i�s(t )]δss′/

√
ωs(0)ωs(t ) and A�

ss′ (t ) := 〈s|ṡ′〉(ωs −
ωs′ )/(2ωs′ ), which can be seen as a classical correction
to the non-Abelian gauge field and again reflects the fact that
the coupling between interacting modes depends on their

frequencies. As shown in Sec. III the couplings and hence
the classical non-Abelian gauge potential A(t ′) + A�(t ′) is
independent of the norm ambiguity of the biorthogonal basis.
This implies that it is well defined.

The high frequency limit can be identified as
(ωs − ωs′ )/(2ωs′ ) → 0 implying that A�

ss′ (t ) → 0
and

√
ωs(0)ωs(t )/

√
ωs′ (0)ωs′ (t ) → 1, implying that

C(t )A(t )C−1(t ) → Q(t )A(t )Q−1(t ) and hence the classical
evolution approaches the evolution of the quantum system
governed by

√
H (t ). Substituting (31) back into the expansion

(9) and applying the inverse transformation T −1(t ) yields the
classical, general multiband solution

ψc
adia,mult (t )

≈ Re

⎧⎨
⎩

∑
s∈S

∑
s′∈S

U c
ss′ (t )cs′ (0)

√
ωs(0)

ωs(t )
e−iτ�s (t )|s(t )〉

⎫⎬
⎭,

(33)

with initial coefficients cs′ (0) = 〈s′(0), τ |T (0)|
c(0)〉/
ωs′ (0). It remains to state the adiabatic conditions under which
the approximation is valid. The first two are a restatement of
the single band case but for the whole subspace S ,

max
t∈[0,Tf ]

∣∣∣∣∣ 〈s|ṁ〉
ω−

ms(t )

1

2

√
ωm(0)

ωs(0)

(√
ωs(t )

ωm(t )
+

√
ωm(t )

ωs(t )

)∣∣∣∣∣ � 1

∀s ∈ S, ∀m �∈ S

(34)

and

max
t∈[0,Tf ]

∣∣∣∣∣1

4

ω̇s(t )

ω2
s (t )

∣∣∣∣∣ � 1 ∀s ∈ S. (35)

Finally, we have to explicitly require that the interaction of
bands in the subspace is isolated from the same subspace on
the negative frequency axis, −τ , which is ensured if

max
t∈[0,Tf ]

∣∣∣∣∣ 〈s|ṡ′〉
ω+

s′s(t )

1

2

√
ωs′ (0)

ωs(0)

(√
ωs(t )

ωs′ (t )
−

√
ωs′ (t )

ωs(t )

)∣∣∣∣∣ � 1

∀s, s′ ∈ S.

(36)

In the case of everywhere degenerate bands we have
A�

ss′ (t ) = 0 since ωs = ωs′ and C(t )A(t )C−1(t ) → A(t ), which
is integrated to yield, as in the quantum system, the
Wilczek-Zee matrix, U (t ). Defining ωS as the degenerate
eigenfrequency of the subspace and �S the corresponding
dynamical phase and again using that the eigenstates can
always be chosen real for a real-valued symmetric system, one
obtains

ψc
adia,mult,deg(t )

≈
√

ωS (0)√
ωS (t )

cos[�S (t )]
∑
s∈S

∑
s′∈S

Uss′ (t )cs′ (0)s|s(t )〉 (37)

and the third condition becomes trivially satisfied.

VIII. CONCLUSIONS

We have demonstrated that a time-dependent Hermi-
tian classical system is equivalent to a time-dependent
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non-Hermitian quantum system, resulting in distinct mode
coupling equations. Using non-Hermitian operator theory we
showed that these coupling equations are well defined.

In contrast to the time-independent case, classical time-
dependent dynamics can in general not be symmetrized
because the transformation does not commute with the time
derivative. From this we deduced that the quantum gap con-
dition is not sufficient to ensure adiabaticity and certain
quantum adiabatic phenomena cannot be realized in classical
systems. Another consequence of this is the appearance of
a classical correction term to the non-Abelian gauge field
for general multiband systems which deserves further in-
vestigation and may inspire a new class of time modulated
metamaterials. Finally, we identified a limit where these dif-
ferences vanish such that quantum and classical adiabatic and

nonadiabatic dynamics become equivalent up to a difference
in the dynamic phase.
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and J. Christensen, Non-reciprocal wave propagation in time-
modulated elastic lattices with inerters, Appl. Math. Model.
117, 316 (2023).

064307-7

https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphys3801
https://doi.org/10.1103/PhysRevB.97.014305
https://doi.org/10.1103/PhysRevApplied.11.044029
https://doi.org/10.1117/1.AP.4.1.014002
https://doi.org/10.1038/s41467-020-14804-0
https://doi.org/10.1103/PhysRevB.102.014305
https://doi.org/10.1016/j.physleta.2023.128621
https://doi.org/10.1103/PhysRevLett.123.034301
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1038/nature25011
https://doi.org/10.1038/s41586-021-03688-9
https://doi.org/10.1126/sciadv.adh4310
https://doi.org/10.1103/PhysRevLett.126.095501
https://doi.org/10.1103/PhysRevLett.125.253901
https://doi.org/10.1038/s41467-023-36952-9
https://doi.org/10.1038/s41567-021-01340-x
https://doi.org/10.1038/s41566-022-00976-2
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1088/0031-8949/2012/T146/014001
https://doi.org/10.1007/BF03046095
https://doi.org/10.1016/S0375-9601(99)00803-8
https://doi.org/10.1002/pssr.201206416
https://doi.org/10.1103/PhysRevLett.124.146801
https://doi.org/10.1088/1367-2630/ac1ed4
https://doi.org/10.1016/j.euromechsol.2023.105162
https://doi.org/10.1088/1367-2630/acb45d
https://doi.org/10.1016/j.apm.2022.12.029


BÖSCH, FICHTNER, AND SERRA-GARCIA PHYSICAL REVIEW B 110, 064307 (2024)

[30] D. Vanderbilt, Berry Phases in Electronic Structure Theory:
Electric Polarization, Orbital Magnetization and Topologi-
cal Insulators (Cambridge University Press, Cambridge, UK,
2018).

[31] J. Samuel and R. Bhandari, General setting for Berry’s phase,
Phys. Rev. Lett. 60, 2339 (1988).

[32] M. H. S. Amin, Consistency of the adiabatic theorem, Phys.
Rev. Lett. 102, 220401 (2009).

[33] T. Kato, On the adiabatic theorem of quantum mechanics,
J. Phys. Soc. Jpn. 5, 435 (1950).

[34] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics
(Cambridge University Press, 2020).

[35] M. Born and V. Fock, Beweis des adiabatensatzes, Z. Phys. 51,
165 (1928).

[36] R. Süsstrunk and S. D. Huber, Classification of topological
phonons in linear mechanical meztamaterials, Proc. Natl. Acad.
Sci. USA 113, E4767 (2016).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.064307 for derivations of Eqs. (10),
(18), and (32), an application of our results to the sin-

gle degree of freedom time dependent harmonic oscillator,
and the source code that produces Fig. 1, which includes
Refs. [43,44].

[38] S. Ibáñez and J. G. Muga, Adiabaticity condition for non-
Hermitian Hamiltonians, Phys. Rev. A 89, 033403 (2014).

[39] J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Complex
absorbing potentials, Phys. Rep. 395, 357 (2004).

[40] A. Leclerc, D. Viennot, and G. Jolicard, The role of the
geometric phases in adiabatic population tracking for non-
Hermitian Hamiltonians, J. Phys. A: Math. Theor. 45, 415201
(2012).

[41] T. Kariyado and Y. Hatsugai, Hannay angle: Yet another
symmetry-protected topological order parameter in classical
mechanics, J. Phys. Soc. Jpn. 85, 043001 (2016).

[42] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445
(1974).

[43] G. Fiore, The time-dependent harmonic oscillator revisited,
arXiv:2205.01781.

[44] C. Lam, Decomposition of time-ordered products and path-
ordered exponentials, J. Math. Phys. 39, 5543 (1998).

064307-8

https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.102.220401
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.1007/BF01343193
https://doi.org/10.1073/pnas.1605462113
http://link.aps.org/supplemental/10.1103/PhysRevB.110.064307
https://doi.org/10.1103/PhysRevA.89.033403
https://doi.org/10.1016/j.physrep.2004.03.002
https://doi.org/10.1088/1751-8113/45/41/415201
https://doi.org/10.7566/JPSJ.85.043001
https://doi.org/10.1103/PhysRevD.10.2445
https://arxiv.org/abs/2205.01781
https://doi.org/10.1063/1.532550

