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Lattice-distortion couplings in antiferroelectric perovskite AgNbO3 and comparison with PbZrO3
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Lead-free antiferroelectric perovskite AgNbO3 is nowadays attracting extensive research interests due to its
promising applications in energy storage. Although great progress has been made in optimizing the material
performance, fundamental questions remain regarding the mechanism stabilizing the antiferroelectric Pbcm
phase. Here, combining structural symmetry analysis and first-principles calculations, we identified crucial
anharmonic couplings of oxygen octahedra rotations and cation antipolar motions that contribute significantly
to lowering the energy of the Pbcm phase. The stabilization of this phase shows close similarities with the
stabilization of the Pbam phase in PbZrO3 except that in AgNbO3 the octahedra rotations are the primary
distortions while the antipolar cation motions appear to be secondary. The appearance and significant amplitude
of the latter are explained from the combination of hybrid-improper and triggered mechanisms.
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I. INTRODUCTION

Antiferroelectric (AFE) materials exhibit characteristic
double hysteresis loops, making them attractive for a wide
range of applications [1–6]. Among the limited number of
perovskite antiferroelectric oxides, AgNbO3 (ANO) has at-
tracted a lot of research interest because it is lead-free and
can exhibit large polarization under electric field (52 µC/cm2

at 220 kV/cm [7]). Recently, extensive studies have focused
on the energy storage properties of ANO-based materials and
remarkably high energy storage density has been achieved
[8–13]. The excellent energy storage performance of ANO is
closely related to its AFE property, which involves a reversible
phase transition between nonpolar AFE state and a highly po-
larized ferroelectric (FE) state upon application and removal
of an electric field. Understanding the mechanism behind the
AFE properties of ANO and identifying the key interactions
stabilizing the AFE state are fundamental and meaningful
topics, which can provide valuable guidance for the further
optimization of its properties.

The exact structure and the AFE nature of ANO are cur-
rently subjects of ongoing discussion. In fact, controversies
exist regarding its complex series of phase transitions [14–19].
According to the X-ray and neutron diffraction reported by
Sciau et al. [17], the phase sequence of ANO from high-
temperature to low-temperature is: cubic C phase (Pm3̄m,
above 852 K), tetragonal T phase (P4/mbm, 660–852 K), or-
thorhombic O phase (Cmcm, 626–660 K), and orthorhombic
M phase (Pbcm, below 626 K). Although dielectric measure-
ments suggested that there may be several different M phases
[13–15], Sciau’s results showed that the average structures of
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all these possible low-temperature M phases share the same
Pbcm space group [17]. The Pbcm structure is centrosymmet-
ric, in line with its AFE property. However, it was also noted
that ANO exhibits a weak remanence on the polarization
hysteresis loops [13,20]. This phenomenon may be caused by
various reasons, such as cation disordering, polar clusters, or
defects [13,18,21]. A previous structural study also suggested
that a polar Pmc21 structure might be the low-temperature
phase of ANO [22], but the subsequent density functional
theory (DFT) calculations have shown that this Pmc21 struc-
ture is not stable [23]. Instead, the Pbcm phase remains the
lowest energy phase in literature and is free of any dynamical
instability, including under negative pressure [23], indicating
that it is the most probable antiferroelectric phase of ANO.

The emergence of a Pbcm phase is rather uncommon in
perovskite oxides [24,25]. The most common structure for
perovskites with small tolerance factors (t < 1) is Pnma [26],
a phase which is favored by a trilinear coupling between
cation antipolar motions and in-phase and antiphase oxygen
octahedra rotations [27]. Then, among antiferroelectrics, the
phase that attracted the most attention is Pbam, as seen in,
e.g., the prototypical antiferroelectric PbZrO3 (PZO), where
it is stabilized by a trilinear coupling between cation dis-
placements, oxygen octahedra rotations and their modulations
[28–31]. In ANO, however, the stabilization mechanism of the
Pbcm antiferroelectric state has not been fully clarified.

In this study, we investigate the stabilization mechanism of
the Pbcm antiferroelectric state through structural symmetry
analysis and first-principles calculations, aiming at under-
standing why such an unusual phase in perovskites can exhibit
a low energy in ANO. We identify the combination of tri-
linear and cooperative biquadratic couplings between cation
antipolar motions and oxygen octahedra rotations as the key
contributions to the energy lowering of the Pbcm phase. We
also conduct a comparison between ANO and the prototypical
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TABLE I. Lattice parameters (Å) and atomic positions (reduced coordinates) of ANO in the orthorhombic Pbcm phase. The x, y, z
coordinates are in the direction of orthorhombic axes a, b, c, respectively.

GGA-PBEsol LDA Exp. (1.5 K) [17]

a b c a b c a b c

Lattice parameter (Å) 5.5215 5.6019 15.506 5.4424 5.5362 15.390 5.5436 5.6071 15.565
Error (%) −0.40 −0.09 −0.38 −1.83 −1.26 −1.12

x y z x y z x y z

Ag1 (4c) 0.7423 0.25 0 0.7439 0.25 0 0.7449 0.25 0
Ag2 (4d) 0.7369 0.2210 0.25 0.7378 0.2226 0.25 0.7420 0.2211 0.25
Nb (8e) 0.2436 0.2210 0.1250 0.2445 0.2270 0.1250 0.2436 0.2212 0.1249
O1 (8e) −0.0438 0.0445 0.1082 −0.0473 0.0479 0.1067 −0.0348 0.0371 0.1098
O2 (8e) 0.5445 0.4620 0.1417 0.5462 0.4603 0.1436 0.5360 0.4689 0.1396
O3 (4c) 0.3167 0.25 0 0.3234 0.25 0 0.3109 0.25 0
O4 (4d) 0.1872 0.2752 0.25 0.1794 0.2787 0.25 0.1944 0.2678 0.25

antiferroelectric PZO. Our findings suggest a combination of
hybrid-improper and triggered mechanisms for the appear-
ance of the cation antipolar motions in ANO.

II. CALCULATION DETAILS

First-principles DFT calculations were performed us-
ing the ABINIT package [32–35] with the plane-wave-
pseudopotential approach. We employed the generalized
gradient approximation (GGA) with the revised Perdew-
Burke-Enzerh parametrization for solids (PBEsol) [36]
and optimized norm-conserving pseudopotentials from the
PseudoDojo server [37,38]. The valence electron configu-
rations are 4s24p64d105s1 for Ag, 4s24p64d45s1 for Nb,
5s25p65d106s26p2 for Pb, 4s24p64d25s2 for Zr, and 2s22p4 for
O. For comparison, we also checked some results using the lo-
cal density approximation (LDA) functional [39]. The energy
cutoff for the plane-wave expansion was 50 Ha for ANO and
60 Ha for PZO. The k-point grids were equivalent to or denser
than 6 × 6 × 6 grid for the five-atom cubic perovskite. The
electronic self-consistent cycles were considered to be con-
verged until the potential residual is smaller than 10−18 Ha.
Structural relaxations were performed based on the Broyden-

Fletcher-Goldfarb-Shanno minimization algorithm, using the
convergence criteria of 10−6 Ha/Bohr for the forces and 10−8

Ha/Bohr3 for the stresses. The phonon dispersions were cal-
culated according to density functional perturbation theory
as implemented in ABINIT and analyzed with the ANADDB
program [40]. The symmetry-adapted lattice-distortion modes
were analyzed using ISODISTORT [41]. The energy expan-
sions were build with the help of INVARIANTS [42].

III. MODE COUPLINGS IN ANO

The structural parameters of ANO in its Pbcm phase are
reported in Table I, where we compare the results of our
GGA-PBEsol and LDA calculations with the experimental
data from low-temperature measurements in literature [17].
The GGA-PBEsol calculated lattice parameters show very
good agreement with the experimental values, with discrep-
ancies less than 0.5%, while the LDA tends to underestimate
the lattice parameters. It is therefore expected that the GGA-
PBEsol functional is more accurate in capturing the structural
characteristics of ANO.

As shown in Fig. 1(a), the unit cell of the Pbcm phase
can be viewed as a

√
2 × √

2 × 4 multiple of the five-atom

FIG. 1. Structure and symmetry-adapted lattice-distortion modes (respect to the cubic reference structure) of ANO in the Pbcm phase.
(a) Schematics of the Pbcm crystal structure and the dominant modes of the cubic reference structure giving rise to the Pbcm phase. (b) Mode
amplitudes in the Pbcm structure, respect to the cubic reference, as optimized with the GGA-PBEsol functional.
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TABLE II. Symmetry-adapted lattice-distortion mode decomposition of the Pbcm phase of ANO. The structure is obtained by relaxing
fully the atomic positions and lattice parameters using GGA-PBEsol functional. The mode amplitudes are reported in the so-called “parent-
cell-normalized” values of ISODISTORT.

R−
5 T2 �5 M−

5 R−
4 T4 X +

1

Amplitude (Å) 0.5202 0.4772 0.2235 0.0691 0.0177 0.0164 0.0005
Percentage (%) 48.88 41.13 9.02 0.86 0.06 0.05 <0.01

perovskite elemental unit cell, with the translational vectors
a, b, c directed along the pseudocubic [11̄0], [110], [001]
directions. By symmetry analysis, the atomic distortion of
the Pbcm phase with respect to the cubic reference structure
can be decomposed into symmetry-adapted lattice-distortion
modes of this reference [Fig. 1(b) and Table II]. The domi-
nating modes are [Fig. 1(a)]: (1) R−

5 mode, the rotations of
oxygen octahedra around the b axis that correspond to a−a−c0

rotation pattern in Glazer’s notation [43]; (2) T2 mode, a com-
plex octahedra rotation pattern alternating between in-phase
and antiphase rotations around the c axis that we label here-
after as the a0a0c+/− rotation pattern; (3) �5 mode, primarily
the antipolar motions of the cations Ag and Nb in the direction
of b axis; (4) M−

5 mode, the antipolar motions of Ag and
Nb in the direction of a axis. The above four modes account
for 48.88%, 41.13%, 9.02%, and 0.86% of the total lattice
distortion, respectively, while the remaining modes account
for the remaining 0.11%. The fact that most of the distortions
are associated to the oxygen octahedra rotations is consistent
with the small tolerance factor of ANO (t = 0.965) since
octahedra rotations are typical in perovskites with tolerance
factor smaller than 1 [26].

We can gain more insight into the stabilization mechanism
of the Pbcm phase by investigating the structural and energetic
relationships among different phases of ANO, paying specific
attention to the phases with different oxygen octahedra rota-
tions. In each calculation, we introduce octahedra rotations
to the prototypical cubic Pm3̄m phase and relax the atomic
distortions and lattice parameters while preserving the sym-
metry of the distortions in order to obtain the corresponding
metastable phase. Specifically, we consider three types of
octahedra rotation patterns around the c axis, namely a0a0c+,
a0a0c+/−, and a0a0c−, which are corresponding to the M
(1/2, 1/2, 0), T (1/2, 1/2, 1/4), and R (1/2, 1/2, 1/2) points
in reciprocal space, respectively, as well as the octahedra rota-
tions around b axis corresponding to a−a−c0 rotation pattern
in Glazer’s notation.

Figure 2(a) schematically illustrates the structural and en-
ergetic relationships among various phases. When only one
rotation around the c axis is present, the three phases P4/mbm
(a0a0c+), I4/mcm (a0a0c+/−), and I4/mcm (a0a0c−) are very
close in energy [Fig. 2(a)], which is consistent with the al-
most nondispersive nature of the lowest M-T -R branch of
the phonon dispersion curve calculated in the cubic phase
[Fig. 2(b)]. This implies that the rotations of oxygen octa-
hedra, while naturally strongly correlated within the planes
perpendicular to the rotation axis c, are weakly correlated
between adjacent planes. Consequently, the rotations between
adjacent planes being either in-phase or antiphase do not result
in significant energy differences.

Interestingly, when the octahedra rotations around the
c axis coexist with the a−a−c0 rotations, we find that the
energies of the relaxed Pbnm (a−a−c+, equivalent to Pnma
but hereafter will be referred to it as Pbnm to keep con-
sistency with the crystallographic coordinate system), Pbcm
(a−a−c+/−) and R3̄c (a−a−a−) phases are no longer so close
to each other. In particular, the energy lowering from I4/mcm
(a0a0c+/−) to Pbcm (a−a−c+/−) is notably larger than in
the other two cases [i.e., from P4/mbm (a0a0c+) to Pbnm
(a−a−c+), and from I4/mcm (a0a0c−) to R3̄c (a−a−a−)]. As
we will show below, such comparatively larger energy lower-
ing is caused by condensation of additional nonpolar modes
trilinearly coupled to the octahedra rotations. In addition to
this, R3̄c phase allows a further lowering of its symmetry
towards R3c by introducing a polar mode �−

4 along the total
rotation axis in the a−a−a− pattern (pseudocubic [111] direc-
tion), resulting in a large energy lowering. Nevertheless, the
energy of the R3c phase is still a bit higher than that of the
Pbcm phase.

The impact of strain relaxation is examined in Fig. 2(c),
where, in addition to the above results, we report the en-
ergies of the phases obtained at fixed lattice parameters of
the cubic parent phase. It can be seen that fixing the lattice
parameters does not qualitatively change the energetics of
the phases: the energy reduction from I4/mcm (a0a0c+/−) to
Pbcm (a−a−c+/−) is as pronounced as with strain relaxation,
with the Pbcm phase still slightly below the R3c phase in
energy. This rules out the strain-phonon coupling to be a
dominant factor for stabilizing the Pbcm phase.

We then turn to analyze in more details how the lattice-
distortion modes are coupled in ANO. We will mainly focus
on the Pbcm phase and take the Pbnm and R3c phases for
comparisons. We will adopt Landau-type energy expansion
in terms of symmetry-adapted lattice-distortion modes for
the understanding of the mode couplings, and neglect strain
relaxation which does not play a dominant role.

For the Pbcm phase, we consider the aforementioned four
dominating modes, i.e., R−

5 , T2, �5, and M−
5 . Taking these

modes as order parameters and restricting to the lowest neces-
sary fourth order, the Landau energy expansion for the Pbcm
phase is written as

EPbcm = Ecubic + ARQ2
R + BRQ4

R + AT Q2
T + BT Q4

T

+ A�Q2
� + B�Q4

�

+ AM ′Q2
M ′ + CRT �QRQT Q� + CT �M ′QT Q�QM ′

+ DRT Q2
RQ2

T + DR�Q2
RQ2

� + DT �Q2
T Q2

�, (1)

where Ecubic is the energy of the cubic reference structure,
QR, QT , Q�, and QM ′ are the amplitudes of the R−

5 , T2, �5,
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FIG. 2. (a) Structural and energetic relationships of various metastable phases. (b) Phonon dispersion curves of ANO in the cubic parent
phase. (c) Comparisons of the energies of the metastable phases (respect to the cubic phase taken as reference) with either fixed lattice
parameters of the cubic parent phase or fully relaxed lattice parameters. The notations for orthorhombic space groups Pbnm and Ibmm are
chosen to keep consistency with the crystallographic coordinate system of this work, but it should be noted that these space groups are
commonly referred to as Pnma and Imma in the literature, respectively, as they are equivalent.

and M−
5 modes, respectively, and the A, B, C, D parameters

are the coefficients of the energy expression, with subscript
indicating the associated modes. For comparisons, we also
write the energy expansions for the Pbnm phase

EPbnm = Ecubic + ARQ2
R + BRQ4

R + AMQ2
M + BMQ4

M + AX Q2
X

+ CRMX QRQMQX + DRMQ2
RQ2

M

+ DRX Q2
RQ2

X + DMX Q2
MQ2

X , (2)

where QR, QM , and QX are the amplitudes of the R−
5 , M+

2 , and
X −

5 dominant modes, respectively, and for the R3c phase

ER3c = Ecubic + AR′Q2
R′ + BR′Q4

R′ + A�Q2
�

+ B�Q4
� + DR′�Q2

R′Q2
�, (3)

where QR′ and Q� are the amplitudes of the R−
5 and �−

4 modes,
respectively.

To quantify the coefficients in the energy expansions,
we constructed first-principles data sets for each of the
Pbcm, Pbnm, and R3c phases by introducing relevant lattice-
distortion modes with different mode amplitudes to the
prototypical Pm3̄m cubic phase at fixed cubic lattice pa-
rameters, and performed the global least-squares fittings of
all the energy data points. For all the three phases, the fit-
ting shows good quality (R2 = 0.9975), indicating that these
energy expressions describe well the associated potential en-
ergy surfaces. The obtained coefficients are summarized in
Table III.

It is worth noticing that the energy expansion of the Pbcm
phase [Eq. (1)] includes two trilinear coupling terms, i.e.,
CRT �QRQT Q� and CT �M ′QT Q�QM ′ . We plotted in Figs. 3(a)
and 3(b) the associated energy curves. In Fig. 3(a), it is seen
that the antipolar �5 mode, when condensed alone in the
cubic phase, can only give rise to a shallow and symmetric
double well. However, combined with the R−

5 and T2 modes,
the energy curve becomes highly asymmetric, highlighting
the effect of the trilinear coupling term CRT �QRQT Q�. In
Fig. 3(b), the potential energy curve associated with the M−

5
mode is initially symmetric and single-well shaped when T2

and �5 modes are zero. However, when the amplitudes of
T2 and �5 modes are nonzero, the potential well becomes
asymmetric with the bottom of the well shifting to a nonzero
amplitude of M−

5 mode. This is a consequence of the trilinear
coupling term CT �M ′QT Q�QM ′ .

In the Pbnm phase, there exists a similar trilinear term
CRMX QRQMQX [Eq. (2)], which represents the coupling of
octahedra rotations R−

5 , M+
2 , and cation antipolar motion X −

5 .
This trilinear coupling has been well-known in literature, as
the Pbnm symmetry is the most commonly observed in per-
ovskites [44]. Figure 3(c) shows the associated energy curves
in ANO. By itself, the X −

5 mode is characterized by a single
energy well. The introduction of R−

5 and M+
2 modes leads to

the asymmetric shift of the single well due to the trilinear
coupling.

Having a closer look at the Pbcm and Pbnm phases of
ANO, one can see similarities between the modes involved
in the respective trilinear couplings of R−

5 , T2, and �5, and
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TABLE III. Fitted coefficients for the Landau energy expansions of the Pbcm [Eq. (1)], Pbnm [Eq. (2)], and R3c [Eq. (3)] phases of ANO
at fixed cubic lattice parameters. The coefficients are fitted using the units of energy in meV/f.u. and mode amplitudes in Å. The values in
brackets are instead the coefficients fitted using relative mode amplitudes (i.e., with mode amplitudes normalized to 1 in the relaxed structure
of each phase), which also correspond to the energy contributions (meV/f.u) of the related terms to the energy lowering of each phase. The
mode amplitudes in each phase can be easily derived from the ratio between the coefficients and the corresponding energy contribution in
brackets.

Phase Fitted coefficients (Energy contributions)

Pbcm AR = −670.5 (−113.9) BR = +976.3 (+28.2) CRT � = −691.8 (−34.3) DRT = +1721.4 (+85.3)
AT = −682.6 (−199.2) BT = +1099.1 (+93.6) CT �M ′ = −4692.4 (−55.5) DR� = −1257.0 (−10.6)
A� = −443.3 (−22.0) B� = +21447.7 (+53.0) DT � = −1959.4 (−28.4)

AM ′ = +2878.0 (+27.7)
Pbnm AR = −670.5 (−137.4) BR = +976.3 (+41.0) CRMX = −1443.2 (−17.3) DRM = +1859.9 (+63.1)

AM = −717.2 (−118.8) BM = +1151.4 (+31.6) DRX = +1079.9 (+0.9)
AX = +1547.3 (+6.6) DMX = +1654.3 (+1.2)

R3c AR′ = −670.5 (−299.4) BR′ = +901.3 (+179.7) DR′� = −2194.2 (−60.1)
A� = −768.8 (−47.1) B� = +14264.8 (+53.6)

of R−
5 , M+

2 , and X −
5 . The first mode, R−

5 , comprises the same
a−a−c0 rotations present in both phases; because of this we
fixed the coefficients AR and BR to have the same value in
the energy expansions for the two phases [Eqs. (1) and (2)].
The second mode, T2 in Pbcm and M+

2 in Pbnm, essentially
comprises oxygen octahedra rotations around the c axis, the
main difference being the relative signs of the rotations. In
the M+

2 mode, all oxygen octahedra in a c-directed column
have the same rotation sign, while in T2 the octahedra in a
c-directed column form a ++−− rotation pattern. The M+

2
and T2 modes having the same mode amplitude show the
same absolute rotation angle and have very similar energetics:

indeed, as one can see in Table III, AT and AM , as well as BT

and BM have almost identical values, lying within 5% from
each other.

The main difference in the energetics comes from the third
mode, which is �5 in Pbcm and X −

5 in Pbnm. At a first glance,
from the point of view of crystalline structure, these modes are
very similar: they both consist of b-directed antipolar cation
motions manifesting in the same kind of displacement of the
Ag cations lying within the same plane normal to the c axis. In
the X −

5 mode, the Ag planes form a +− displacement pattern,
while in the �5 mode they form a +0−0 pattern. Interest-
ingly, in the Pbcm phase, the nonzero Ag displacement planes

FIG. 3. Evolution of the energy of ANO when condensing different symmetry adapted mode in the cubic phase (taken as energy reference)
in the absence or eventually in the presence of other modes as indicated by the legends. Mode amplitudes of 100% correspond to the amplitude
in the relaxed [(a), (b), (d), and (e)] Pbcm, (c) Pnma, and (f) R3c phases with cubic lattice parameters.
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FIG. 4. (a) Energy lowerings of Pbcm, Pbnm, and R3̄c/R3c phases with respect to the cubic parent phase when different distortion modes
are progressively introduced and relaxed. (b) Effects of “switching off” some specific couplings on the potential energy surfaces of the Pbcm
phase in terms of the amplitudes of �5 and M−

5 modes. At each point on the plots in (b), the energy value were calculated by relaxing R−
5 and

T2 modes at the fixed �5 and M−
5 amplitudes.

of the �5 mode are centered between the in-phase layers
of the oxygen octahedral ++−− rotation pattern of the T2

mode [Fig. 1(a)], locally reminiscing the distortions observed
in the Pbnm phase. This points towards similar origins for
the trilinear coupling of R−

5 , T2, and �5 that we report here
and the well-known trilinear coupling of R−

5 , M+
2 , and X −

5 .
Despite this similarity, the energy lowering from I4/mcm to
Pbcm phase is significantly larger than from P4/mbm to Pbnm
[Fig. 2(a)]. One reason for this is that inducing the X −

5 mode
by itself costs energy, consistently with the positive sign of its
quadratic coefficient in the energy expansion (AX > 0) and by
the single-well nature of the related energy in Fig. 3(c). On the
contrary, the �5 mode is, by itself, unstable in the cubic phase
(A� < 0), as apparent from the double-well energy profile
in Fig. 3(a), allowing for larger trilinear-coupling-mediated
energy gains.

In addition to the trilinear couplings, the energy expansion
of the Pbcm phase [Eq. (1)] also contains three biquadratic
coupling terms: DRT Q2

RQ2
T , DR�Q2

RQ2
�, and DT �Q2

T Q2
�.

Among them, the latter two have negative coefficients, i.e.,
DR� < 0 and DT � < 0 (Table III), revealing the cooperative
nature of the biquadratic interactions between R−

5 and �5

[Fig. 3(d)] and between T2 and �5 [Fig. 3(e)]. In contrast, in
Pbnm phase all biquadratic couplings are competitive, with
DRM , DRX , DMX > 0, which makes another important con-
tribution to the different energy lowering and is ultimately
favoring Pbcm over Pbnm in ANO. Interestingly, we also
observe a similar cooperative biquadratic coupling DR′�Q2

R′Q2
�

in the R3c phase [Eq. (3), Fig. 3(f)]. This cooperative bi-
quadratic coupling in R3c leads to an even more significant
energy lowering than the cooperative biquadratic coupling in
the Pbcm phase (Table III).

To gain deeper insights on the effects of distinct couplings
on the stabilization of the Pbcm phase and to make the
above discussion of the couplings more quantitative, we per-
formed Landau-based calculations where different distortion
modes are progressively introduced and relaxed. As shown

in Fig. 4(a), when only the octahedra rotation modes are
allowed to relax while the polar/antipolar modes are fixed to
zero, the Pbnm, Pbcm, and R3̄c structures exhibit very similar
energies, namely −120.9 meV/f.u., −121.3 meV/f.u., and
−124.7 meV/f.u., respectively. In this case, the Pbcm phase
does not show any significant energy advantage over the Pbnm
and R3̄c phases.

When we further allow the polar/antipolar modes to relax,
we find that the Pbcm phase acquires a significant energy
lowering. As shown in Fig. 4(a), by introducing antipolar �5

and M−
5 modes, the energy of Pbcm phase is lowered by 35.59

meV/f.u. and 19.29 meV/f.u., respectively. In comparison,
the introduction of antipolar X −

5 mode in the Pbnm phase
only lowers the energy by 8.21 meV/f.u.. In the R3̄c phase,
the condensation of the polar �−

4 mode also leads to a signif-
icant energy reduction of 48.57 meV/f.u., but the resulting
R3c phase has an energy still slightly higher than that of the
Pbcm phase. These results demonstrate the crucial role of the
antipolar �5 and M−

5 modes and of their related couplings in
stabilizing the Pbcm phase.

Having the Landau energy expansions, it is also interesting
to investigate the effects of “switching off” some specific cou-
plings by setting their coefficients zero. Figure 4(b) presents
the energy surfaces with respect to the amplitude of �5 and
M−

5 modes from the unmodified Landau energy expansion as
well as from some examples of modified versions in which
some couplings are artificially “switched off.” At each point
on the energy surface plots, the R−

5 and T2 modes have been
relaxed at the given amplitudes of �5 and M−

5 modes. We also
list in Table IV the energy values and the relative mode am-
plitudes corresponding to the minimum points of the energy
surfaces.

Several interesting features can be seen from Table IV
and Fig. 4(b). First, “switching off” any of the trilinear cou-
plings, i.e., CRT � and CT �M ′ , or the cooperative biquadratic
couplings, i.e., DR� and DT �, reduces the amplitude of the
antipolar �5 mode as compared to the unmodified case. This
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TABLE IV. Energy and mode amplitudes of the relaxed Pbcm phase when artificially “switching off” some specific coupling terms. The
mode amplitudes are normalized to 1 in the real Pbcm phase (“unmodified” case).

Emin (meV/f.u.) R−
5 T2 �5 M−

5

Unmodified −176.14 1.000 1.000 1.000 1.000
CRT � = 0 −146.43 0.791 1.011 0.901 0.911
CT �M ′ = 0 −156.85 1.143 0.826 0.839 0.000
DR� = 0 −167.29 0.862 1.038 0.964 1.001
DT � = 0 −156.53 1.145 0.823 0.836 0.688
CRT � = 0, CT �M ′ = 0 −133.19 1.122 0.751 0.697 0.000
DR� = 0, DT � = 0 −148.35 1.047 0.859 0.769 0.660
CRT � = 0, DR� = 0, DT � = 0 −127.80 1.025 0.800 0.613 0.490
CRT � = 0, CT �M ′ = 0, DR� = 0, DT � = 0 −123.56 1.151 0.679 0.456 0.000

is because all these couplings are associated with the antipolar
�5 mode and they are cooperative in nature. Second, when
the trilinear coupling term CT �M ′ is set to zero, the amplitude
of the antipolar M−

5 mode will be zero. This is because the
M−

5 mode, by itself, is stable in the cubic phase (AM ′ > 0),
and its condensation in the Pbcm phase is due entirely to
the trilinear coupling CT �M ′ . In addition, from Table IV, we
can see that the R−

5 and T2 modes always behave in op-
posite manners, i.e., if one of these two is suppressed, the
other one is always enhanced. This is due to the fact that
the coupling between the R−

5 and T2 modes is competitive
(DRT > 0). Finally, if any of the cooperative coupling terms is
“switched off”, the energy of the Pbcm phase (the minimum
of the energy surface) will be increased. This means that the
Pbcm phase would no more be so low in energy and win
over in the competition with other polymorphs such as the
R3c. All these results demonstrate the crucial role of these
cooperative couplings in stabilizing the Pbcm antiferroelectric
state.

In summary, we have discussed the characteristics of the
Born-Oppenheimer potential energy surface at zero kelvin,
explaining why the Pbcm phase, which is a very unusual
occurrence in perovskites, exhibits such low energy in ANO.
Further research will take temperature-related thermodynamic
and kinetic effects into account, so as to better understand how
ANO undergoes a complex polymorph evolution process and
ultimately stabilizes in the Pbcm phase.

IV. COMPARISONS BETWEEN ANO AND PZO

We have analyzed the mode couplings in ANO, highlight-
ing the crucial role of trilinear and cooperative biquadratic
couplings of octahedra rotations and cation antipolar motions
in stabilizing the Pbcm antiferroelectric state. In the follow-
ing, we would like to discuss the similarities and differences
between ANO and the prototypical antiferroelectric mate-
rial PZO in the stabilization mechanisms of their respective
Pbcm and Pbam antiferroelectric states. Previously, J. Íñiguez
et al. [28] have provided a detailed elucidation of the mode
couplings and the stabilization mechanism for the Pbam an-
tiferroelectric state of PZO. Here, to keep consistency and
achieve quantitative comparisons, we briefly reanalyze PZO
using the same methodology that we employed for ANO. It
should be noted that our results are consistent with the previ-
ous literature [28], despite minor differences in methodology.

The room-temperature antiferroelectric state of PZO is
the Pbam phase. The dominant symmetry-adapted lattice-
distortion modes in the Pbam phase of PZO with respect to its
cubic parent phase are [Fig. 5(a)]: (1) R−

5 mode, the a−a−c0

octahedra rotations, (2) �2 mode, primarily the antipolar Pb
motions ↑↑↓↓ and (3) a S2 mode. These three modes con-
tribute 57.91%, 37.97%, and 3.81% to the total distortion,
respectively [Fig. 5(b) and Table V]. The S2 mode has a
complex distortion pattern, whose physical interpretation as a
modulated oxygen octahedra rotations was recently given by
Shapovalov and Stengel [31]. The Landau energy expansion
of the Pbam phase of PZO can be written as

EPbam = Ecubic + ARQ2
R + BRQ4

R + ASQ2
S + BSQ4

S

+ A�Q2
� + B�Q4

�

+ CRS�QRQSQ� + DRSQ2
RQ2

S

+ DR�Q2
RQ2

� + DS�Q2
SQ2

�, (4)

where QR, QS , and Q� are the amplitudes of the R−
5 , S2, and

�2 modes, respectively. Notably, this energy expansion con-
tains a trilinear coupling among the R−

5 , S2, and �2 modes, and
biquadratic couplings between any two of the three modes. It
should be kept in mind that the energy expression has been
restricted to the three most dominant modes; there are several
other modes in the Pbam phase [Fig. 5(b) and Table V], but
these modes have been omitted due to their minor amplitudes
and negligible energy contributions. We qualified the coeffi-
cient values of Eq. (4) by performing a least-squares fitting
on a first-principles data set (R2 = 0.9952). The fitted coef-
ficients are summarized in Table VI. We also show in Fig. 6
the energy curves associated with the trilinear and biquadratic
couplings of the Pbam phase of PZO.

There is a certain similarity between the Pbcm phase of
ANO and the Pbam phase of PZO in terms of the mode
couplings. First, we note that the trilinear coupling of R−

5 ,
T2 and �5 in ANO appears to be similar to the trilinear
coupling of R−

5 , S2, and �2 in PZO: they involve the same
a−a−c0 octahedra rotations around b axis in the R−

5 mode,
both the T2 and S2 can be interpreted as octahedra rota-
tions around c and a axes, respectively, modulated along
the respective rotation axis direction [31], and both the �5

and �2 consist of b-directed displacements of cations. Sec-
ond, there is an additional trilinear coupling of T2, �5 and
M−

5 modes identified in ANO, whose counterpart in the
Pbam phase of PZO, despite being overlooked by the energy
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FIG. 5. Structure and symmetry-adapted lattice-distortion modes (respect to the cubic reference structure) of PZO in the Pbam phase.
(a) Schematics of the Pbam crystal structure and of the lattice-distortion modes of the cubic reference structure contained in the Pbam phase.
(b) Mode amplitudes in the Pbam structure, respect to the cubic reference, as optimized with the GGA-PBEsol functional.

expansion Eq. (4), is also allowed by symmetry. From sym-
metry analysis, we identified a trilinear coupling in the Pbam
phase of PZO, which involves S2, �2, and X +

1 modes, that is
similar to the trilinear coupling of T2, �5, and M−

5 in the Pbcm
phase of ANO. The X +

1 mode is also mainly the antipolar
motion of cations [Fig. 5(a)], just like the M−

5 mode in the
Pbcm phase of ANO. However, due to its negligible amplitude
and energy contribution, the X +

1 mode is usually not consid-
ered when constructing the energy expansion. Finally, all the
biquadratic coupling terms between any two of the modes are
allowed by the symmetry for both Pbcm and Pbam. Therefore,
from the qualitative perspective, the antiferroelectric Pbcm
phase in ANO and Pbam phase in PZO are similar in terms
of mode couplings.

Nevertheless, some important differences can be noticed
if we inspect more closely the relative mode contribu-
tions in the two materials. Among the three most dominant
lattice-distortion modes of ANO, the antipolar �5 mode is
remarkably less important than the other two modes, the rota-
tional R−

5 and T2, as its amplitude and energy contribution are
notably smaller. In this sense, the two rotational modes can be
considered as the “primary” modes defining the symmetry of
the Pbcm phase of ANO, and the antipolar �5 mode as the
“secondary” mode whose amplitude and energy contribution
are largely enhanced by the coexistence with the primary
modes. In PZO, the roles of rotational and antipolar modes
are switched: there, the “primary” modes are rotational R−

5
and antipolar �2, which have larger amplitudes and give

significantly larger contributions to the energetics of the Pbam
phase, while the remaining rotational S2 mode is “secondary.”
Thus the antipolar cation motions in the antiferroelectric state
of PZO appear to be more dominant than in ANO.

The difference between ANO and PZO lies not only in the
relative importance of the antipolar modes with respect to the
rotational modes, but also in how these modes interact with
each other. The nature of a specific coupling term in the cubic
phase, whether it is cooperative or competitive, can be judged
by the sign of the respective coefficient in the energy expan-
sion. However, it is not always straightforward to know the
overall coupling effect between any two modes in the strongly
distorted low symmetry phase, since multiple coupling terms
may be involved. Here, we propose an approach that more
thoroughly evaluates the combined impact of all relevant cou-
pling terms, thereby ascertaining the overall coupling effect
between any two modes. The detailed derivations are pre-
sented in the Appendix. Adopting this approach, we found that
in ANO the overall coupling effect of the octahedra rotational
modes, i.e., R−

5 and T2, on the antipolar �5 mode remain
essentially cooperative in the Pbcm phase (calculated based
on the energy coefficients listed in Table III and the mode
amplitudes QR = 0.4122 Å, QT = 0.5402 Å, Q� = 0.2230
Å, and QM ′ = 0.0982 Å):

∂Q�

∂QR

∣
∣
∣
∣
Pbcm

= − CRT �QT + 4DR�QRQ�

2A� + 12B�Q2
� + 2DR�Q2

R + 2DT �Q2
T

= +0.081 > 0,

TABLE V. Symmetry-adapted lattice-distortion mode decomposition of the Pbam phase of PZO. The structure is obtained by relaxing
fully the atomic positions and lattice parameters using GGA-PBEsol functional. The mode amplitudes are reported in the so-called “parent-
cell-normalized” values of ISODISTORT.

R−
5 �2 S2 R−

4 M−
5 X +

1

Amplitude (Å) 0.5323 0.4316 0.1366 0.0307 0.0180 0.0179
Percentage (%) 57.91 37.97 3.81 0.19 0.07 0.07
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TABLE VI. Fitted coefficients of the Landau energy expansion of the Pbam phase of PZO [Eq. (4)] at fixed cubic lattice parameters. The
coefficients are fitted using the units of energy in meV/f.u. and mode amplitudes in Å. The values in brackets are instead the coefficients fitted
using relative mode amplitudes (i.e., with mode amplitudes normalized to 1 in the relaxed structure of the Pbam phase), which also correspond
to the energy contributions (meV/f.u) of the related terms to the energy lowering of this phase. The mode amplitudes in the phase Pbam phase
can be easily derived from the ratio between the coefficients and the corresponding energy contribution in brackets.

Phase Fitted coefficients (Energy contributions)

Pbam AR = −922.6 (−277.1) BR = +1073.4 (+96.9) CRS� = −1075.5 (−38.7) DR� = +1607.3 (+84.5)
AS = −574.2 (−14.1) BS = +2205.8 (+1.3) DS� = +2892.7 (+12.4)

A� = −1399.4 (−244.9) B� = +2730.6 (+83.6) DRS = +2480.1 (+18.3)

∂Q�

∂QT

∣
∣
∣
∣
Pbcm

= − CRT �QR + CT �M ′QM ′ + 4DT �QT Q�

2A� + 12B�Q2
� + 2DR�Q2

R + 2DT �Q2
T

= +0.163 > 0. (5)

This can also be evidenced from Figs. 3(a), 3(d), and 3(e),
where both the first-principles calculation and the energy
expansion-based simulation show that the amplitude of the �5

mode is largely enhanced when coexisting with R−
5 or/and T2

modes. Instead for PZO, by the same analysis, we find that the
overall coupling effect of R−

5 and S2 modes on the antipolar
�2 mode remain essentially competitive in the Pbam phase
(calculated based on the energy coefficients listed in Table VI
and the mode amplitudes QR = 0.5481 Å, QS = 0.1568 Å,
and Q� = 0.4184 Å):

∂Q�

∂QR

∣
∣
∣
∣
Pbam

= − CRS�QS + 4DR�QRQ�

2A� + 12B�Q2
� + 2DR�Q2

R + 2DS�Q2
S

= −0.323 < 0,

∂Q�

∂QS

∣
∣
∣
∣
Pbam

= − CRS�QR + 4DS�QSQ�

2A� + 12B�Q2
� + 2DR�Q2

R + 2DS�Q2
S

= −0.042 < 0. (6)

As can be seen from Fig. 6, coexistence with the R−
5 or/and

S2 modes suppresses the amplitude of the �2 mode.
To summarize, although very similar antipolar and octa-

hedra rotation modes—trilinearly coupled by symmetry—are
involved in both cases, we find a slightly different story in
ANO and PZO. In ANO, the antipolar �5 mode by itself
only shows a weak instability, in contrast with the strong
instability of the antipolar �2 mode in PZO. The emergence

of the �5 mode in the antiferroelectric Pbcm phase of ANO
is at first favored by the trilinear coupling with the rotational
R−

5 and T2 modes. This behavior reminds us of the concept of
hybrid-improper ferroelectricity [45–47] and suggests a more
hybrid-improper-like nature of the antipolar cation motions in
ANO [48]. Then, this �5 mode is also significantly enhanced
by cooperative biquadratic couplings with R−

5 and T2 modes,
which corresponds to a so-called triggered mechanism [49].
In comparison, the �2 antipolar cation motions in PZO ap-
pear more proper and compete with R−

5 and S2 modes. This
observation highlights the importance of octahedra rotations
in inducing the cation antipolar motions in ANO. Usually, the
octahedra rotations can be tuned by various factors such as
strain, pressure, doping, defects, etc. [50–53]. In this regard,
investigating the control of octahedra rotations so as to mod-
ulate the AFE property in ANO will also be an interesting
perspective for a future work.

V. CONCLUSIONS

In this study, we have emphasized the crucial role of tri-
linear and biquadratic couplings of octahedra rotations and
cation antipolar motions in stabilizing the Pbcm phase in
ANO. These anharmonic couplings contribute significantly
to lower the energy, making the Pbcm phase energetically
more favorable compared to other competing variants. We
have also conducted a comparative discussion between the
antiferroelectric phases of ANO and PZO, which are distinct
but similarly combine antipolar and octahedra rotation mo-
tions trilinearly coupled by symmetry. Unlike in the Pbam
phase of PZO, the antipolar motions in Pbcm phase of ANO
appear to be secondary. Their significant amplitude in the

FIG. 6. Evolution of the energy of PZO when condensing different symmetry adapted mode in the cubic phase (taken as energy reference)
in the absence or eventually in the presence of other modes as indicated by the legends. Mode amplitudes of 100% correspond to the relaxed
amplitude in the relaxed Pbam phase with cubic lattice parameters.
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Pbcm phase arises from the combination of hybrid-improper
(i.e., trilinear coupling with primary octahedra rotations) and
triggered (i.e., cooperative biquadratic coupling with primary
octahedra rotations) mechanisms. This contrasts with PZO
in which antipolar motions are primary and compete with
octahedra rotations.
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APPENDIX: EVALUATION OF OVERALL COUPLING
EFFECT BETWEEN DISTORTION MODES

Having the energy expansion and the related coefficients, it
is relatively easy to judge from the sign of the coefficients of
specific coupling terms which modes are initially competitive
or cooperative in the cubic reference. However, it is not always
so straightforward to determine the overall coupling effect
between different modes in the low-energy phases, especially
when multiple coupling terms are involved. In this Appendix,
we present an approach to comprehensively assess the whole
effect of all relevant coupling terms, thereby evaluate the
overall impact of one mode on the other.

Let us consider a typical example in a relatively general
sense, where three modes P, Q1 and Q2 are mutually coupled
and the energy expansion is given by

E = E0 + AP2 + BP4 + CQ1Q2P + D1Q2
1P2 + D2Q2

2P2,

(A1)

where A, B, C, D1, and D2 are energy coefficients, and E0

includes all the energy contributions irrelevant to P. This
energy expansion contains one trilinear coupling term, and
two biquadratic terms. The goal is to reveal how P will be
affected if small perturbation is applied on Q1 or Q2 near the
energy minimum point.

The P0 (the relaxed value of P at given Q1 and Q2) min-
imizes the energy and must satisfy the condition ∂E

∂P |P0 = 0,
which yields

2AP0 + 4BP3
0 + CQ1Q2 + 2D1Q2

1P0 + 2D2Q2
2P0 = 0. (A2)

This equation gives an implicit expression of the function
P0 = P0(Q1, Q2). Taking the partial derivatives with respect
to Q1 and Q2, respectively, on both side of Eq. (A2), we have

2A
∂P0

∂Q1
+ 12BP2

0
∂P0

∂Q1
+ CQ2 + 4D1Q1P0

+ 2D1Q2
1
∂P0

∂Q1
+ 2D2Q2

2
∂P0

∂Q1
= 0,

2A
∂P0

∂Q2
+ 12BP2

0
∂P0

∂Q2
+ CQ1 + 2D1Q2

1
∂P0

∂Q2

+ 4D2Q2P0 + 2D2Q2
2
∂P0

∂Q2
= 0. (A3)

Solving ∂P0
∂Q1

and ∂P0
∂Q2

from Eq. (A3), and evaluating at the
energy minimum point (denoted as “minE ,” where P0 = P00,
Q1 = Q10, Q2 = Q20), we can get

∂P0

∂Q1

∣
∣
∣
∣
minE

= − CQ20 + 4D1Q10P00

2A + 12BP2
00 + 2D1Q2

10 + 2D2Q2
20

,

∂P0

∂Q2

∣
∣
∣
∣
minE

= − CQ10 + 4D2Q20P00

2A + 12BP2
00 + 2D1Q2

10 + 2D2Q2
20

. (A4)

The partial derivatives of P0 with respect to Q1 and Q2

provide the evaluation of the overall impact of Q1 and Q2 on
P at the energy minimum point, respectively, with a positive
value meaning a cooperative effect, and negative meaning
competitive.

In the specific case of ANO, replacing P by Q�, Q1

by QR, and Q2 by QT and considering an additional term
CT �MQT Q�QM in the energy expansion of the Pbcm phase of
ANO, Eq. (5) can be derived following the same procedure.

In the specific case of PZO, replacing P by Q� , Q1 by QR,
and Q2 by QS , Eq. (A4) is directly turned into Eq. (6).

As a final remark, we point out that the equations can
be further simplified if the mode amplitudes are relatively
evaluated (renormalized so as to make P′

00 = Q′
10 = Q′

20 = 1
at the energy minimum point):

∂P′
0

∂Q′
1

∣
∣
∣
∣
minE

= − C′ + 4D′
1

2A′ + 12B′ + 2D′
1 + 2D′

2

,

∂P′
0

∂Q′
2

∣
∣
∣
∣
minE

= − C′ + 4D′
2

2A′ + 12B′ + 2D′
1 + 2D′

2

, (A5)

where the primed coefficients have the physical meaning of
their respective energy contributions in the studied phase (cor-
responding to the values in parentheses in Tables III and VI).
In cases where only the qualitative nature of the coupling
effect is of concern, rather than its quantitative strength, this
simplified form is easier to use. We notice that using such
primed equivalent to Eqs. (5) and (6) would not change our
conclusions.
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