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We consider the optimal control of switching on a coupling term between two quantum many-body systems.
Specifically, we (i) quantify the energetic cost of establishing a weak junction between two quantum spin-1/2
chains in finite time τ and (ii) identify the energetically optimal protocol to realize it. For linear driving protocols,
we find that for long times the excess (irreversible) work scales as τ−η, where η = 1, 2 or a nonuniversal number
depending on the phase of the chains. Interestingly, increasing a Jz anisotropy in the chains suppresses the excess
work, thus promoting quasiadiabaticity. The general optimal control problem is solved, employing a Chebyshev
Ansatz. We find that the optimal control protocol is intimately sensitive to the chain phases.
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I. INTRODUCTION

Recent developments in nanoengineering have taken great
strides towards the realization of quantum technologies. Nat-
urally, such quantum engineering requires the delicate control
of complex quantum many-body systems. This is complicated
by the fact that in practice all processes have to occur at
finite time, and hence parasitic nonequilibrium excitations are
inevitable. Therefore, how to generate effectively adiabatic
dynamics in genuinely nonequilibrium processes has received
significant attention in the literature [1–7]. In addition, several
experiments have been reported [8–14] verifying the theoreti-
cal predictions.

Controlling complex many-body systems in finite time is
described varying a Hamiltonian H(λ) according to an ex-
ternal control protocol λ(t ). If the rate of change of λ(t ) is
larger than the “gap” the dynamics is intrinsically nonadia-
batic [15], leading to an accumulation of excess energy. Over
the last decade, several techniques have been developed to
minimize these undesired excitations, such as shortcuts to
adiabaticity [16–24] and optimal control strategies [25–29].
Due to the complexity of the ensuing control fields, shortcuts
to adiabaticity appear less practical in many-body systems. In
the present work, we focus on optimal control strategies and
therefore identifying such λ(t ) that minimize the excess work.

Among complex quantum systems, especially one-
dimensional systems have received constant attention. This
might be due to the various numerical and analytical tech-
niques available, which allow for more controllable studies,
or due to their unique physics [30]. Consider, e.g., a system
of interacting electrons in a one-dimensional wire. In this
case, Landau’s Fermi liquid theory [31] breaks down, and
hence the more sophisticated Luttinger liquid (LL) theory was
developed. LL theory states that the low-energy excitations
of a system of interacting electrons in D = 1 are collective
bosonic charge and spin excitations [30]. Moreover, LL the-
ory is known to describe the low-energy sector of different
interacting one-dimensional models, as the Hubbard model

(away from half-filling) and the XXZ Heisenberg chain in the
critical phase [32]. In fact, the latter can be mapped (through
a Jordan-Wigner transformation) onto a system of interacting
spinless fermions, so LL theory is applicable to these systems
as well. Finally, LL behavior has been experimentally verified
in many systems [33–38].

The solid understanding achieved in these complex sys-
tems in D = 1 has allowed for further investigations, such
as studies of junctions formed by coupling spin-chains or
interacting nanowires, both in [39–47] and out of equilib-
rium [48–53]. The phenomena uncovered in such junctions
exemplify notable themes in many-body physics, such as
the multichannel Kondo physics [45,54], anomalous transport
properties [39,47], and exotic phases of matter in a network of
quantum spin chains [55,56].

Motivated by these studies, we consider the problem of
quantifying the energetic cost and identifying the optimal
strategy to establish, in finite time, a weak junction between
two quantum spin-1/2 chains. We consider that for times
t < 0 two decoupled spin-1/2 chains are prepared in their re-
spective ground state (not necessarily the same ground state).
For times t � 0, the coupling between the end points of each
chain is turned on according to a given time-dependent proto-
col until the boundary coupling strength reaches a small final
value g0 at a later time τ . See Fig. 1 for a sketch of the physical
scenario.

In the first part of the analysis, we consider processes in
which the coupling strength between the chains is switched on
through a linear ramp. In this case, we obtain analytical results
for the energetic cost of establishing the junction when each
chain is in one of two different, gapless or gapped, phases. For
protocols of very short duration τ , we find that the energetic
cost scales as τ 2 independently of the phase of the chains. For
long times τ , we find that, if there is no Jz anisotropy in the
chains, the energetic cost scales as a power law τ−η with a
universal exponent η. This exponent is equal to 1 when both
chains are in the XX gapless phase while it is equal to 2 when
one of the chains is in the XX gapless phase but the other is in
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FIG. 1. (a) Time-dependent nanowelding of two quantum spin-1/2 chains described by Eq. (2). The strength of the coupling between the
chains increases from zero, at t = 0, to a small final value g0 at t = τ . The most efficient protocol to realize such a junction is determined
in Sec. V by requiring a minimal amount of energy spent during the process. (b) Scattering process between the two chains described by the
lowest nonzero order in the perturbation theory considered here. The fermionic dispersion relation on the left represents the XX gapless phase
(the gray region denotes the Fermi sea), while on the right is the XX gapped phase. (c) Same as (b) but for the case where both chains are in
the XX gapless phase.

the XX gapped phase. This last result corroborates what was
shown in Ref. [29] but considering a more complicated system
that is partially gapless. Remarkably, we have also shown that
both of these scaling behaviors are protocol independent, i.e.,
they do not depend on how the coupling strength increases in
time (as long as τ is large). Once we include a Jz anisotropy
in the chains, specifically when both chains are in the critical
LL phase, we find that the energetic cost scales as a power law
τ−η but this time with a nonuniversal exponent η = η(Jz )>0
in the interval (

√
2)−1 < Jz < 1. This last result suggests that

increasing interactions (here represented by Jz) can make the
excess work decay faster with the process duration, hence
promoting quasiadiabaticity in finite time.

In the second part, we then determine the optimal control
protocol, by requiring a minimal energetic cost to reach the
final strength value g0. The optimal protocol, when one of the
chains is in the XX gapped phase, is the same one that was
recently seen in the context of the transverse field Ising chain
deep in the paramagnetic phase [29]. When both chains are
in the same XX gapless phase, the optimal protocol is simply
the linear protocol. When they are in the critical LL phase,
however, the optimal protocol is an almost linear function of
time, but differs slightly from it close to the initial t = 0 and
final t = τ points.

As a main insight, our work demonstrates that the presence
or absence of an energy gap and particle interactions are
notable and important features in determining the excess work
and the optimal control strategy.

II. MODEL AND QUANTUM WELDING

We start by describing the model and establishing notions
and notations. We consider two spin-1/2 chains of equal
length N described by the Hamiltonians,

H�=1,2 = J
∑

j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + JzS

z
jS

z
j+1

) + h�

∑
j

Sz
j,

(1)
where Sa=x,y,z

j are spin-1/2 operators at site j, J ≡ 1 (our
unit of energy) is the exchange coupling, Jz � 0 is the spin-
anisotropy parameter, h� > 0 are the external magnetic fields

in the z-direction of each chain, and the index � = 1, 2 denotes
the two chains (� = 1 for −N � j � −1 and � = 2 for 1 �
j � N). Notice that the only difference between the chains is
the external magnetic fields h1 and h2.

We now define the time-dependent protocol. For times
t < 0, the two spin-1/2 chains are decoupled and prepared
in their respective ground states, so that the system state is
|ϒ0〉 = |ϒ1,0〉 ⊗ |ϒ2,0〉, where |ϒ�,0〉 is the ground state of
chain �. For times t � 0, the coupling λ(t ) between them is
turned on until a later time τ ; see Fig. 1(a). Typically, the state
|ϒ(τ )〉 at time τ is rather complex due to the coupling between
the degrees of freedom of the two chains.

This process of “welding” the two chains is described by

H(λ) = H0 + λ(t )V, (2)

where H0 = ∑2
�=1 H� is the Hamiltonian of the separate

chains and V is the coupling term. This is a boundary inter-
action given by [57]

V = g0
(
Sx

−1Sx
1 + Sy

−1Sy
1

)
, (3)

where g0 � 1 is a weak interaction strength. The protocol
function λ(t ) that controls the joining process satisfies the
boundary conditions λi ≡ λ(0) = 0 and λ f ≡ λ(τ ) = 1, but
we keep its time dependence generic.

It is important to point out that an extra term ∝ Sz
−1Sz

1
could also appear in Eq. (3). However, as we will discuss in
Sec. IV B, such a term has a scaling dimension larger than
its x, y counterparts shown in Eq. (3) [58]. Therefore, from
renormalization group arguments [59], the extra term goes to
zero more rapidly than the term we keep and its effects are
less relevant, which is why we do not include it.

III. ENERGETIC COST OF WELDING

To quantify the amount of energy that is spent during the
finite-time welding protocol, we now evaluate the work done
on the system, W (τ ). Given that our system is isolated, this
work is simply the difference between the final 〈H(λ f )〉(τ )
and initial 〈H(λi)〉(0) energies [29], where 〈· · · 〉(t ) de-
notes the expectation value 〈ϒ(t )| · · · |ϒ(t )〉. According to
the Hellmann-Feynman theorem, W (τ ) can be cast in
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the form

W (τ ) = −
∫ τ

0
dt λ̇(t )〈F (λ)〉(t ), (4)

where λ̇(t ) is the time derivative of λ(t ) and F (λ) ≡ − ∂
∂λ
H(λ)

is the so-called generalized force. By construction we have
F (λ) = −V .

In general, the work done, Eq. (4), encodes two distinct
contributions [29],

W (τ ) = Wqs + Wex(τ ). (5)

The first one, is the quasistatic contribution Wqs which does
not depend on the specific protocol, but only on the initial
λi and final λ f values. The second contribution, called the
excess work Wex(τ ), is protocol dependent and measures the
nonadiabaticity of W (τ ) given the finite-time protocol [60]. In
the limit τ → ∞, we expect to recover the adiabatic theorem
[15,31], so Wex(τ → ∞) → 0 and, consequently, W (τ →
∞) → Wqs.

In the following, we are interested in determining (i) the
scaling behavior of Wex(τ ) for large τ and (ii) the optimal
driving protocol λopt(t ), i.e., the one that produces the minimal
Wex(τ ), for particular, qualitatively different forms of H1,2.

For a process that is coupled weakly enough, we can obtain
a general expression for Wex(τ ). In the interaction picture, the
state of the system at time τ is given by [61]

|ϒ(τ )〉 = e−iH0τT exp

(
−i

∫ τ

0
dt λ(t )VI (t )

)
|ϒ0〉, (6)

where T is the time ordering operator and VI (t ) = eiH0tVe−iH0t

is the coupling written in the interaction picture, and we set
h̄ = 1. Using standard perturbation theory for weak couplings
g0 [15], we expand the exponential and evaluate the expecta-
tion value of the generalized force (4). We obtain

Wex(τ ) = 1

2

∫ τ

0
dt dt ′ λ̇(t )λ̇(t ′)�(t ′ − t ) + O

(
g4

0

)
, (7)

which is nothing but the linear-response expression obtained
in Ref. [25]. As usual [62], the relaxation function, �(t ′ − t ),
is defined in terms of the response function 	(t ′ − t ),

�(t ′ − t ) = −
∫ t ′

t
dt ′′ 	(t ′′ − t ) + const., (8)

where, for our case,

	(t ′′ − t ) = i〈[VI (t ′′),VI (t )]〉0, (9)

with 〈· · · 〉0 ≡ 〈ϒ0| · · · |ϒ0〉. The relaxation function describes
the evolution of the system towards equilibrium after an initial
perturbation. In the derivation of Eq. (7), we used the even
parity of the relaxation function, �(s) = �(−s), which is
a consequence of the odd parity of the response function,
	(s) = −	(−s). The const. in Eq. (8) guarantees that �(s →
∞) → 0 [62].

Short-time behavior. Before we proceed to a more com-
plete analysis, it is interesting to discuss a general aspect of
Wex(τ ) for weak processes with any protocol. For processes
of short duration, i.e., τ � 1, or, more specifically, τ � τR,
where τR is a system-dependent timescale which dictates the

decay of �(s) [27], we can determine Wex(τ � τR) univer-
sally.

The short-time behavior of the relaxation function can be
obtained with help of the Baker-Hausdorff formula [63]. Ex-
panding VI (t ) in powers of t and evaluating Eq. (8), we find

�(s � τR) ≈ const. − Cs2, (10)

where C ≡ 〈[[V, H0],V ]〉0/2 contains physical information
about the system, s = |t − t ′|, and const. is the same constant
appearing in Eq. (8).

Therefore, the excess work for any protocol takes the gen-
eral form in very short times

Wex(τ � τR) ∝ const.′ − Cτ 2, (11)

where const.′ is another nonuniversal constant. Then, as long
as C = 0, we conclude that Wex(τ ) scales, for very short times,
according to Eq. (11), independently of the details of the
system (system details are encoded in C and const.′). The
natural question arises, can similarly universal behavior be
found in the long-time behavior of Wex(τ )?

It is important to stress that up to this point we have
not specified the protocol λ(t ). We now continue with linear
protocols λ(t ) = t/τ , before returning to the general case in
Sec. V.

IV. LINEAR PROTOCOLS

A. Case 1: Jz = 0 – the XX model

We begin by setting Jz = 0. In this case, we can directly
diagonalize H0 by mapping the spins onto spinless fermions
through the Jordan-Wigner (J-W) transformation [64,65].
Defining the notation Sa

1, j ≡ Sa
j�−1 and Sa

2, j ≡ Sa
j�1, the gen-

eralized J-W transformation used in [44], which accounts for
the correct anticommutation relations between fermions in
different chains, reads

S+
1, j = (−1) jχ1 exp

⎛
⎝iπ

| j|−1∑
i=1

c†
1,−ic1,−i

⎞
⎠c†

1, j,

S+
2, j = (−1) jχ2 exp

⎛
⎝iπ

j−1∑
i=1

c†
2,ic2,i

⎞
⎠c†

2, j,

Sz
�, j = c†

�, jc�, j − 1/2, (12)

where S±
�, j = Sx

�, j ± iSy
�, j are the usual spin raising and low-

ering operators and c�, j , with {c�, j, c†
�′, j′ } = δ�,�′δ j, j′ , are spin-

less fermions. The Klein factors χ� = χ
†
� satisfy {χ�, χ�′ } =

2δ��′ , {χ�, c j,�′ } = {χ�, c†
j,�′ } = 0, thus maintaining the correct

anticommutation relations [44,46].
The open boundary condition (OBC) of the chains implies

that c�,0 = c�,±(N+1) = 0. Consequently, in momentum space,
we have the modes [66]

c�, j =
√

2

L + 1

∑
k

sin(| j|k)ψ�,k, (13)

where k = kn = nπ
L+1 , with n = 1, 2, . . . , L, and L = N − 1 ≈

N is the length of each chain (here we used the lattice constant

064304-3



MOALLISON F. CAVALCANTE et al. PHYSICAL REVIEW B 110, 064304 (2024)

a = 1 as length unit). Thus, in momentum space we find

H0 =
∑
k,�

ε�,kψ
†
�,kψ�,k + E�,0, (14)

where ε�,k = h� − cos k is the energy dispersion relation of the
fermionic excitations and E�,0 = −h�L/2, which we can ig-
nore since it just shifts the full spectrum by a constant. Notice
that the Klein factors do not appear in the above equation and
[χ�, H0] = 0. Thus, they have no dynamics in the interaction
picture.

Depending on the value of h�, H� has a gapless (h� < 1) or
a gapped spectrum (h� > 1). In the gapless case, the ground
state |ϒ�,0〉 of H� has a Fermi sea form [31]

|ϒ�,0〉 =
∏

k�k�,F

ψ
†
�,k|0〉, (15)

where k�,F = arccos h� is the Fermi momentum of the chain
� and |0〉 is the fermionic vacuum state. In the gapped case,
the ground state is just the vacuum state |ϒ�,0〉 = |0〉, so that
ψ�,k|ϒ�,0〉 = 0 for all k. As we will see in the following, this
fact is crucial in determining the long-time decay of Wex(τ ).

The coupling between the chains given in Eq. (3) becomes
in the fermionic representation

V = g0χ
∑
k,k′

fkk′ψ
†
1,kψ2,k′ + H.c., (16)

where fkk′ = 1
L+1 sin k sin k′ and χ = χ1χ2. We see that V

promotes the tunneling of excitations between the two chains.
Furthermore, since H0 represents a system of free fermions
[see Eq. (14)], it is easy to show that eiH0tψ�,ke−iH0t =
e−iε�,ktψ�,k and, thus, to obtain VI (t ).

In contrast to H0, the coupling in Eq. (16) explicitly in-
volves the Klein factors, though only through the operator χ .
As this operator commutes with the Hamiltonian (2) for all
times, [χ,H(λ)] = 0, we can choose to work in one of the
two subspaces defined by the eigenvalues ±i of χ during the
entire protocol [46]. Thus, hereafter, we set χ = i in Eq. (16).
Since the response function in Eq. (9) involves a squared
contribution in V , this choice does not have any measurable
physical consequence, and hence we do not lose generality.

Situation I: Gapless-gapped. As a first example, we con-
sider that one chain is in the gapless phase and the other one
is in the gapped phase, h1 < 1 and h2 > 1.

As described in Sec. III, the first step to obtain the excess
work is to evaluate the response function in Eq. (9). We find

	(t ′ − t ) = 2g2
0

∑
k�kF ,k′

f 2
kk′ sin[εkk′ (t − t ′)], (17)

where εkk′ ≡ ε1,k − ε2,k′ and kF is the Fermi momentum of
chain 1. The relaxation function �(t ′ − t ), defined in Eq. (8),
can be directly obtained from the above result. Then, for the
linear protocol, we obtain the excess work

Wex(τ ) = 2g2
0

∑
k�kF ,k′

f 2
kk′

ε3
kk′

[
cos (εkk′τ ) − 1

τ 2

]
. (18)

Since εkk′ < 0, due to the restriction k � kF , we see that
Wex(τ ) � 0, as expected [67].

FIG. 2. Excess work for Jz = 0 (XX case). The solid lines rep-
resent the numerical evaluation of the sums over k, k′ [Eqs. (18) and
(21)] while the dashed ones the results obtained from the low-energy
approach [Eqs. (20) and (22)]. Parameters are g0 = 1/4, J = 1, kF =
π/2, � = 1, L = 600, and �/vF ∼ 1.

The double-k summation in Eq. (18) makes any analytical
progress difficult. However, given that εkk′ never vanishes due
to the gap in the second chain, we expect that for long times
Wex(τ ) scales as 1/τ 2, as predicted in Ref. [29]. Indeed, we
will shortly see that this is confirmed by numerical calcula-
tions.

We now continue with a low-energy approach that captures
the asymptotic long-time behavior of Wex(τ ) in Eq. (18). In
this limit, we can use that

ε1,k ≈ vF (k − kF ), ε2,k′ ≈ �, fkk′ ≈ sin kF

L + 1
k′, (19)

where vF = sin kF is the Fermi velocity and � ≡ h2 − 1 is the
gap of the second chain. Substituting the above results into
Eq. (18) and taking the limit of semi-infinite chains L → ∞,
we obtain

Wex(τ � �−1) ≈ �3

3v4
F

(g0

π

)2
[

1 − �2

(� + �)2

]
1

(�τ )2
, (20)

where �/vF is a large-momentum cutoff. As expected from
our earlier analysis of Eq. (18), Wex(τ ) scales as 1/τ 2 for long
times. In Fig. 2 we show the numerical evaluation of Eq. (18),
which shows the 1/τ 2 scaling already for times τ � 10J−1.
As mentioned before, this corroborates the predictions of
Ref. [29] but for a much more complex system that is partially
gapless. Remarkably, the 1/τ 2 behavior of Wex(τ ) for larger τ

shown in Eq. (20) is protocol independent; see Appendix A
for details.

Situation II: Gapless-gapless. As a second example, we
consider that both chains are in the gapless phase and that,
for simplicity, we have identical chains, i.e., h1 = h2 ≡ h < 1.
Similarly to above, we have the response function

	(t ′ − t ) = 4g2
0

∑
k�kF ,k′>kF

f 2
kk′ sin[εkk′ (t − t ′)]. (21)

Comparing the above result with Eq. (17), we notice an essen-
tial difference between them in the k′-summation interval.
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In this case, since the large-chain limit implies that �k =
kn+1 − kn = π

L+1 → 0, the energy difference εkk′ vanishes
close to kF . Thus we expect a qualitatively different long-
time behavior for Wex(τ ). To check this, we again apply a
low-energy approach. Now we have εkk′ ≈ vF (k − k′) and
fkk′ ≈ sin2 kF /(L + 1), which yields

Wex(τ � J−1) ≈ 2

π

(
g̃0

vF

)2 1

τ
, (22)

where g̃0 = g0 sin2 kF . The above result demonstrates how
the absence of a gap in the system drastically changes the
long-time behavior of Wex(τ ). Interestingly, this result does
not depend on the high-energy cutoff � as Eq. (20) does.
In Fig. 2 we show Wex(τ ), both from the exact numerical
calculation of Eq. (21) and the asymptotic result in Eq. (22).
We observe that the 1/τ scaling is exhibited already for times
τ � 10J−1. This result does not contradict what was shown in
Ref. [29] since here the system is completely gapless.

In Sec. V, based on a field theory description, we will see
that the 1/τ scaling of Wex(τ � J−1) shown in Eq. (22) is also
protocol independent.

B. Case 2: Jz �= 0; the XXZ model

As a fundamentally different scenario, we now analyze
chains with a Jz = 0 anisotropy. To this end, we assume
that both chains are in the antiferromagnetic critical phase,
0 < Jz < 1, and we set h� = 0 [68,69]. This assumption does
not affect the generality of our results, since a finite h�, as
long as we stay in the critical phase, just shifts the value of
kF . It follows then that now H0 has spin inversion symmetry
Sa

j → −Sa
j , which translates into particle-hole symmetry of

the fermionic representation c�, j → (−1) jc†
�, j , and, conse-

quently, implies that k1,F = k2,F = π/2.
In this case, Jz introduces a quartic interaction term be-

tween the fermions [see the last of Eqs. (12)], and the
chain Hamiltonians of Eq. (1) are no longer easily diago-
nalizable [30]. We therefore must apply a more powerful
field-theoretical bosonization technique [30,32].

Field theory approach. In the fermionic representation, H0

assumes the following form:

H0 = − 1

2

∑
�, j

(
c†
�, j+1c�, j + H.c.

)

+ Jz

∑
�, j

(n�, j − 1/2)(n�, j+1 − 1/2), (23)

where n�, j = c†
�, jc�, j is the number operator at site j of chain

�. Hereafter we work in the limit of semi-infinite chains L →
∞.

Focusing on the low-energy sector of the chains, we take
the continuum limit and expand the fermionic field operators
in terms of right (R) and left (L) movers as [30]

c�, j ∼ c�(x) = eikF xψR,�(x) + e−ikF xψL,�(x), (24)

where c1(x) is defined for x < 0 and c2(x) for x > 0. The OBC
on the chains, c�(0) = 0, can be cast in the form [70]

ψL,�(x) = −ψR,�(−x). (25)

These constraints allow us to work with a single chiral
fermionic field operator for each chain redefined in the domain
x ∈ R [70]. Thus, it is convenient to work with ψ

†
1 (x) ≡

ψ
†
L,1(−x) and ψ

†
2 (x) ≡ ψ

†
R,2(x) [71].

The low-energy modes of H0 are described by the Hamil-
tonian [70]

H0 =
∑

�

∫
dx

{
vF ψ

†
� (x)(−i∂x )ψ� (x)

+ Jz
[
ρ2

� (x) + 2ρ�(x)ρ�(−x)
]} + HUmk,�, (26)

where ρ�(x) =: ψ
†
� (x)ψ� (x) : is a density operator (: · · · : de-

notes normal ordering) and HUmk,� describes the Umklapp
terms, known to open a gap in the system when |Jz| > 1
[30]. Since we are in the critical phase of the XXZ chain
(0 < Jz < 1), this term consists of an irrelevant perturbation
at low energies (in the renormalization group sense) and thus
can be neglected [30,32].

In Eq. (26) we are left with a Luttinger liquid (LL) model,
with OBC, for each XXZ chain [30]. This model can be
solved by applying Abelian bosonization [30,32,70]. In this
approach, the fermionic field operators and the density oper-
ators are written in terms of auxiliary bosonic fields φ�(x) as
[32,70]

ψ�(x) ∼ 1√
2πα

F�e−i
√

πφ�(x), (27)

ρ�(x) ≈ − 1√
4π

∂xφ�(x), (28)

where α ∼ vF /� is a short-distance cutoff and F� are different
Klein factors that ensure the anticommutation relations be-
tween the fermions. In terms of its normal modes η�,q, where
q > 0 are momenta, φ�(x) has the form [70]

φ�(x) = 1√
L

∑
q>0

e− α
2 q

√
q

[zq(x)η�,q + z∗
q (x)η†

�,q], (29)

where zq(x) = (1/
√

K ) cos(qx) + i
√

K sin(qx), with K the
Luttinger parameter [30].

Then, the interacting Hamiltonian in Eq. (26) can be ex-
pressed as a quadratic diagonal form in terms of the normal
modes as

H0 = u
∑
�,q>0

qη
†
�,qη�,q, (30)

where u is the velocity of the bosonic modes. The important
quantity in the bosonized theory is the Luttinger parameter K .
For small Jz, K ≈ 1 − 2

π
Jz, so K = 1 in the noninteracting XX

case. The exact expression of K for any value of Jz is known
from the Bethe Ansatz solution [69], and is given by K =

π/2
π−arccos Jz

. We see that 1/2 < K � 1 in the critical region we
are interested in 0 � Jz < 1 [30]. Furthermore, the velocity u

is also known from the Bethe ansatz solution, u = π/2
√

1−J2
z

arccos Jz

[69]. Finally, within the low-energy theory, the ground state
|ϒ�,0〉 of the XXZ chain corresponds to the bosonic vacuum,
η�,q|ϒ�,0〉 = 0 for all q > 0 [30].

For the coupling V between the chains, given in Eq. (3), we
need only the field operators at the sites j = ±1. Using the
low-energy expansion (24) and the OBC constraint (25), we
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FIG. 3. Excess work for Jz = 0 (XXZ case) according to
Eq. (33). The Luttinger parameters K = 4/7, 2/3, and 4/5 in the
legend correspond to Jz ≈ 0.92, 1/

√
2, and 0.38, respectively. These

values of K were chosen so that all three cases in Eq. (34) are
illustrated. Parameters are g0 = 1/4 and �α ∼ 1.

obtain that c2,1 ∼ 2i sin kF ψ2(0) and c1,−1 ∼ 2i sin kF ψ1(0)
[71], remembering that kF = π/2. Then, using Eq. (27), V

has the following bosonized form:

V ∼ ḡ0 cos[
√

2πφ−(0)], (31)

where ḡ0 = 2g0/(πα) and we defined the odd/even combina-
tions φ± = (φ2 ± φ1)/

√
2. In the above equation, we omitted

the Klein factors F�.
As pointed out before, a term like Sz

−1Sz
1 could also be

considered in Eq. (31). In the bozonization representation,
such a term [see Eq. (28)] has the form ∝ ∂xφ1(0)∂xφ2(0),
whose scaling dimension is d ′ = 2. The operator in Eq. (31),
in contrast, has scaling dimension d = 1/K which, in our
range of interest of Jz, is always smaller than 2. Since terms
with the lowest scaling dimension are dominant, the leading
contribution comes from Eq. (31) [58].

Since the scaling dimension of V is a nonuniversal number,
we expect that it produces an anomalous long-time power law
for Wex(τ ), in contrast to the 1/τ power law obtained in the
XX case (see Fig. 2).

Excess work. The low-energy approach described above
allows us to also obtain a closed expression for the relax-
ation function �(s). After evaluating the two-point correlation
function 〈VI (t ′)VI (t )〉0 in the bosonized theory with standard
methods [72], we obtain

�(s) = �

(2d − 1)

(
2g0

π�α

)2 cos(2d arctan �s) + �s sin(2d arctan �s)

(1 + �2s2)d
, (32)

where, again, d = 1/K is the scaling dimension of V in Eq. (31). The result of Eq. (32) shows that �(s) scales as 1/s2d−1 for
long times, which tells us that the anisotropy introduced by Jz, correspondingly the interactions between the fermions, cause
the system to relax much faster to the equilibrium state (d = 1 when Jz = 0). As we will see below, this fact is reflected in the
Wex(τ ) behavior.

After again deriving the relaxation function, the excess work in Eq. (7), for the linear protocol, can be immediately obtained.
It is given by

Wex(τ )/� = f (d )

(
2g0

π�α

)2 (1 + �2τ 2)d + (−1 + 3�2τ 2) cos(2d arctan �τ ) + �τ (−3 + �2τ 2) sin(2d arctan �τ )

(�τ )2(1 + �2τ 2)d
, (33)

where f (d ) ≡ 1/[(2d − 1)(d − 1)(2d − 3)]. This result is shown in Fig. 3 for different values of K . As anticipated, the
anisotropy introduced by Jz induces a much richer behavior for Wex(τ ), such that the simple 1/τ scaling of the XX case is
lost. Indeed, for long times we now have

Wex(τ � �−1)/� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f (d )

(
2g0

π�α

)2 1

(�τ )2
, 1/2 < K < 2/3,(

2g0

π�α

)2 ln[�τ ]

(�τ )2
, K = 2/3,

f (d )

(
2g0

π�α

)2 sin(K−1π )

(�τ )
2
K −1

, 2/3 < K � 1.

(34)

We see that the more correlated the system is, that is, the larger
Jz, the faster Wex(τ ) scales to zero, as a consequence of a much
faster relaxation of �(τ ) towards equilibrium. Also, in the
range 2/3 < K < 1, Wex(τ ) scales with a non-universal power
ν = 2/K − 1, determined by the anomalous scaling dimen-
sion of the coupling in Eq. (31) when Jz = 0. For 1/2 < K �
2/3, the power “sticks” to ν = 2. In Ref. [73], the authors ob-
tained a similar result, that is, the excitation energy, defined as
�E (τ ) = 〈ϒ(τ )|H(τ )|ϒ(τ )〉 − 〈H(τ )〉0 ∼ τ−η, scaling with

a noninteger power η after a linear protocol, but in the context
of the dynamics of a non-Fermi liquid system.

Finally, we highlight that the result in Eq. (34) clearly
shows how complex gapless many-body systems can lead to
nontrivial behavior for Wex(τ ). In our particular case, this even
suggests a recipe for achieving quasi-adiabaticity in finite
time: tailoring ever more strongly interacting systems in order
to obtain a faster decay of the excess work with the process
duration.
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FIG. 4. Optimal protocols for situation I (gapless-gapped). In panels (a)–(c) we show the optimal protocols for τ = 0.5, 5, and 50 (in
units of J−1), respectively, for M = 5 and 7. Panel (d) shows the evolution of λopt(t ) when we increase τ while keeping M = 7. The optimal
protocol for τ = 0.5 and M = 7 is multiplied by 0.05 for clarity. For comparison, the linear protocol is plotted in all panels. Parameters are
g0 = 1/4, J = 1, kF = π/2, � = 1, and L = 100.

V. OPTIMAL PROTOCOLS

After discussing the behavior of Wex(τ ) for a specific
protocol, we now turn to solving the actual optimal con-
trol problem. Specifically, we determine the optimal protocol
λopt(t ) for the junctions described by Eq. (2), i.e., the protocol
which leads to the least amount of excess work in finite time
τ .

To this end, we follow the strategy put forth by some of us
in Ref. [27]. In this approach we expand the time derivative of
the protocol λ(t ) in terms of the Chebyshev polynomials Tl (x)
[74],

λ̇(t ) =
M∑
l=1

alY
l
MTl (2t/τ − 1), (35)

and determine the coefficients al that minimize the excess
work of Eq. (7), subject to the boundary conditions λ(0) = 0
and λ(τ ) = 1. These conditions are implemented through La-
grange multipliers [27]. The factors Y l

M [75] in Eq. (35) are
needed to regularize the expansion, since we consider only the
first M modes [74].

We start by considering the XX case, Jz = 0. After solving
the minimization problem, we obtain the protocols shown
in Fig. 4 for situation I, gapless-gapped. We find that the
shape of the optimal protocol is strongly dependent on the
time duration for τ < 1 (in units of J−1) [see Fig. 4(a)], and

exhibits an oscillatory behavior. When τ increases, a smooth
behavior is obtained [see Figs. 4(b)-4(d)], and, for sufficiently
long times τ � 20, the derivative of λopt(t ) approaches zero
at the initial and final points, in agreement with the optimal
protocols obtained from adiabatic perturbation theory, as dis-
cussed in Ref. [29]. There, the same kind of optimal protocol
was obtained for the quantum Ising chain (QIC) deep in the
paramagnetic phase, which is also a gapped system. We also
see that, for τ � 5, the expansion in Eq. (35) converges just
with a few Chebyshev polynomials.

When both chains are in the XX gapless phase, the optimal
protocols have the shapes shown in Fig. 5. As in the previ-
ous situation, the corresponding optimal protocol for short
duration has an oscillatory behavior, but now with a smaller
frequency; see Fig. 5(a). When τ is increased, the amplitude
of this oscillation is rapidly suppressed and for τ � 5 (in units
of J−1) it is only seen close to the final and initial points; see
Fig. 5(b).

Interestingly, if we continue to increase τ above 20, the
optimal protocol approaches the linear protocol; see Figs. 5(c)
and 5(d). This can be understood from the low-energy ap-
proach employed in Sec. IV A or, equivalently, taking the
noninteracting limit, d = 1, of Eq. (32). Following the latter
approach, we find

�(s) = vF

(
2g0

πvF

)2
α

α2 + v2
F s2

α→0= π
(

2g0

πvF

)2
δ(s), (36)
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FIG. 5. Optimal protocols for the situation II (gapless - gapless). In panels (a)–(c) we show the optimal protocols for τ = 0.5, 5 and 50
(in units of J−1), respectively, for M = 5 and 7. Panel (d) shows the evolution of λopt(t ) when we increase τ while keeping M = 7. For
comparison, the linear protocol is also plotted in all panels. Parameters are g0 = 1/4, J = 1, kF = π/2, and L = 100.

where the second equality must be understood as being valid
strictly for very long times s. Using the above result in Eq. (7),

Wex(τ � �−1) = 2

π

(
g0

vF

)2 1

τ

∫ 1

0
ds[λ̇(s)]2. (37)

It is apparent that the protocol λ(s) which satisfies the bound-
ary conditions and minimizes Eq. (37) is the linear protocol
[28]. Furthermore, Eq. (37) shows clearly that, for situation
II, Wex(τ � �−1) scales as 1/τ for any protocol. This result
is a consequence of the marginality of the operator V in the
noninteracting case.

We now turn to the case with a Jz anisotropy. For this case,
the optimal protocols are shown in Fig. 6. We observe that
the presence of correlations in the chains changes the opti-
mal protocol, so that the linear protocol is no longer optimal
even for very long times τ . However, for a small Jz, which
corresponds to K � 1, the optimal protocol is fairly close
to the linear one, differing from it only near the initial and
final points. Increasing Jz continuously, the optimal protocol
becomes increasingly more distant from the linear protocol. In
Ref. [28] the authors obtained optimal protocols very similar
to our findings but in the context of achieving the interacting
ground state of a LL starting with a noninteracting LL.

In comparison with the linear protocol, situation I, gapless-
gapped, has the most distant optimal protocol, see Fig. 4.
Furthermore, besides having the same 1/τ 2 power-law decay
for the excess work, the optimal protocol for the QIC deep

in the paramagnetic phase, obtained in Ref. [29], is the same
as the one we found here in our case and shown in Fig. 4(c)
(see Fig. 3(a) of [29]). In order to clarify this, let us look at
the relaxation function of each system. Applying a low-energy
approximation, one finds for long times s

�QIC(s � τR) ∼ cos �s

s3/2
, (38)

�(s � τR) ∼ cos �s

s5/2
, (39)

where � is the gap deep in the paramagnetic phase (see
Eq. (A7) of [29]). The extra power s−1 in our case, i.e.,
a faster relaxation, is a consequence of the boundary cou-
pling between the two chains. Since these two functions have
different power-law decays, it suggests that the exponents
controlling their decays are not the determining factor in the
behavior of Wex(τ � 1), as a naive analysis of Eq. (7) might
suggest. Indeed, looking at the spectral expression of Wex(τ )
in Eq. (18), which has a general structure (system-dependent
details are encoded in fkk′ and εkk′ ), we can see that, as long as
εkk′ = 0, i.e., for a gapped system, the 1/τ 2 power law holds.
This explains why the two systems show the same behavior,
Wex(τ � 1) ∝ 1/τ 2.

Regarding the optimal protocol λopt(t ), we notice the cru-
cial importance of the oscillatory behaviors in Eq. (38) and
Eq. (39) and thus of a finite gap in the system as follows.
When both chains are in the critical LL phase, with, e.g.,
K = 4/5 or K = 4/7, the relaxation function in Eq. (32)
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FIG. 6. Optimal protocols for the XXZ-case. In panels (a-c) we show the optimal protocols for τ = 10�−1, 20�−1 and 40�−1, respectively,
for different values of K . Panel (d) shows the evolution of λopt(t ) when we increase τ while keeping K = 4/5. Once again, for comparison, we
show the linear protocol in all panels. The Luttinger parameters K = 4/7, 2/3 and 4/5 correspond to Jz ≈ 0.92, 1/

√
2 and 0.38, respectively.

These values of K were chosen so that all three regimes in Eq. (34) are illustrated. Parameters are g0 = 1/4, kF = π/2 and M = 9.

has the long-time behaviors �(s � �−1) ∝ s−3/2 and �(s �
�−1) ∝ s−5/2, respectively. However, the corresponding op-
timal protocols are clearly different [compare Figs. 6 and
4(c)] even for very long times. Therefore, we conclude that
the presence of an energy gap in the system also plays an
important role in determining λopt(t ).

VI. CONCLUDING REMARKS

In this analysis, we have studied the excess work Wex(τ ) for
establishing a weak junction between two quantum spin-1/2
chains in finite time. First, we considered that the junction
coupling strength increases linearly in time, i.e., λ(t ) = t/τ .
For very short times τ , we found that the excess work scales
in time as ∝ (1 − const. × τ 2), where the system details are
encoded only in the constant prefactor. Thus, this τ 2 behavior
is independent of which phase the chains are in. On the other
hand, for long times τ , the excess work depends on the chain
phases. For the XX case, i.e., Jz = 0, Wex(τ � 1) scales as
1/τ when both chains are in the XX gapless phase and as
1/τ 2 when one of the chains is in the XX gapless phase
and the other one in the XX gapped phase. Notably, both of
these behaviors are protocol independent [see Eq. (37) and
Appendix A].

The 1/τ 2 power-law scaling for gapped systems was also
recently obtained, by some of us, when we analyzed general
(not necessarily weak), but slow (quasiadiabatic) protocols in

the transverse field of the QIC [29]. Our results suggest that
a finite spectral gap plays a key role in the Wex(τ ) behavior,
as anticipated in Ref. [29]. Moreover, it shows that even when
the system of interest is partially gapless, the scaling predicted
by Ref. [29] applies.

On the other hand, in the presence of Jz anisotropy,
Wex(τ � 1) has a richer scaling behavior; see Eq. (34). In
particular, when 2/3 < K < 1, corresponding to (

√
2)−1 <

Jz < 1, the excess work scales as a nonuniversal power law
1/τ ν , where

ν = 2/K − 1. (40)

When compared with the simple 1/τ power law of the XX
case, this result highlights how complex gapless many-body
systems show nontrivial behavior for Wex(τ ). The energy
of the system after the protocol, more precisely the ex-
citation energy �E (τ ) = 〈ϒ(τ )|H(τ )|ϒ(τ )〉 − 〈H(τ )〉0, was
also shown to exhibit time scaling as ∼τ−η with a noninteger
exponent η in a non-Fermi liquid system [73].

Moreover, we also saw that Wex(τ ) decreases when we
increase Jz for fixed duration τ (see Fig. 3), which tells us that
increasing the interactions in the system favors a quasiadia-
batic evolution. It is important to mention that non-universal
quantities in the field-theory approach, such as the cutoff �,
can explicitly depend on the interaction also, as was recently
seen in [76]. In any case, the results shown in Fig. 3 illustrate
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how strongly correlated systems can play an important role in
the search for shortcuts to adiabaticity and quantum control.

Concerning the optimal protocol to establish the junction,
we saw that it also depends on which phases the chains are in.
When both chains are in the XX gapless phase, the optimal
protocol is the linear protocol for τ � 20 (in units of J−1).
Thus, Eq. (22) represents the minimal amount of energy that
must be spent to establish the junction in finite long duration.
When one of the chains is in the gapped phase, we found
the same optimal protocol that was obtained for the gapped
system considered in Ref. [29]. Our analyses suggest that this
optimal protocol is general for gapped systems. In the pres-
ence of a finite but weak Jz anisotropy, λopt(t ) differs slightly
from the linear protocol near the initial and final points; see
Fig. 6(d).

Finally, as future prospects, it would be interesting to ex-
tend our analysis to other types of quantum spin chains and
more complex junctions, such as Y junctions [45,55], where
we expect to see different behaviors for Wex(τ ) and λopt(τ ),
due to the presence of three-spin boundary interactions. As
shown in the Appendix B of this paper, as long as we only
have a two-spin boundary interaction, the M-chain case is
equivalent to the two-chain case.
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APPENDIX A: τ−2 SCALING FOR THE GAPPED
SITUATION

As discussed in the main text (see Eq. (8) and Eq. (17)),
the relaxation function for situation I, where one chain is in
the gapped phase and the other one in the gapless phase, is
given by

�(t ′ − t ) = −2g2
0

∑
k�kF ,k′

f 2
kk′

εkk′
cos[εkk′ (t ′ − t )]. (A1)

In order to prove the universal τ−2 scaling of Wex(τ )
for large τ , we will consider the general protocol given in
Eq. (35), i.e., that λ̇(t/τ ) can be expanded in terms of the
Chebyshev polynomials Tl (2t/τ − 1). Combining this with
the previous expression for the relaxation function, the double
integral in Eq. (7) can be written in terms of∫ 1

−1
dsds′ Tl (s)Tl ′ (s

′) cos[εkk′τ (s′ − s)/2]. (A2)

As far as we know, this integration does not have an analytical
solution for general l, l ′. However, its large τ limit can be
extracted easily. Since the product of the Chebyshev polyno-
mials in the above equation ultimately contributes with sns′m,
where n, m � 0, the integration in Eq. (A2) can be analyzed
performing a sequence of multiple integration by parts. Each
integration by parts produces a term (εkk′τ )−1, so in the large
τ limit, the leading contribution is

∫ 1

−1
dsds′ Tl (s)Tl ′ (s

′) cos[εkk′τ (s′ − s)/2] ∼ 1

(εkk′τ )2
, (A3)

as long as εkk′ never goes to zero (as indeed happens in this
case, since k � kF and k′ � 0). This shows that Wex(τ �
�−1) ∼ τ−2 for any protocol.

APPENDIX B: M-CHAIN CASE

In this Appendix, we show that as long as we have only
two-spin boundary interactions, the M-chain case is equiva-
lent to the two-chain case analyzed in the main text.

Suppose we want to make a weak junction between M spin-
1/2 chains. The system is described by the Hamiltonian

H(λ) = H0 + λ(t )V, (B1)

where H0 = ∑M
�=1 H�, with H� the Hamiltonian of chain � [see

Eq. (1)], and

V = g0

M∑
�=1

(
Sx

1,�Sx
1,�+1 + Sy

1,�Sy
1,�+1

) ≡
M∑

�=1

V�, (B2)

where Sa=x,y,z
1,� is the spin operator at the first site of chain

� (with M + � ≡ �). Applying the generalized J-W transfor-
mation introduced in [44], this boundary interaction becomes
[see Eq. (12)] [46]

V� = g0

2
χ�χ�+1[c†

1,�c1,�+1 − c†
1,�+1c1,�]. (B3)

The Klein factors χ� = χ
†
� are responsible for keeping the

correct anticommutation relations, through {χ�, χ�′ } = 2δ��′ ,
{χ�, c j,�′ } = {χ�, c†

j,�′ } = 0, between fermions in different
chains. From Eq. (7), in order to determine the excess work
we need to evaluate the correlator 〈VI (t ′)VI (t )〉0, now with
|ϒ0〉 = ∏M

�=1 |ϒ�,0〉, where |ϒ�,0〉 is the ground state of chain
�. Since the boundary interaction in Eq. (B2) only couples
pairs of chains and given the form of |ϒ0〉, it is easy to obtain
the result

	(t ′ − t ) =
∑

�

	�(t ′ − t ), (B4)

where 	�(t ′ − t ) = i〈[VI,�(t ′),VI,�(t )]〉0 is the response func-
tion for each pair of chains. Thus, the relaxation function in
Eq. (8) also assumes a decomposition similar to the above
equation. Therefore, the excess work in Eq. (7) is given by

Wex(τ ) =
∑

�

Wex,�(τ ), (B5)

where Wex,�(τ ) is the excess work needed to establish a junc-
tion between only two chains.

064304-10



NANOWELDING OF QUANTUM SPIN- 1
2 … PHYSICAL REVIEW B 110, 064304 (2024)

[1] A. Polkovnikov and V. Gritsev, Breakdown of the adiabatic
limit in low-dimensional gapless systems, Nat. Phys. 4, 477
(2008).

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[3] S. Lorenzo, T. J. G. Apollaro, A. Sindona, and F. Plastina,
Quantum-state transfer via resonant tunneling through local-
field-induced barriers, Phys. Rev. A 87, 042313 (2013).

[4] J.-S. Bernier, R. Citro, C. Kollath, and E. Orignac, Cor-
relation dynamics during a slow interaction quench in a
one-dimensional Bose gas, Phys. Rev. Lett. 112, 065301 (2014).

[5] S. Campbell and S. Deffner, Trade-off between speed and cost
in shortcuts to adiabaticity, Phys. Rev. Lett. 118, 100601 (2017).

[6] L. Dupays, B. Dóra, and A. del Campo, Exact dynamics
and shortcuts to adiabaticity in the Tomonaga-Luttinger liquid,
arXiv:2401.17884.

[7] S. Deffner and M. V. Bonança, Thermodynamic control—An
old paradigm with new applications, Europhys. Lett. 131, 20001
(2020).

[8] S. Chu, Cold atoms and quantum control, Nature (London) 416,
206 (2002).

[9] D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Ann.
Phys. (NY) 315, 52 (2005).

[10] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J.
Schmiedmayer, Non-equilibrium coherence dynamics in one-
dimensional Bose gases, Nature (London) 449, 324 (2007).

[11] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo,
D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O.
Morsch, High-fidelity quantum driving, Nat. Phys. 8, 147
(2012).

[12] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[13] X. Zhou, S. Jin, and J. Schmiedmayer, Shortcut loading a Bose–
Einstein condensate into an optical lattice, New J. Phys. 20,
055005 (2018).

[14] N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B.
Peaudecerf, D. Sugny, and D. Guéry-Odelin, Quantum state
control of a Bose-Einstein condensate in an optical lattice, PRX
Quantum 2, 040303 (2021).

[15] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics
(Cambridge University Press, Cambridge, 2020).

[16] M. V. Berry, Transitionless quantum driving, J. Phys. A: Math.
Theor. 42, 365303 (2009).

[17] A. del Campo, M. M. Rams, and W. H. Zurek, Assisted finite-
rate adiabatic passage across a quantum critical point: Exact
solution for the quantum ising model, Phys. Rev. Lett. 109,
115703 (2012).

[18] S. Deffner, C. Jarzynski, and A. del Campo, Classical and
quantum shortcuts to adiabaticity for scale-invariant driving,
Phys. Rev. X 4, 021013 (2014).

[19] T. V. Acconcia, M. V. S. Bonança, and S. Deffner, Shortcuts
to adiabaticity from linear response theory, Phys. Rev. E 92,
042148 (2015).

[20] S. Deffner, Shortcuts to adiabaticity: Suppression of pair pro-
duction in driven Dirac dynamics, New J. Phys. 18, 012001
(2015).

[21] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Floquet-
engineering counterdiabatic protocols in quantum many-body
systems, Phys. Rev. Lett. 123, 090602 (2019).

[22] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabatic-
ity: Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[23] A. Roychowdhury and S. Deffner, Time-rescaling of dirac
dynamics: Shortcuts to adiabaticity in ion traps and Weyl
semimetals, Entropy 23, 81 (2021).

[24] A. Touil and S. Deffner, Environment-assisted shortcuts to adi-
abaticity, Entropy 23, 1479 (2021).

[25] T. V. Acconcia and M. V. S. Bonança, Degenerate optimal paths
in thermally isolated systems, Phys. Rev. E 91, 042141 (2015).

[26] A. Rahmani and C. Chamon, Optimal control for unitary prepa-
ration of many-body states: Application to Luttinger liquids,
Phys. Rev. Lett. 107, 016402 (2011).

[27] M. V. S. Bonança and S. Deffner, Minimal dissipation in pro-
cesses far from equilibrium, Phys. Rev. E 98, 042103 (2018).

[28] A. Bácsi, M. Haque, and B. Dóra, Optimal protocols for quan-
tum quenches of finite duration in the Luttinger model, Phys.
Rev. B 99, 245110 (2019).

[29] A. Soriani, E. Miranda, and M. V. S. Bonança, Failure of the
geometric approach prediction of excess work scaling for open
and isolated quantum systems, New J. Phys. 24, 113037 (2022).

[30] T. Giamarchi, Quantum Physics in One Dimension (Clarendon
Press, Oxford, 2003).

[31] P. Coleman, Introduction to Many-Body Physics (Cambridge
University Press, Cambridge, 2015).

[32] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-
tion and Strongly Correlated Systems (Cambridge University
Press, Cambridge, 2004).

[33] B. Lake, D. A. Tennant, C. D. Frost, and S. E. Nagler, Quantum
criticality and universal scaling of a quantum antiferromagnet,
Nat. Mater. 4, 329 (2005).

[34] C. Rüegg, K. Kiefer, B. Thielemann, D. F. McMorrow, V.
Zapf, B. Normand, M. B. Zvonarev, P. Bouillot, C. Kollath,
T. Giamarchi, S. Capponi, D. Poilblanc, D. Biner, and K. W.
Krämer, Thermodynamics of the spin Luttinger liquid in a
model ladder material, Phys. Rev. Lett. 101, 247202 (2008).

[35] B. Yang, Y.-Y. Chen, Y.-G. Zheng, H. Sun, H.-N. Dai,
X.-W. Guan, Z.-S. Yuan, and J.-W. Pan, Quantum criticality and
the Tomonaga-Luttinger liquid in one-dimensional Bose gases,
Phys. Rev. Lett. 119, 165701 (2017).

[36] L. S. Wu, S. E. Nikitin, Z. Wang, W. Zhu, C. D. Batista, A. M.
Tsvelik, A. M. Samarakoon, D. A. Tennant, M. Brando, L.
Vasylechko, M. Frontzek, A. T. Savici, G. Sala, G. Ehlers, A. D.
Christianson, M. D. Lumsden, and A. Podlesnyak, Tomonaga-
Luttinger liquid behavior and spinon confinement in YbAlO3,
Nat. Commun. 10, 698 (2019).

[37] P. Wang, G. Yu, Y. H. Kwan, Y. Jia, S. Lei, S. Klemenz, F. A.
Cevallos, R. Singha, T. Devakul, K. Watanabe, T. Taniguchi,
S. L. Sondhi, R. J. Cava, L. M. Schoop, S. A. Parameswaran,
and S. Wu, One-dimensional Luttinger liquids in a two-
dimensional moiré lattice, Nature (London) 605, 57 (2022).

[38] S. S. Islam, P. K. Mukharjee, P. K. Biswas, M. Telling, Y.
Skourski, K. M. Ranjith, M. Baenitz, Y. Inagaki, Y. Furukawa,
A. A. Tsirlin, and R. Nath, Repulsive Tomonaga-Luttinger
liquid in the quasi-one-dimensional alternating spin- 1

2 antifer-
romagnet NaVOPO4, Phys. Rev. B 109, L060406 (2024).

[39] C. L. Kane and M. P. A. Fisher, Transmission through barriers
and resonant tunneling in an interacting one-dimensional elec-
tron gas, Phys. Rev. B 46, 15233 (1992).

064304-11

https://doi.org/10.1038/nphys963
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/PhysRevA.87.042313
https://doi.org/10.1103/PhysRevLett.112.065301
https://doi.org/10.1103/PhysRevLett.118.100601
https://arxiv.org/abs/2401.17884
https://doi.org/10.1209/0295-5075/131/20001
https://doi.org/10.1038/416206a
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1038/nature06149
https://doi.org/10.1038/nphys2170
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1088/1367-2630/aac11b
https://doi.org/10.1103/PRXQuantum.2.040303
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1103/PhysRevLett.109.115703
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/10.1103/PhysRevE.92.042148
https://doi.org/10.1088/1367-2630/18/1/012001
https://doi.org/10.1103/PhysRevLett.123.090602
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.3390/e23010081
https://doi.org/10.3390/e23111479
https://doi.org/10.1103/PhysRevE.91.042141
https://doi.org/10.1103/PhysRevLett.107.016402
https://doi.org/10.1103/PhysRevE.98.042103
https://doi.org/10.1103/PhysRevB.99.245110
https://doi.org/10.1088/1367-2630/aca177
https://doi.org/10.1038/nmat1327
https://doi.org/10.1103/PhysRevLett.101.247202
https://doi.org/10.1103/PhysRevLett.119.165701
https://doi.org/10.1038/s41467-019-08485-7
https://doi.org/10.1038/s41586-022-04514-6
https://doi.org/10.1103/PhysRevB.109.L060406
https://doi.org/10.1103/PhysRevB.46.15233


MOALLISON F. CAVALCANTE et al. PHYSICAL REVIEW B 110, 064304 (2024)

[40] S. Lal, S. Rao, and D. Sen, Junction of several weakly interact-
ing quantum wires: A renormalization group study, Phys. Rev.
B 66, 165327 (2002).

[41] S. Chen, B. Trauzettel, and R. Egger, Landauer-type transport
theory for interacting quantum wires: Application to carbon
nanotube Y junctions, Phys. Rev. Lett. 89, 226404 (2002).

[42] C. Chamon, M. Oshikawa, and I. Affleck, Junctions of three
quantum wires and the dissipative Hofstadter model, Phys. Rev.
Lett. 91, 206403 (2003).

[43] Z. Shi and I. Affleck, Fermionic approach to junctions of multi-
ple quantum wires attached to Tomonaga-Luttinger liquid leads,
Phys. Rev. B 94, 035106 (2016).

[44] N. Crampé and A. Trombettoni, Quantum spins on star graphs
and the Kondo model, Nucl. Phys. B 871, 526 (2013).

[45] F. Buccheri, R. Egger, R. G. Pereira, and F. B. Ramos, Chiral Y
junction of quantum spin chains, Nucl. Phys. B 941, 794 (2019).

[46] D. Giuliano, A. Nava, and P. Sodano, Tunable Kondo screening
length at a Y-junction of three inhomogeneous spin chains,
Nucl. Phys. B 960, 115192 (2020).

[47] D. Giuliano, A. Nava, R. Egger, P. Sodano, and F. Buccheri,
Multiparticle scattering and breakdown of the Wiedemann-
Franz law at a junction of N interacting quantum wires, Phys.
Rev. B 105, 035419 (2022).

[48] M. Schiró and A. Mitra, Transport across an impurity in one-
dimensional quantum liquids far from equilibrium, Phys. Rev.
B 91, 235126 (2015).

[49] T. J. G. Apollaro, G. Francica, M. Paternostro, and M. Campisi,
Work statistics, irreversible heat and correlations build-up in
joining two spin chains, Phys. Scr. 2015, 014023 (2015).

[50] G. T. Landi and D. Karevski, Fluctuations of the heat exchanged
between two quantum spin chains, Phys. Rev. E 93, 032122
(2016).

[51] A. L. de Paula, H. Bragança, R. G. Pereira, R. C. Drumond, and
M. C. O. Aguiar, Spinon and bound-state excitation light cones
in Heisenberg XXZ chains, Phys. Rev. B 95, 045125 (2017).

[52] G. Perfetto and A. Gambassi, Ballistic front dynamics after
joining two semi-infinite quantum Ising chains, Phys. Rev. E
96, 012138 (2017).

[53] R.-H. He, R. Wang, F.-H. Ren, L.-C. Zhang, and Z.-M. Wang,
Adiabatic speedup in cutting a spin chain via zero-area pulse
control, Phys. Rev. A 103, 052606 (2021).

[54] A. M. Tsvelik, Majorana fermion realization of a two-channel
Kondo effect in a junction of three quantum Ising chains, Phys.
Rev. Lett. 110, 147202 (2013).

[55] G. Ferraz, F. B. Ramos, R. Egger, and R. G. Pereira, Spin chain
network construction of chiral spin liquids, Phys. Rev. Lett. 123,
137202 (2019).

[56] F. G. Oliviero, W. B. Fontana, and R. G. Pereira, Majorana
Fermi surface state in a network of quantum spin chains, Phys.
Rev. B 109, 075135 (2024).

[57] S. Eggert and I. Affleck, Magnetic impurities in half-integer-
spin Heisenberg antiferromagnetic chains, Phys. Rev. B 46,
10866 (1992).

[58] A. Furusaki and T. Hikihara, Kondo effect in XXZ spin chains,
Phys. Rev. B 58, 5529 (1998).

[59] D. M. Kennes, V. Meden, and R. Vasseur, Universal quench
dynamics of interacting quantum impurity systems, Phys. Rev.
B 90, 115101 (2014).

[60] C. Jarzynski, Fluctuation relations and strong inequalities for
thermally isolated systems, Physica A 552, 122077 (2020).

[61] H. Bruus and K. Flensberg, Many-Body Quantum Theory in
Condensed Matter Physics: An Introduction (Oxford University
Press, Oxford, 2004).

[62] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:
Nonequilibrium Statistical Mechanics (Springer Berlin, Heidel-
berg, 1991), Vol. 2.

[63] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical
Methods for Physicists (Academic, New York, 2013), Vol. 7.

[64] E. Brezin, Fields, Strings, Critical Phenomena (North-Holland,
Amsterdam, 1990).

[65] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 1999).

[66] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. (NY) 16, 407 (1961).

[67] P. Nazé and M. V. S. Bonança, Compatibility of linear-response
theory with the second law of thermodynamics and the emer-
gence of negative entropy production rates, J. Stat. Mech.
(2020) 013206.

[68] F. D. M. Haldane, General relation of correlation exponents and
spectral properties of one-dimensional Fermi systems: Applica-
tion to the anisotropic s = 1

2 Heisenberg chain, Phys. Rev. Lett.
45, 1358 (1980).

[69] J. Sirker and M. Bortz, The open XXZ-chain: Bosonization, the
Bethe ansatz and logarithmic corrections, J. Stat. Mech. (2006)
P01007.

[70] M. Fabrizio and A. O. Gogolin, Interacting one-dimensional
electron gas with open boundaries, Phys. Rev. B 51, 17827
(1995).

[71] H. Bragança, M. F. Cavalcante, R. G. Pereira, and M. C. O.
Aguiar, Quench dynamics and relaxation of a spin coupled to
interacting leads, Phys. Rev. B 103, 125152 (2021).

[72] We use the fact that 〈eiaφ� (t )e−ibφ�′ (t ′ )〉0 = δabδ��′
[1+i�(t−t ′ )]a2/πK

for a ∈
R.

[73] A. Haldar, P. Haldar, S. Bera, I. Mandal, and S. Banerjee,
Quench, thermalization, and residual entropy across a non-
Fermi liquid to Fermi liquid transition, Phys. Rev. Res. 2,
013307 (2020).

[74] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske,
The kernel polynomial method, Rev. Mod. Phys. 78, 275
(2006).

[75] Explicitly, they are given by Y l
M = M−l+1

M+1 cos( π l
M+1 ) +

1
M+1 sin( π l

M+1 ) cot( π

M+1 ).
[76] M. F. Cavalcante, R. G. Pereira, and M. C. O. Aguiar, Quench

dynamics of the Kondo effect: Transport across an impu-
rity coupled to interacting wires, Phys. Rev. B 107, 075110
(2023).

064304-12

https://doi.org/10.1103/PhysRevB.66.165327
https://doi.org/10.1103/PhysRevLett.89.226404
https://doi.org/10.1103/PhysRevLett.91.206403
https://doi.org/10.1103/PhysRevB.94.035106
https://doi.org/10.1016/j.nuclphysb.2013.03.001
https://doi.org/10.1016/j.nuclphysb.2019.03.005
https://doi.org/10.1016/j.nuclphysb.2020.115192
https://doi.org/10.1103/PhysRevB.105.035419
https://doi.org/10.1103/PhysRevB.91.235126
https://doi.org/10.1088/0031-8949/2015/T165/014023
https://doi.org/10.1103/PhysRevE.93.032122
https://doi.org/10.1103/PhysRevB.95.045125
https://doi.org/10.1103/PhysRevE.96.012138
https://doi.org/10.1103/PhysRevA.103.052606
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.123.137202
https://doi.org/10.1103/PhysRevB.109.075135
https://doi.org/10.1103/PhysRevB.46.10866
https://doi.org/10.1103/PhysRevB.58.5529
https://doi.org/10.1103/PhysRevB.90.115101
https://doi.org/10.1016/j.physa.2019.122077
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1088/1742-5468/ab54ba
https://doi.org/10.1103/PhysRevLett.45.1358
https://doi.org/10.1088/1742-5468/2006/01/P01007
https://doi.org/10.1103/PhysRevB.51.17827
https://doi.org/10.1103/PhysRevB.103.125152
https://doi.org/10.1103/PhysRevResearch.2.013307
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.107.075110

