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Electron tunneling induced thermoelectric effects
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We introduce a direct (Seebeck) and inverse (Peltier) thermoelectric effect induced by electron tunneling
between closely separated conducting films. When a transverse temperature gradient is applied along one of
two films, a bias voltage is induced in the second thanks to the heat transfer mediated by electrons tunneling
through the separation gap. We highlight a non trivial behavior for this Seebeck effect with respect to geometric
characteristics of interacting films. Conversely, when an electric current passes through one of two films a strong
thermal power can be removed from or inserted in the second film through an induced Peltier effect. In particular
we highlight conditions where the induced Seebeck and Peltier coefficients are larger than in the bulk. These
induced thermoelectric effects could find broad applications in the fields of energy conversion and cooling at
nanoscale.
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I. INTRODUCTION

Thermoelectric effects are the direct conversion of the
temperature difference inside a material into a bias voltage
(Seebeck effect) and the conversion of an electric current
flowing through this material into a negative or positive ther-
mal power (Peltier effect). The efficiency of a thermoelectric
system can be evaluated with the figure of merit ZT of
material which is defined as ZT = S2

0σT/κT , where T is
the temperature, S0 = −�φ/�T is the Seebeck coefficient
which quantifies the voltage �φ generated under a temper-
ature difference �T , and σ and κT denoting the electrical and
thermal conductivity of material, respectively. Recent works
[1,2] have been performed using nanomaterials or nanocom-
posite structures to increase the ZT by reducing the thermal
conductivity while keeping its electric counterpart constant.

In this Letter we introduce thermoelectric effects induced
by the tunneling of electrons between two coupled conductors
separated by a small gap. When the size of this gap is suffi-
ciently small and a temperature difference is applied along one
of two conductors, a spatially varying density of free charges
can be induced across the gap by tunneling effect giving rise
to a drift and a diffusion current into the second conductor. On
the opposite, when a bias voltage is applied along one of the
conductors, a heat flux can be extracted from or inserted into
the second conductor. We develop a general theory to describe
these thermoelectric effects between two metallic films and
analyze its main characteristics with respect to the separation
gap and films thicknesses.

The paper is organized as follows. In Sec. II, we intro-
duce the model which describes the thermoelectric coupling
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between two films through electronic tunneling and near-field
radiative heat transfer. In the next section, we present a simple
toy model which predicts the main features of the induced
thermoelectric effects. The main numerical results of nonlin-
ear systems of coupled equations are given in Sec. IV A for
the Seebeck induced and in Sec. IV B the Peltier induced con-
figurations, respectively. We highlight the potential of these
thermoelectric effects for practical applications and we end
this article with concluding remarks.

II. THERMOELECTRICITY AND EXTREME-NEAR
HEAT EXCHANGE

To start let us consider the system sketched in Fig. 1
made of two conducting films of same thickness tz, length
�, and width ty, separated by a vacuum gap of thickness d .
We assume that along each film (i = 1, 2) small temperature
and chemical potential differences �Ti = Ti(�) − Ti(0) and
�μi = μi(�) − μi(0) are applied. Then, according to the On-
sager theory [3], the local particle-current densities J (P)

i (x)
and energy fluxes J (E)

i (x) along each film are linearly related
to the thermodynamic forces F (P)

i = d
dx ( −μi (x)

Ti (x) ) and F (E)
i =

d
dx ( 1

Ti (x) ) by the relations

(
J (P)

i (x)

J (E)
i (x)

)
=

(
L(PP)

i L(PE)
i

L(EP)
i L(EE)

i

)(
F (p)

i (x)

F (E)
i (x)

)
, (1)

where L(ab)
i (a, b = P, E) are the Onsager coefficients which

are related to the familiar transport coefficients. Onsager
equations can be rewritten in terms of the electric current
densities J (el)

i (x) = −eJ (P)
i (x) (−e is the electron charge) and

heat fluxes J (Q)
i (x) = J (E)

i (x) − μ(x)J (P)
i (x), and in terms

of temperature and bias voltage φi(x) = −μi(x)/e gradients,
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FIG. 1. Sketch of two conducting films separated by a vacuum
gap, coupled via near-field radiative heat exchanges and electron
tunneling. (a) Induced Seebeck effect: the top film is connected to
two thermal reservoirs at temperatures T1(0) and T1(�), giving rise to
a temperature gradient. It is grounded on its left side [φ1(0) = 0] and
no current can escape from its right side [J (el)

1 (�) = 0]. The electric
current J (el)

2 induced in the second film [having adiabatic thermal
conditions J (Q)

2 (0) = J (Q)
2 (�) = 0] can be measured with an ammeter

of resistance R. (b) Induced Peltier effect: a battery introduces a
current I0 into the top film while it is connected on its two ends to
two reservoirs of same temperature T1(0) = T1(�). The second film
is electrically insulated on its two sides [J (el)

2 (0) = J (el)
2 (�) = 0] and

adiabatic conditions are applied on its right side [J (Q)
2 (�) = 0] while

its left side is connected to a thermal reservoir. The bias voltage
induces a thermal power J (Q)

2 (0) which can enter or leave the film
on its left side.

given by [4](
J (el)

i (x)

J (Q)
i (x)

)
= κT

L

(
1/Ti(x) S0/Ti(x)

S0 L + S2
0

)(−φ′
i (x)

−T ′
i (x)

)
, (2)

where we used Ohm’s law J (el)
i (x) = −σφ′

i (x) (at constant
temperature), the Seebeck relation, Fourier’s law J (Q)

i (x) =
−κT T ′

i (x) (at zero current), and Wiedemann-Franz’s law
κT /σ = LTi(x) (L = π2k2

B/3e2 is the Lorenz number, kB is the
Boltzmann’s constant), in order to write the equations in terms
of S0 and κT whose dependence on temperature and bias is
negligible for conducting elements near ambient temperatures
[5]. Note that when dealing with metals thermal conduction is
mainly driven by electrons.

The two films exchange heat by thermal radiation, how-
ever, close to the contact, electrons can tunnel through the
separation gap carrying both charge and heat. A precise un-
derstanding of the transition between the radiative and the
conduction regime is still an active area of research, both
experimentally [6,7] and theoretically [8–10]. The possibility

of heat transfer by tunneling of phonons close to contact has
also been suggested [11], yet such contributions are predicted
to be negligible in metals, except for a specific range of values
of the bias voltage [10].

We restrict our discussion to the electronic and radiative
contribution. In the steady-state regime, the corresponding
energy and charge conservation equations for a given volume
element (of each body i = 1, 2) read

−tz
dJ (Q)

i (x)

dx
+ (−1)i�(rad)(x) + �

(el)
i (x) = 0,

−tz
dJ (el)

i (x)

dx
+ (−1)iJ (tun)(x) = 0, (3)

where (−1)i�(rad)(x) and �
(el)
i (x) represent the radiative and

electronic heat fluxes on body i (defined below), whereas
J (tun)(x) is the tunneling current density, defined as [12]

J (tun)(x) = eme

2π2h̄3

∫ ∞

Ẽ (x)
dEz

∫ ∞

0
dE⊥

× �nFD(E , T1(x), T2(x), μ1(x), μ2(x))T (el)(Ez ),

(4)

where me is the electron mass, E = E⊥ + Ez its total kinetic
energy decomposed in contributions stemming from veloci-
ties perpendicular and parallel to the exchange surface, the
bottom of the integral goes from the bottom of the local band
Ẽ (x) = max{0,−e[φ2(x) − φ1(x)]}, and �nFD is the differ-
ence of Fermi-Dirac distributions, depending on both local
temperature Ti and local chemical potential μi associated
with each medium. In Eq. (4), T (el)(Ez ) is the electronic
transmission probability to overcome the electronic barrier
induced between the metals and vacuum gap. In this paper we
model this barrier as the solution of a nonlocal Poisson equa-
tion [13], calculated analytically using the specular reflection
approximation and the Thomas-Fermi approximation for the
dielectric function, as done in Refs. [10,14,15]. In order to
recover the transmission probability through the barrier, we
adopt an S-matrix algorithm as employed in Ref. [15].

Electron tunneling also gives rise to a heat transfer which
takes the form [10,16]

�
(el)
i (T1, T2, d, x) = (−1)i me

2π2h̄3

∫ ∞

Ẽ
dEz

∫ ∞

0
dE⊥

× (E − μi(x))�nFD(E , T1(x), T2(x),

× μ1(x), μ2(x)T (el)(Ez ). (5)

Analogously, the flux carried by photons, evaluated from
fluctuational-electrodynamics theory [17–20], reads

�(rad)(x) =
∑
l=s,p

∫ ∞

0

dω

2π
h̄ω�nBE(T1(x), T2(x))

×
∫ ∞

0

dκ

2π
κ T (rad)

l (ω, κ ), (6)

where T (rad)
l (ω, κ ) denotes the energy transmission coefficient

for one electromagnetic mode (ω, κ ) for the polarizations l =
s, p, nBE(ω, T ) = 1/[exp(h̄ω/kBT ) − 1] is the Bose-Einstein
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distribution function, and

T (rad)
l (ω, κ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − |rl |2)2∣∣1 − r2
l exp(2ikzd )

∣∣2 , k < ω/c,

4 (Im rl )2 exp(−2 Im kzd )∣∣1 − r2
l exp(−2 Im kzd )

∣∣2 , k � ω/c,

(7)

is the radiative transmission probability, where kz =√
(ω/c)2 − κ2. and the reflection coefficients are given by

Fresnel’s formulas

rs(k, ω) = kz − km,z

kz + km,z
, rp(k, ω) = ε(ω)kz − km,z

ε(ω)kz + km,z
, (8)

where km,z =
√

(ω/c)2ε(ω) − κ2 is the z component of the
wave vector inside the media. To describe metals, we employ
a local description of the dielectric susceptibility from the
Drude model, given by ε(ω) = 1 − ω2

pl/ω(ω + i�), where ωpl

is the plasma frequency of the metal, and � is the damping
coefficient.

To analyze the thermoelectric effects induced by electron
tunneling we solve the nonlinear systems of Eqs. (2) and (3)
with respect to the temperatures Ti(x) and bias voltage φi(x)
profiles in the case of two complementary scenarios, corre-
sponding to suitable configurations where the direct (Seebeck)
and inverse (Peltier) thermoelectric effects can be observed.
To this end, we first replace the expression of tunnel current
by its linearized form in terms of both Ti(x) and φi(x), which
yields

J (tun)(x) ≈ GJ (d )[φ1(x) − φ2(x)] − hJ (d )[T1(x) − T2(x)],

(9)

where GJ and hJ denote, respectively, the electrical and ther-
mal tunneling conductances (per unit surface) that depend
only on the gap thickness d . On the other hand, the heat fluxes
must be expanded to the quadratic order

�
(el)
1 (x) � G�(d )[φ1(x) − φ2(x)] + GJ (d )

2
[φ1(x) − φ2(x)]2

− h�(d )[T1(x) − T2(x)] − h̃�(d )[T1(x) − T2(x)]2

− hJ (d )

2
[φ1(x) − φ2(x)][T1(x) − T2(x)],

�
(el)
2 (x) � −G�(d )[φ1(x) − φ2(x)]

+ GJ (d )

2
[φ1(x) − φ2(x)]2

+ h�(d )(T1 − T2) + h̃�(d )[T1(x) − T2(x)]2

− hJ (d )

2
[φ1(x) − φ2(x)][T1(x) − T2(x)], (10)

so that the tunneling current density can satisfy the energy
conservation equation

�
(el)
1 (x) + �

(el)
2 (x) = J (tun)(x)[φ1(x) − φ2(x)]. (11)

The left-hand side in this expression corresponds to the
thermal power mediated by electron tunneling through the
separation gap while the right-hand side is the electric power
associated to tunnel current. In Eq. (10), G�(d ), h�(d ),
and h̃�(d ) are the thermal conductances and Hessian asso-
ciated to the bias voltage and temperature differences. For
short distances, all parameters behave as an exponential of
the form GJ (d ) = GJ0 exp[−k1d], G�(d ) = G�0 exp[−k2d],
hJ (d ) = hJ0 exp[−k3d], and h�(d ) = h�0 exp[−k4d], where
GJ0, G�0, hJ0, h�0, k1, k2, k3, k4 are constants, obtained from
a fit from the general expressions of Eqs. (4)–(6).

III. LINEAR FOUR-NODE THERMOELECTRIC CIRCUITS

Before discussing the solutions to the coupled equations,
we provide a simplified linear circuit model in order to
introduce the main features of the induced thermoelectric
coefficients. We consider the limit of small �T and �φ in
order to obtain a linear system of equations, and we simplify
the system to two 4-node thermoelectric circuits as shown
in Fig. 2(a) (simplified Seebeck) and in Fig. 2(c) (simplified
Peltier), which are linear analogs of Figs. 1(a) and 1(b), re-
spectively. For the horizontal fluxes, we consider only the
diagonal terms in the Onsager equations in Eq. (2), which
yields

⎧⎨
⎩Qi = −κT

(
1 + S2

0

L

)
(Ti,2 − Ti,1)tytz

Ii = −σ (φi,2 − φi,1)tytz
, (12)

where Qi (Ii) is the heat (electric current) going from node
(i, 1) to node (i, 2), where i, j = 1, 2, in analogy to the con-
duction in the metallic films. φi, j and Ti, j are the temperature
and electric potentials of nodes (i, j), respectively. Similarly,
in analogy to Eq. (3) for the vertical edges, we have

Q(tun)
j = 1

2 [G�(d ) (φ2, j − φ1, j ) − h�(d ) (T2, j − T1, j )]ty�

I (tun)
j = 1

2 [GJ (d ) (φ2, j − φ1, j ) − hJ (d ) (T2, j − T1, j )]ty�,
(13)

where Qtun
j (I tun

j ) is the heat (electric current) carried by the
tunneling electrons going from node (1, j) into (2, j). The
thermoelectric couplings are given by the tunneling fluxes
in this simplified system. For this simplified discussion, we
neglect G�(d ) for the circuit of Fig. 2(a), and reciprocally
hJ (d ) for the the configuration in Fig. 2(c).

By imposing the conservation of heat and electric cur-
rents, we can calculate the induced Seebeck coefficient S =
−(φ2,2 − φ2,1)/(T1,2 − T1,1) for the simplified Seebeck cir-
cuit, and the induced Peltier coefficient � = Qout/I0 for the
simplified Peltier circuit, where Qout is the heat entering the
second layer and I0 the current imposed in the first layer as
shown in Fig. 2(c). By solving the continuity equations ana-
lytically, we obtain

S = 2hJ (d )κT
(
1 + S2

0/L
)
tz�

[2σ tz + GJ (d )�]
[
4κT

(
1 + S2

0/L
)
tz + h�(d )�

] , (14)
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FIG. 2. Induced thermoelectric coefficients as a function of the separation gap d for the simplified model, simplified Seebeck circuit in
panel (a) and simplified Peltier circuit in panel (c). In panel (b) the induced Seebeck coefficient S is shown (in units of S0) for tz = 5 µm.
In panel (b) the induced Peltier coefficient � (in units of �0 = S0T0) is shown for tz = 1 µm. For both cases, we set � = ty = 1 mm and
T0 = 300 K.

for the simplified Seebeck configuration, plotted in Fig. 2(b),
and for the simplified Peltier configuration, we find

� = h�(d )G�(d )�2

[2σ tz + GJ (d )�]
[
4κT

(
1 + S2

0/L
)
tz + 2h�(d )�

] , (15)

plotted in Fig. 2(d).
We observe that this simplified circuit has two interesting

behaviors, first it predicts thermoelectric coefficients that are
larger than the bulk at a given distance, and secondly, the co-
efficients behave nonmonotonically as a function of distance.
The origin of the increased values comes from the vertical
coupling to the vacuum that plays the role of a negative
Seebeck element, of opposite sign to that of noble metals.
Such thermoelectric effects that surpass classical values could
hold significant promise for thermal management in reduced
systems. We have verified that this behavior is very robust to
the introduction of the other terms in Eq. (2), however the
peak values and the position of the peaks of the thermoelectric
coefficients will depend on the shift of the nonlinearities of the
full system, as shown in the following section.

The nonmonoticity of Figs. 2(b) and 2(d) is the result of the
denominators in Eqs. (14) and (15), which are the product of
two terms, each one consisting in the sum of two competing
terms, the former associated with transport within the film
(proportional to σ or κ), the latter to tunneling between the
films (containing one of the distance-dependent conductances
GJ (d ), h�(d ), and hJ (d )). While the tunneling terms dominate
at short distance, they become negligible at larger distances
because of their exponential behavior. This competition,

combined with the exponential behavior at the numerator, is
at the origin of nonmonotonous behavior.

IV. RESULTS

A. Induced Seebeck effect

In this section, we discuss the results for the full systems
of differential equations given by Eqs. (2) and (3), for two
scenarios in Fig. 1. We also provide an explicit description
of the different boundary conditions. In the first scenario,
[see Fig. 1(a)], a primary temperature gradient is applied
along body 1 [i.e., T1(0) = T0 and T1(�) = T0 + �T ] and this
body is electrically connected to the ground at x = 0 [i.e.,
φ1(0) = 0] and no electric current can escape from its op-
posite side [i.e., J (el)

1 (�) = 0]. As for the second, we assume
it is connected to an ammeter of resistance R and a current
is free to circulate through it thanks to the primary tempera-
ture gradient in body 1. Therefore, according to Ohm’s law,
the bias voltage �φ2 = φ2(�) − φ2(0) along body 2 satisfies
�φ2 = R J (el)

2 (�) tzty. We assume adiabatic conditions at both
ends of body 2 [J (Q)

2 (0) = J (Q)
2 (�) = 0] and continuity of the

current through the resistance [i.e., J (el)
2 (0) = J (el)

2 (�)]. The
differential system Eq. (3) associated with expressions (10)
and (11) is solved numerically using a fourth order collocation
method as described in Ref. [21]. The induced electromotive
force that develops in the second solid when a temperature
gradient is applied in the first one can be quantified by the
induced Seebeck coefficient S = −�φ2/�T1, directly propor-
tional to the current I2(�) [Ii(�) = J (el)

i (�)tzty] via Ohm’s law.
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FIG. 3. Induced Seebeck coefficient S and induced current I2(�)
as a function of the gap thickness d between two gold films of thick-
ness tz = 5 µm. The first film is held at T0 = 300 K on its left end and
a temperature difference �T = 100 K is applied along it. The second
film is connected to a resistance of R = 22 m. In (a) and (b) the
Seebeck coefficient for bulk gold S0 ≈ 2 µm [22] is represented by
a dot-dashed line. In (a) the curves are plotted for various values of
the system length �, in (b) for a large range of distances (red). In
(b) the induced Seebeck coefficient due to the electronic contribution
(blue dashed line) and the purely radiative contribution (black dotted)
are also shown.

The results are plotted in Fig. 3 for two gold films (ty = �)
as a function of their separation distance. In Fig. 3(a) we
see that the induced Seebeck coefficient increases at close
separation distances (as a result of an increase tunneling of
free charges), and also when the length of the system in-
creases. We stress that our mesoscopic approach is expected
to fail when approaching contact (d of the order of the lattice
constant), when S is expected to tend to its bulk value S0.
It is worthwhile noting that for sufficiently long films, this
coefficient can go beyond the bulk Seebeck coefficient S0

[dot-dashed line in Fig. 3(a)]. As discussed in Sec. III, the
nonmonotonous dependence of the S as function of distance
is a result of the competition between thermal and electric
conduction coefficients.

In Fig. 3(b) we show the evolution of this effect at larger
separation distances and highlight the relative contributions of
different carriers. For distances larger than 1 nm the electronic

FIG. 4. Induced thermopower between two gold films (ty = �)
separated by a gap distance d = 6 Å as a function of the film thick-
ness tz, held at T0 = 300 K and �T = 100 K, and a resistance of
R = 22 m. In (a) the Seebeck coefficient is represented in a density
plot as function of � and tz. Dot-dashed line indicates the value of S0.
In (b) we represent two-dimensional cuts of (a) for different �. The
dot-dashed line indicates the Seebeck coefficient S0 of gold (bulk).

contribution to the transfer falls down very rapidly and the
coupling between the two films is manly due to, first, nonprop-
agative thermal photons (i.e., near-field radiative heat transfer)
for separation distances smaller than the thermal wavelength
and to propagative photons (i.e., far-field transfer) at larger
distances. For large distances, the temperature profile in body
1 becomes linear T1(x) = T0 + x�T/�, the two films being
almost uncoupled and the temperature in body 2 reaches a
constant temperature of T2 � T0 + �T/2, as shown in the
Appendix. It is interesting to note that the dependence of the
induced Seebeck coefficient with respect to the gap thickness
could be used to develop a metrology of near-field and even
extreme near-field heat exchanges.

We also analyze the dependence of the induced Seebeck
coefficient on the film thickness and length. In Fig. 4(a) we
observe that there is an intermediate region in the space of
parameters � and tz where S goes beyond S0 and it can even
exceed it by almost 50%. We have verified numerically that
for large � and tz the contour lines of constant S, including its
maximum value, have the form tz ∝ �2. In Fig. 4(b) we note,

064303-5



GÓMEZ VILORIA, MESSINA, AND BEN-ABDALLAH PHYSICAL REVIEW B 110, 064303 (2024)

at a given length, that S is a nonmonotonic function of tz: more
specifically, the induced Seebeck coefficient vanishes for both
infinitely thin and thick films. For ultrathin thicknesses, the
coupling between the two films tends to vanish and only a
residual current can flow inside body 2. On the opposite,
for thicker films, most of the thermal power is carried by
conduction inside each film so that the coupling induced by
electron tunneling or radiative transfer has little impact of the
induced current.

B. Induced Peltier effect

Let us now investigate the inverse induced thermoelectric
effect. In this case we consider the configuration as depicted
in Fig. 1(b). A bias voltage (grounded to the left φ(0) = 0)
is applied along body 1 in order to introduce a current I0 =
J1(0)tzty and its two ends are coupled to a thermostat at the
same temperature [T1(0) = T1(�) = T0]. As the second body
is concerned, it is also coupled to the same thermostat on its
left side [T2(0) = T0] and thermally insulated on its opposite
side [J (Q)

2 (�) = 0] for simplicity. Moreover, this film is an
open circuit so that no electric current can flow through it
[J (el)

2 (0) = J (el)
2 (�) = 0]. We show that a current in body 1 can

induce a thermal current in body 2. The heating or cooling
which can be induced in the second film when an electric
current flows in the first one can be quantified by the in-
duced Peltier coefficient � = J (Q)

2 (0)/J (el)
1 (0). We remind that

for a single body at temperature T0, this coefficient satisfies
�0 = S0 T0.

In Fig. 5(a) we show the evolution of � with respect to the
gap thickness and intensity of electric current flowing through
body 1. When the current is negative, i.e., goes from right to
left, � remains positive and asymptotically vanishes for large
d . As for the induced Seebeck effect, the induced Peltier effect
can exceed the bulk value �0 at short range distances thanks
to electron tunneling. This induced effect can also change
sign. Hence, � can become negative for distances smaller
than 1 nm and the electric current I0 is positive (from left
to right). In this case the Peltier effect heats up the second
solid. Moreover, we see in Fig. 5(b) that above 8 Å the induced
Peltier coefficient rapidly decreases whatever the electric cur-
rent flowing through body 1. However, below this threshold,
it has a strong dependence on the current and can go beyond
2�0 for d = 6.5 Å when a current I0 = −500 mA is flowing
in body 1. This corresponds to an extracted power through the
left side of body 2 of 50 W/cm2 × tz�. This flux is larger than
most of thermoelectric cooling devices.

To conclude, we analyze the cooling efficiency of induced
Peltier effect, defined as

η = − J (Q,−)
2 (0)

J (Q,+)
1 (0) − J (Q,−)

1 (�) − J (el)
1 (0)�φ1

, (16)

where −J (el)
1 (0)�φ1 � 0 is the electrical power density in-

jected by the battery, and J (Q,+)
i (x) = max{J (Q)

i (x), 0} and
J (Q,−)

i (x) = min{J (Q)
i (x), 0} are to be accounted when there

is heat entering the system through the thermal reservoirs. In
Fig. 5(c) we represent this efficiency for different values of
current applied in film 1. We see that η reaches a maximum

FIG. 5. Induced Peltier coefficient and cooling efficiency as a
function of d for two gold films (ty = �) of tz = 1 µm, � = 1000 µm
and T0 = 300 K. (a) Induced Peltier coefficients as a function of
the current I0 applied in body 1 and d . Dashed lines correspond to
�0 = S0T0 of gold ±10%, and the solid line represents � = 0. Cuts
of (a) are shown in panel (b) for I0 = 10 mA (solid line), 500 mA
(dashed line) and -500 mA (dotted line). The black dotted line repre-
sents �0. (c) Cooling efficiency as a function of d for I0 = −1 mA
(solid line), −500 mA (dotted line) and −60 mA (dashed line).

at a given value of the current [about I0 = −60 mA], and it
decreases for smaller and larger values. The cooling efficiency
can reach values of about 60%, an efficiency comparable
and even greater than that of current thermoelectric cooling
systems [23] and of conventional Rankine systems based on
compression/expansion cycles [24].
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V. CONCLUDING REMARKS

In summary, we have highlighted two thermoelectric ef-
fects induced by electron tunneling between two closely
separated conducting films. We have demonstrated that the
induced Seebeck and Peltier effects can exceed the classical
thermoelectric properties of bulk material when the films are
separated by subnanometric gaps. We have shown that the
induced Seebeck effect is very sensitive to the separation dis-
tance, making the measurement of the induced thermopower a
promising method to quantify the extreme-near-field transfer
between two conductors. Beside this effect we have high-
lighted the conditions to extract thermal power from a solid
using the Peltier effect induced by electron tunneling and
shown that the performances of this effect are comparable
and even better than the classical compression-cycle systems.
These thermoelectric effects could be exploited for nanoscale
energy conversion and to develop solid-state refrigeration
devices.
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APPENDIX: INDUCED SEEBECK PROFILES

In this Appendix, we illustrate the behavior of temperature,
electric potentials, and current profiles along the film in the
x direction, as a function of the separation gap d for the
induced Seebeck configuration, as shown in Fig. 1(a). For
this purpose, we choose three different regimes: d = 6.5 Å
(S < S0), d = 5.5 Å (S > S0), and d = 4.5 Å (S < S0); based
on the nonmonotonous dependence of the induced Seebeck
coefficient S as a function of d as shown in Fig. 3(a) (for
� = 1000 µm). In the following discussion we also fix ty = �

and tz = 5 µm for the dimensions of the films, T1(0) = 300 K
and T1(�) = 400 K for the temperatures of the reservoirs, and
R = 22 m for the ammeter resistance.

For large distances the behavior of film 1 (film 2) tends to
the one of an uncoupled film, i.e., zero current and linear (con-
stant) dependence of temperature and electric potential as a
function of x. In Fig. 6(a), we plot the temperature profiles for
the three different separation distances. We observe that T1(x)
remains mostly linear at any separation distance d , however
the temperature profile T2(x) is constant (at about 350 K) for
large distances and approaches T1(x) as d approaches contact.
In Fig. 6(b), we plot the electric potential profiles of materials
1 and 2. For large distances, φ1(x) is linear and it tends to
Seebeck’s relation φ1(x) + ST (x) → 0, however its electric
potential remains always negative (with respect to the ground)
and varies strongly with the separation distance, behaving
almost as a constant near the maximum of S, before becoming
linear again for smaller distances. The electric potential φ2(x)
can take positive values and near d = 6 Å it becomes linear as
a function of x and tends to φ1(x) near contact. We can observe
in Fig. 6(b) that for d = 5.5 Å the slope is large leading to a
significant induced S.

FIG. 6. Profiles for different distances (solid, dashed, dotted). In
panel (a) temperature profiles for film 1 (red) and film 2 (in blue). In
panel (b) electric potential profiles for films 1 and 2.

FIG. 7. Current density profiles for different distances (solid,
dashed, dotted). In panel (a) in-plane current density profiles for film
1 (red) and film 2 (in blue). In panel (b) vertical tunneling-density
current profile (in green), positive values indicate a current going
from material 1 to material 2.
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FIG. 8. Current density fields across the whole system for three different distances (a) d = 4.5 Å, (b) d = 5.5 Å, (c) d = 6.5 Å. The arrows
are normalized with respect to the maximum of current density for each system. Tunneling currents in panels (b) and (c) are multiplied by a
factor of 10.

The origin of the nonmonotonous behavior of the system
can also be illustrated by inspecting the electric current den-
sities. In Fig. 7(a), we plot the in-plane current densities as
function of x for the three values of d . For all values of
d , J (el)

1 (x) is negative (going from the right to the left), it is
slightly asymmetrical with respect to x = �/2, and there is no
lateral-current escaping material 1 at x = 0 and x = �. Near
contact, the current gets reduced, but shows large variations
near the boundaries. Analogously, J (el)

2 (x) follows a similar
pattern but with the main difference that the current direc-
tion can get inverted at several points along the film. These
direction flips are also related to the sign flips of the tunneling
current density shown in Fig. 7(b). The tunneling currents
are mostly concentrated near the boundaries. Contrary to
J (el)

i (x), the tunneling current J (tun)(x) is antisymmetric with
respect to x = �/2 due to the conservation of the electric
charge.

We end this Appendix by illustrating the current density
fields in Fig. 8. For the largest distances (d = 6.5 and d =
5.5 Å) the currents circulate anticlockwise, going to the left
in material 1, tunneling near the left boundary x = 0, into
material 2, and bifurcating into the in-plane current to the right
in material 2 and the current that leaves the system into the
ammeter to the left. These two contributions join again at the
right boundary (x = �) and tunnel back into material 1. For
d = 4.5 Å the situation is complex as there are extra nodes
producing anticlockwise and clockwise subcircuits between
materials 1 and 2, but with reduced intensity near the middle
of the system. The only dominating currents left produce a
localized anticlockwise circulation near the boundaries. This
behavior is tied to the reduction of the S near contact. The
profiles in the Peltier configuration are reciprocally analogous
to the Seebeck configuration but the nonmonotonous behavior
is in the temperatures and heat current densities.
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