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Competition of long-range interactions and noise at a ramped quench dynamical quantum
phase transition: The case of the long-range pairing Kitaev chain
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The nonequilibrium dynamics of long-range pairing Kitaev model with noiseless/noisy linear time dependent
chemical potential, is investigated in the framework of dynamical quantum phase transitions (DQPTs). We have
shown that for the ramp crossing a single quantum critical point, while the short-range pairing Kitaev model
displays a single critical time scale, the long-range pairing induces a region with three DQPTs time scales. We
have found that the region with three DQPTs time scales shrinks in the presence of the noise. In addition, we
have uncovered that for a quench crossing two critical points, the critical sweep velocity above which the DQPTs
disappear enhances by the long-range pairing exponent while decreases in the presence of the noise. On the basis
of numerical simulations, we have shown that noise diminishes the long-range pairing inductions.

DOI: 10.1103/PhysRevB.110.064302

I. INTRODUCTION

Long-range interactions have been attracting great interest
due to revealing surprising features [1–14]. Long-range sys-
tems are often a fascinating approach to analyze the validity
of the hypotheses that are otherwise clearly perceived for pro-
totypical short-range systems. The remarkable experimental
advancement in ultracold atomic platforms has triggered a
plethora of theoretical studies and opened up the possibility
of engineering and fine tuning long-range systems with great
accuracy [15–20].

Moreover, the unprecedented advancement in recent years
is impeccable enough to study the nonequilibrium dynam-
ics of long-range systems in a controlled manner [21–24].
Consequently, over the latest decades, theoretical and ex-
perimental research has raised a great deal of interest in
nonequilibrium quantum phenomena [25], which has led to
the discovery of some intriguing physics, including the ob-
servation of Kibble-Zurek phenomena [26,27], discrete time
crystals [28], many-body localization [29], and the breaking
of ergodicity [30–32].

In recent years, the concept of dynamical quantum phase
transitions (DQPTs) have been introduced as nonequilib-
rium counterparts of thermal phase transitions [33,34]. Within
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DQPTs real time plays the role of control parameter analo-
gous to temperature in equilibrium phase transitions [35–44].
While the conventional equilibrium phase transition is char-
acterized by nonanalyticities in the thermal free energy, the
DQPT is represented by the nonanalytical behavior of dynam-
ical free energy [45–62]. DQPT displays a phase transition
between dynamically emerging quantum phases, which takes
place during the nonequilibrium coherent quantum time evo-
lution under sudden/ramped quench [63–81] or time-periodic
modulation of Hamiltonian [82–89]. Furthermore, analogous
to order parameters at equilibrium quantum phase transition, a
dynamical topological order parameter is proposed to capture
DQPTs [90,91].

DQPT was observed experimentally in several studies
[92–98] to confirm theoretical anticipation. Most of the
research associated with deterministic quantum evolution gen-
erated by ramping or a sudden quench of the Hamiltonian.
However, relatively little attention has been devoted to the
stochastic driving of thermally isolated systems with noisy
Hamiltonian. In any real experiment, the simulation of the
desired time-dependent Hamiltonian is imperfect and noisy
fluctuations are inevitable [99–102]. Therefore, understanding
the effects of noise in such systems is of utmost importance
both in designing experiments and comprehend the results
[103–107].

Despite numerous studies of DQPTs in a wide variety of
long-range quantum systems [108–114], comparatively little
attention has been paid to the noise effects [115] on long-range
interaction properties. In the present work, we contribute
to develop the systematic understanding of the competition
between noise and long-range interaction at noisy ramped
quench DQPT. For this purpose, we investigate the ramped
quench DQPT of long-range pairing Kitaev model [13] in the
presence of the white noise with Gaussian distribution [105].
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We solve an exact master equation for the quench dynamics
averaged over the noise distribution. This allows us to study
the competition between the near-adiabatic quench dynamics
of the gapped modes of the long-range pairing system and the
accumulation of noise-induced excitations.

We show that, for the quench across a single critical point,
while the long-range pairing induces a region with three
DQPTs time scales (three critical modes), this region shrinks
in the presence of the noise. In addition, for a quench that
crosses two critical points, the critical sweep velocity above
which the DQPTs disappear, enhances by the long-range pair-
ing while decreases in the presence of the noise. In other
words, the noise has destructive effects on long-range pairing
features.

The paper is organized as follows. In Sec. II, the dynam-
ical free energy and dynamical topological order parameter
(DTOP) of the two band Hamiltonians are discussed. In
Sec. III, we present the model and review its exact solution
and equilibrium phase transition. Section IV is dedicated to
the numerical simulation of the noiseless case based on the
analytical result. The effects of noise on the system is numer-
ically studied in Sec. V. Section VI contains some concluding
remarks.

II. QUENCH OF AN INTEGRABLE MODEL
AND DYNAMICAL PHASE TRANSITION

A. Dynamical free energy

To study the ramped quench DQPTs, we follow the method
used in Refs. [116,117] in the subsequent discussions. Let us
consider an integrable model reducible to a two-level Hamil-
tonian Hk (λ) for each momentum mode and the system is
initially (ti → −∞) prepared in the ground state |gi

k〉 of the
prequench Hamiltonian Hk (λi) for each mode. Thereupon
the parameter λ is quenched from an initial value λi at ti
to the final value λ f at t f , following the linear quenching
protocol λ(t ) = vt , in such a way that the system crosses the
quantum critical point (QCP) at λ = λc. Since the adiabatic
dynamics breaks in the vicinity of the QCP, the final state
|ψ f

k 〉 (for the kth mode) may not be the ground state of
the postquench Hamiltonian Hk (λ f ) = H f

k . The postquench
state can be written in the form of |ψ f

k 〉 = vk|gf
k 〉 + uk|e f

k 〉,
(|uk|2 + |vk|2 = 1) where, |gf

k 〉 and |e f
k 〉 are the ground and the

excited states of the postquench Hamiltonian H f
k , respectively,

with the corresponding energy eigenvalues ε
f
k,1 and ε

f
k,2. The

nonadiabatic transition probability where the system ends up
in the excited state at the end of quench is denoted by pk =
|uk|2 = |〈e f

k |gi
k〉|2. Therefore, the Loschmidt overlap and the

corresponding dynamical free energy [33,34], for the mode k
for t > t f are defined by [116,117]

Lk = 〈
ψ

f
k

∣∣ exp
(− iH f

k t
)∣∣ψ f

k

〉
= |vk|2 exp

(− iε f
k,1t

) + |uk|2 exp
(− iε f

k,2t
)
, (1)

gk (t ) = − 1

N
log

〈
ψ

f
k

∣∣ exp
(− iH f

k t
)∣∣ψ f

k

〉
, (2)

respectively, where N is the size of the system.

FIG. 1. Illustration of a linear ramped quench (red color). Here,
λ(t ) is the time-dependent parameter in Hamiltonian, λi and λ f its
initial and final values, and ti and t f = 0 the corresponding times.
The wavy gray oscillations exhibit the presence of noise.

Summing over the contributions from all modes and re-
placing summation by the integral in the thermodynamic limit,
one gets [116–118]

g(t ) = −1

2π

∫ π

0
ln

(
1 + 4pk (pk − 1) sin2

(
ε

f
k,2 − ε

f
k,1

2

)
t

)
dk,

(3)

where t is measured from the instant the final state, |ψ f
k 〉,

is reached at the end of the ramped quench (Fig. 1). The
nonanalyticities in g(t ) appear at the values of the real time
t∗
n s given by

t∗
n = π(

ε
f
k∗,2 − ε

f
k∗,1

) (2n + 1). (4)

These are the critical times for the DQPTs, with k∗ the mode
at which the argument of the logarithm in Eq. (3) vanishes for
|uk∗ |2 = pk∗ = 1/2.

For the case ε
f
k,2 = −ε

f
k,1 = ε

f
k , Eq. (4) is simplified to

t∗
n = t∗

(
n + 1

2

)
, t∗ = π

ε
f
k∗

. (5)

B. Dynamical topological order parameter

The dynamical topological order parameter is introduced
to represent the topological characteristic associated with
DQPTs [90]. The DTOP displays integer (quantized) values as
a function of time and its unit magnitude jumps at the time of
DQPTs reveal the topological aspect of DQPT [90,119,120].

The dynamical topological order parameter is
defined as [90]

Nw(t ) = 1

2π

∫ π

0

∂φG(k, t )

∂k
dk, (6)

where the geometric phase φG(k, t ) is extracted from the total
phase φ(k, t ) by subtracting the dynamical phase φD(k, t ):
φG(k, t ) = φ(k, t ) − φD(k, t ). The total phase φ(k, t ) is
the phase factor of Loschmidt amplitude in its polar
coordinate representation, i.e., Lk (t ) = |Lk (t )|eiφ(k,t ), and
φD(k, t ) = − ∫ t

0 〈ψ f
k (t ′)|H (k, t ′)|ψ f

k (t ′)〉dt ′, in which φ(k, t )
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and φD(k, t ), for the two level system can be calculated as
follows [116,117]

φ(k, t ) = tan−1

(
−|uk|2 sin

(
2ε

f
k t

)
|vk|2 + |uk|2 cos

(
2ε

f
k t

)
)

,

φD(k, t ) = −2|uk|2ε f
k t,

so that [116,117]

φG
k = tan−1

(
−|uk|2 sin

(
2ε

f
k t

)
|vk|2 + |uk|2 cos

(
2ε

f
k t

)
)

+ 2|uk|2ε f
k t . (7)

In the following we will study the DQPTs in the long-
range pairing Kitaev model following the noiseless and noisy
ramped quench and the corresponding topological properties
(DTOP).

III. MODEL AND EXACT SOLUTION

Recently, an extension of the Kitaev model [121], which
describes the algebraic decay of the tunneling and/or pair-
ing terms has been intensively investigated [12,13,122–124].
This model describes experimental realizations of long-range
topological superconductors [125,126]. It has been shown that
the phase diagram is modified in the presence of the long-
range interactions [13,123]. Moreover, this model exhibits
algebraically localized edge states and an algebraic closing
of the energy gap [13,123]. However, when the pairing and
tunneling terms are isotropic, exponential localization is re-
covered independent of the power-law exponent, as long as it
is larger than unity [12,123].

In this paper, we investigate how the noise affects fea-
tures of the long-range interaction in the long-range pairing
Kitaev model. Representing fermionic annihilation (creation)
operators as cn(c†

n ), the Hamiltonian of the long-range pairing
Kitaev model with linear time-dependent chemical potential
is given as

H = −w

N∑
n=1

(c†
ncn+1 + H.c.) − μ(t )

N∑
n=1

(
c†

ncn − 1

2

)

+ �

2

∑
n,	

d−α
	 (cncn+	 + c†

n+	c†
n ), (8)

where w denotes the hopping strength of the fermionic par-
ticles between adjacent lattice sites, � is the strength of the
superconducting pairing term that decays with distance l in
a power-law fashion characterized by exponent α, and the
on-site time-dependent chemical potential μ(t ) = μ f + vt
changes from the initial value μi at time t = ti < 0 to the
final values μ f at t = t f = 0 with sweep velocity v. The
effective distance d	, between two sites denoted by n and
n + 	 on the closed ring with N sites, is given by the function
d	 = min(	, N − 	).

In the presence of the long-range pairing, the Hamiltonian
Eq. (8) is exactly solvable in the momentum space [13]. In-
troducing the Nambu spinor �

†
km

= (c†
km

, c−km ), the Fourier
transformed Hamiltonian can be expressed as the sum of

FIG. 2. Phase diagram of the long-range pairing Kitaev chain in
the μ − α plane for α > 1.

independent terms acting in the two-dimensional Hilbert
space generated by k

H(t ) = 1

2

N/2∑
m=1

�
†
km

H (0)
km

(t )�km , (9)

where H (0)
km

(t ) [the superscript in H (0)
km

(t ) is introduced to de-
note noise-free driving] is given by

H (0)
km

(t ) =
(−[2w cos km + μ(t )] i� fα (km)

−i� fα (km) [2w cos km + μ(t )]

)
,

(10)

where fα (km) = ∑N−1
	=1 sin(km	)/dα

	 is the Fourier
transform of the superconducting gap term and km =
(2m − 1)π/N, m = 1, 2, · · · N/2. In the thermodynamic
limit N → ∞, when km gets continuous values, the function
fα (km), is described as f ∞

α (k) = − i
2 [Liα (eik ) − Liα (e−ik )]

with Liα (z) = ∑∞
	=1 z	/	α being the polylogarithmic function

of z that vanishes in the limit k → 0 and k → π for α > 1.
When α < 1 the polylogarithmic function only vanishes in the
limit k → π .

In the limit of α → ∞, the model reduces to that of the
short-range Kitaev chain with only nearest-neighbor pairing,
which is exactly solvable and its topological properties were
unraveled by Kitaev [121]. In this limit, for time-independent
chemical potential μ(t ) = μ and w = 1, the time-independent
Hamiltonian undergoes topological quantum phase transitions
at μc = ±2, where the energy gap closes at k = 0, π [121].
For α > 1 the phase diagram and the topological properties
of the long-range pairing Kitaev chain are identical to that
of a short-range Kitaev chain (Fig. 2). However, as α ap-
proaches 1, the bulk gradually starts becoming gapped near
μ = −2 and for α < 1, μ = −2 no longer remains a critical
point [13].

In the time-dependent case μ(t ) = μ f + vt , the instan-
taneous eigenvalues and eigenvectors of time dependent
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Hamiltonian Eq. (8), are given by

ε±
km

= ±εkm = ±
√

h2
z (km, t ) + h2

xy(km),

∣∣χ−
km

(t )
〉 = cos

(
θkm (t )

2

)
|↑〉 − i sin

(
θkm (t )

2

)
|↓〉,

∣∣χ+
km

(t )
〉 = −i sin

(
θkm (t )

2

)
|↑〉 + cos

(
θkm (t )

2

)
|↓〉, (11)

where,

cos

(
θkm (t )

2

)
= εkm − hz(km, t )√

2εkm

[
εkm − hz(km, t )

] ,

sin

(
θkm (t )

2

)
= hxy(km)√

2εkm

[
εkm − hz(km, t )

] ,

with hxy(km) = � fα (km), and hz(km, t ) = 2w cos(km) + μ(t ),
and |χ±

km,t 〉 are the adiabatic basis of the system.
In such a case, if the system is prepared in its ground state

at ti → −∞ (μi 
 μc = −2), the probability that the kth
mode is found in the upper level at t is given as (see Appendix)

pk = e−πγ 2/4

∣∣∣∣U22 cos

(
θkm (t )

2

)
−γ e−iπ/4

√
2

U12 sin

(
θkm (t )

2

)∣∣∣∣
2

,

(12)

with U22 = Dν (x), U12 = Dν−1(x), where, Dν (x) is the
parabolic cylinder function [127,128], γ = � fα (km)/

√
2v,

ν = iγ 2/2, x = 2ei3π/4√vτk , and τk = [(μ f + vt )/2 +
w cos(k)]/v.

IV. NOISELESS NUMERICAL RESULTS

In this section, we report the results of our numerical sim-
ulations, based on an analytical approach, to investigate the
dynamics of the model using the notion of DQPTs. To this
end, we consider the linear quenching of the chemical poten-
tial μ(t ) = μ f + vt , changes from initial value μi → −∞,
where the system is prepared in its ground state, to various
final values μ f = 1, 1.95, 4 at t f = 0. In addition, to better
understand the effect of long-range pairing on the dynamics of
system after the ramp quench, we will focus only on the case
α > 1 where the location of the critical points in the parameter
space is not altered by varying α.

1. Quench across a single critical point

For the ramped quench, which crosses the single criti-
cal point μc = −2 at k = 0, the excitation probability after
quench is k dependent. As expected, when the system is driven
across the critical point, the system undergoes nonadiabatic
evolution due to the gap closing and thus the transition prob-
ability is maximum at the gap closing mode k = 0. However,
away from the gap closing mode the system evolves adia-
batically due to the nonzero energy gap and can be shown
that pk→π → 0. Considering these two limiting cases, and
also continuity of the transition probability as a function of
k in the thermodynamic limit, imply that there should exist a

critical mode k∗ at which pk∗ = 1/2 and consequently DQPTs
occur. The transition probability has been plotted versus k
in Figs. 3(a) and 3(b) for μ f = 1, 1.95 for different sweep
velocities as the ramped quench crosses the single critical
point μc = −2. Since the quench crosses the critical point,
the excitation probability takes its maximum value pk = 1
at k = 0, while it is negligible away from the gap closing
mode (k → π ). From these observations, it is straightforward
to conclude that there is always a critical momentum k∗ and
hence those of t∗

n , related through Eq. (6). Interestingly, we
observed that there exists a region in the parameter space v-α
where the system encompasses three distinct critical modes
k∗ for which pk∗ = 1/2, even though the system is quenched
across a single QCP. In such a case, the system displays three
different critical time scales t∗ as obtained from Eq. (6). While
in the short-range case [80,117] the system contains only a
single critical mode following a quench across a single QCP.
In Fig. 3(c), we have plotted a phase diagram in v-α plane
for μ f = 1, and μ f = 1.95 in which region with three critical
modes (TCMs) separated from the regions with single critical
mode (SCM). On the phase boundary separating these two
regions, there are two values of k∗ with pk∗ = 1/2. As seen,
the width of TCMs region shrinks and vanishes as α increases
and also as μ f decreases. The numerical results show that the
threshold values of μ f above which TCMs region appears is
μ f � −0.1. In other words, the exponent α has a critical value
αc(v, μ f ) above which the dynamical behavior of the system
is similar to that of the short-range system. Consequently, our
findings confirm that the appearance of TCMs region is indeed
an artifact of the long-range pairing nature of the Hamiltonian.

The dynamical free energy g(t ) and DTOP (Nw) of the
model have been depicted in Figs. 3(d)–3(f) for the quench
across a single critical point [corresponding to Fig. 3(b)], for
different sweep velocities v = 2.5, 9 and v = 6, respectively.
In Figs. 3(d) and 3(f) the system is in SCM region, where it
encompasses a single critical time scale t∗. Although the cusps
in g(t ) are not discernible but the quantization and jumps in
the associated DTOP are clearly visible as an indicator of
DQPTs. The observed oscillation in the dynamical free en-
ergy seems to be the natural behavior, which results from the
unitary time evolution of the postquench ground state in terms
of the Hamiltonian’s eigenstates. The behavior of DTOP, i.e.,
whether Nw(t ) would jump or drop, can be predicted by the
slope of pk at the critical momentum k∗ [positive (negative)
slop results jump (drop)] [108,117]. Appearing successive
jumps or drops in Nw(t ) indicate that the system has only
a single critical mode, while the presence of both jump and
drop in DTOP curve implies that the system has at least two
critical modes as seen in Fig. 3(e). As seen, uninterrupted
jumps in Figs. 3(d) and 3(f) reveal that the system is in SCM
region while two successive jumps and then drop of Nw(t) in
Fig. 3(e) points the existence of three different critical modes
in accordance with pk [Fig. 3(b)], which shows that the system
is in TCMs region.

2. Quench across two critical points

Performing a quench across both equilibrium critical points
μc = ±2 shows new features. In these cases, the chemical
potential is swept from one trivial (nontopological) phase to

064302-4



COMPETITION OF LONG-RANGE INTERACTIONS AND … PHYSICAL REVIEW B 110, 064302 (2024)

(a) (b) (c)

(d) (e) (f)

FIG. 3. Probability pk for finding the system with momentum k in the upper level for the noiseless ramped across the single critical point
μc = −2, for different sweep velocities, (a) for α = 1.2 and μ f = 1, (b) for α = 1.5 and μ f = 1.95. (c) The phase diagram of the model in
v-α plane for a noiseless quench that crosses the single critical point μc = −2 for μ f = 1 (solid line) and μ f = 1.95 (dashed-dotted line). The
dynamical free energy g(t ) and its associated dynamical topological order parameter Nw (t ) for a noiseless quench across the single critical
point corresponding to Fig. 3(b) for (d) v = 2.5, (e) v = 6, and (f) v = 9.

another one, and it is not expected to result in DQPTs when
the quench is sudden [48,117,118]. For a quench crossing
both critical points, as expected, the nonadiabatic evolution of
the system at gap closing modes k = 0, π , leads to maximum
transition probability, i.e., pk=0,π = 1.

However, the minimum of pk , occurs at the maximum
energy gap mode at k = π/2, which is the farthest mode from
the gap closing mode. Since, the maximum value of transition
probability pk=0,π = 1 is greater than 1/2, the appearance
of DQPTs requires the condition that the minimum value of
transition probability becomes less than 1/2. As the system
changes adiabatically at the gapped mode for small sweep

velocity, making the quench sufficiently slow (v < vc) ensures
that the minimum excitation probability is smaller than 1/2,
which sets a succession of DQPTs. In Fig. 4(a) the transition
probability has been shown versus k for a quench that crosses
two critical points (i.e. μ f = 4) for the exponent α = 1.5.
As predicted, pk=0,π = 1 and the minimum of pk away from
the critical modes is less than 1/2 for the small sweep ve-
locity (v < vc = 9.566). In such a case, there is two critical
modes k∗

β and k∗
γ at which pk∗

β,γ
= 1/2 yields a sequence of

DQPTs at the corresponding critical times t∗
n = t∗

n,β , t∗
n,γ , n =

0, 1, . . .. Furthermore, the minimum of pk becomes greater
than 1/2 for a sweep velocity greater than the critical sweep

FIG. 4. (a) Probability of the excitation for noiseless ramped quench, which crosses two critical points μc = ±2, for different sweep
velocities, α = 1.5 and μ f = 4. (b) The phase diagram of the model in v-α plane for a noiseless quench that crosses two critical points
μc = ±2 for μ f = 2.05 (dashed-dotted line), μ f = 4 (dashed-dotted-dotted line), and μ f = 4 (dashed line). (c) The dynamical free energy
g(t ) and the associated dynamical topological order parameter Nw (t ) for a noiseless quench crosses two critical points corresponding to
Fig. 4(a) for v = 9.
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velocity v = 10 > vc = 9.566, thus blocking the appearance
of DQPTs.

The phase diagram of the model for a quench crossing
two critical points, has been illustrated in Fig. 4(b) for dif-
ferent values of μ f = 2.05, 4 and μ f = 100 where the region
marked “DQPTs” support aperiodic sequences of DQPTs. As
seen, the critical sweep velocity vc decreases by increasing
the exponent α and vc is equivalent to the that of short-range
pairing system for α > 2.

Figure 4(c) shows the dynamical free energy and DTOP for
a quench crossing two critical points μc = −2 and μ f = 2.
Cusps in g(t ) and quantizations in the associated DTOP are
clearly visible as an indicator of DQPTs. As observed, DTOP
oscillates between 0 and 1, which indicates that the corre-
sponding pk contains two critical modes with different slopes
[Fig. 4(a)].

V. NOISY RAMP QUENCH

As mentioned the noises are ubiquitous and indispensable
in any physical system. Specifically, when energy is trans-
ferred into or out of an otherwise isolated system via a quench
in the laboratory, there will inevitably be time-dependent
fluctuations (noise) in this transfer. In this section we inves-
tigate the effects of noise on the dynamical phase diagram
of the long-range pairing Kitaev model. For this purpose,
we add a noise to the time-dependent chemical potential
μ(t ) = μ f + vt + R(t ), where R(t ) is a random fluctuation
confined to the ramp interval [ti, t f = 0[, with vanishing mean,
〈R(t )〉 = 0. We use white noise with Gaussian two-point cor-
relations 〈R(t )R(t ′)〉 = ξ 2δ(t − t ′), where ξ characterizes the
strength of the noise (ξ 2 has units of time). White noise is
approximately equivalent to fast colored noise with exponen-
tially decaying two-point correlations (Ornstein-Uhlenbeck
process) [115]. In the presence of noise the transition prob-
ability is obtained by numerically solving the exact master
equation [129–132] for the averaged density matrix ρkm (t ) of
the noisy system

d

dt
ρkm (t ) = −i

[
H (0)

km
(t ), ρkm (t )

] − ξ 2

2

{
H1,

[
H1, ρkm (t )

]}
,

(13)

where H (0)
km

(t ) is the noise-free Hamiltonian while R(t )H1 =
−R(t )σ z expresses the noisy part for the full Hamiltonian
H (ξ )

km
(t ) = H (0)

km
(t ) + R(t )H1. The master equation, Eq. (12), is

solved within the quench interval t ∈ [ti, 0].
The transition probability pk in the presence of the noise is

given by

pkm = 〈
χ+

km
(t f )

∣∣ρkm (t f )
∣∣χ+

km
(t f )

〉
.

As a result, the dynamical phase diagram of the model is
characterized by the interplay of two competing effects: (i)
The nontrivial excitation resulting from the long-range pairing
and (ii) the accumulation of noise-induced excitations during
the evolution. Moreover, we expect that the nonadiabaticity
by large values of the sweep velocity gives less time for the
noise to become effective. Our numerical simulation, which is
based on the exact master equation reveals that the main effect
of noise is to shift the critical mode yielding the succession of
DQPTs and a shift on the phase boundaries. In addition, the

FIG. 5. The phase diagram of the underlying model in v-α plane
for a noiseless and noisy quench that crosses a single critical point
μc = 2 for μ f = 1.95. The dashed-dotted line represents the bound-
ary between TCMs and SCM region for the noiseless case and solid
line displays the boundaries for the noise intensity ξ = 1.

numerical results uncover that the noise contributions dimin-
ish the long-range pairing dynamics.

The phase diagram of the model in the absence and pres-
ence of the noise (ξ = 0, 1) has been plotted in Fig. 5 for
a quench across the single critical point for μ f = 1.95. As
seen, the TCMs boundaries change in the presence of the
noise. Moreover, the width of TCMs region shrinks rapidly as
exponent α increases. In addition, the borders between TCMs
and SCM regions change less for large values of sweep ve-
locity, which corresponds to our anticipation. In other words,
the noise weakens the effect of long-range pairing on the
dynamical phase diagram.

Figure 6 depicts the border between DQPTs and no-
DQPTs regions for both noiseless ξ = 0 and noisy ξ = 1
cases, for a ramped quench that crosses two critical points for
μ f = 4. As indicated, the critical sweep velocity above which
the DQPT is wiped out decreases in the presence of the noise
even for large values of α, where the critical values of the
sweep velocity is the same as that of short-range pairing case.
Moreover, the border undergoes more changes for the smaller
sweep velocities than the larger sweep velocities. However,
the changes are constant for α > 2, where the dynamics is the
same as that of the short-range pairing case. The numerical
results show that the changes in the border of different regions
in the phase diagram of both ramped quench cases (Figs. 5
and 6) decrease by decreasing the noise strength, as antici-
pated.

VI. SUMMARY AND DISCUSSION

In this paper, we have studied the nonequilibrium dy-
namics of the long-range pairing Kitaev model (α > 1) with
noiseless and noisy linear time-dependent chemical potential.
For a noiseless quench across one of the equilibrium quan-
tum critical points (μc = −2), we find that the dynamical
phase diagram in v-α plane is classified into two regions,
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FIG. 6. The v-α phase diagram of the model for a noiseless and
noisy quench, which crosses two critical points μc = ±2 for μ f = 4.
The dashed-dotted-dotted line shows the boundary between DQPTs
and no-DQPTs regions for the noiseless case and solid line represent
the corresponding border for the noise intensity ξ = 1.

the three critical modes and the single critical mode regions.
The three critical modes region is the result of the long-range
pairing, in contrast to the short-range Kitaev model, which
shows a single critical mode for a noiseless quench across a
single critical point. The three critical modes region shrinks
and disappears as the exponent α increases. In addition, the
numerical results show that appearance of the three critical
modes region depends on the final values of the chemical
potential. The lower bond of the chemical potential above
which three critical modes region emerges is μ f = −0.1 and
the upper bound is the next critical point, i.e., −0.1 � μ f < 2.
Moreover, the exponent α has a critical value αc(v, μ f ) above
which the dynamical behavior of the long-range pairing sys-
tem is similar to that of the short-range system. Consequently,
our finding confirms that the appearance of TCMs region is
indeed an outcome of the long-range pairing nature of the
Hamiltonian.

Further, for a noiseless ramped quench that crosses two
critical points, the critical sweep velocity above which
the dynamical quantum phase transition is wiped out for

long-range pairing, is larger than that of the short-range pair-
ing case. The critical sweep velocity decreases by increasing
the exponent α of long-range pairing and saturates to the
critical sweep velocity of the short-range pairing case beyond
α = 2.

The boundaries between different regions in both cases
of the ramped quench, are changed in the presence of the
Gaussian white noise. The three critical modes region for
the quench that crosses the single critical point shrinks faster
in the presence of noise by increasing α. Moreover, for the
ramped quench, which crosses two critical points, the critical
sweep velocity above which the dynamical quantum phase
transition disappears reduces by adding noise. The numerical
results exhibit that the system is affected less at the large
sweep velocities. In summary, the noise has destructive effects
on the long-range pairing features.

The case of α < 1 hosts massive edge modes for the open
boundary condition, which is not our case. However, the study
of a system with massive edge modes could be an interesting
issue for further investigations.

APPENDIX: TIME-DEPENDENT SCHRÖDINGER
EQUATION IN THE DIABATIC BASIS

The time-dependent Schrödinger equation of Hamiltonian
in Eq. (8) is given by

i
d

dt

(
a1(t )
a2(t )

)
=

(−hz(k, t ) ihx,y

−ihx,y hz(k, t )

)(
a1(t )
a2(t )

)
, (A1)

where hz(k, t ) = [2w cos km + μ(t )], hx,y = i� fα (km) and
a1(t ), a2(t ) are the coefficients, which define the quantum
state in the diabatic bases. The time-dependent Schrödinger
Eq. (A1) is mapped to the time-dependent Schrödinger equa-
tion of Landau-Zener problem [133,134] by performing π/2
rotation around the z axes and defining the new time scale
τk = [μ f + vt + 2w cos(k)]/2v,

i
d

dτkm

(
a1

(
τkm

)
a2

(
τkm

)
)

=
( −2vτkm � fα (km)

� fα (km) 2vτkm

)(
a1

(
τkm

)
a2

(
τkm

)
)

.

(A2)

The Landau-Zener problem is exactly solvable as explained
in Refs. [133,134] and the transition probability is given
by Eq. (12).
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