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Critical properties of weak measurement induced phase transitions in random quantum circuits
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The effects of different forms of weak measurements on the nature of the measurement induced phase
transition are theoretically studied in hybrid random quantum circuits of qubits. We use a combination of
entanglement measures, ancilla purification dynamics, and a transfer matrix approach to compute the critical
exponents, the effective central charge, and the multifractal spectrum of the measurement induced transitions.
We compare weak measurements with an infinite number of discrete outcomes to a protocol with only a pair
of outcomes and find that to within our numerical accuracy the universal critical properties are unaffected
by the weak measurement protocols and are consistent with the universality class found for strong projective

measurements.
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I. INTRODUCTION

Measures of quantum entanglement, such as Reyni en-
tanglement entropies [1-5], provide critical insights into a
variety of equilibrium and nonequilibrium properties in quan-
tum many-body systems. In hybrid quantum circuits [6,7],
where generic unitary dynamics competes with disentangling
random local measurements, a measurement induced phase
transition (MIPT) takes place in the structure of the entangle-
ment [8—14]. The critical point has been shown to be Lorentz
invariant [8,11,15,16] and can be described by a logarithmic
conformal field theory (log-CFT) [17,18] in one-dimensional
chains (though several perturbations, such as long-range gates
[19] or static measurement profiles that are disordered [20]
or quasiperiodic [21], can dramatically modify this critical
behavior to no longer be Lorentz invariant). The properties
of the log-CFT depends crucially on the quantum nature of
the problem and can be numerically investigated through a
bulk or boundary transfer matrix approach [18,22]. In both
stabilizer circuits and qudits of local Hilbert space size ¢ —
o0, the MIPT does not have multifractal correlations [18,23]
that reflect the discrete nature of Clifford gates and the
classical nature of the percolation problem, respectively. In
Haar random gates on qubit chains, however, the multifractal
correlations are strongly pronounced providing a qualitative
distinction between these problems [18,24].

A monitored circuit with weak, as opposed to strongly
projective, measurements that extract only partial information
from the system provide a much more versatile implementa-
tion of an open quantum system. Microscopically, a generic
example of a means to implement a weak measurement is
via an ancilla degree of freedom (e.g., a qubit) coupled to
the system [25]. Upon measurement of the ancilla, the state
of the system is updated based on the outcome of the ancilla
measurement. Such measurements are generically given by a
measurement strength J which can be used to tune between no
observation (J = 0) and projective measurements (J — 00)
of some system observable. At intermediate strengths, only
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partial information of the systems observable that is being
weakly measured can be obtained. Unlike projective measure-
ments, which are described by projection-valued measures,
weak measurements are described by positive operator valued
measures (POVMs) [25]. The size of POVMs may be larger
than the dimension of the Hilbert space of the qubit being
measured (because its elements are not necessarily orthogo-
nal), which leads to the possibility of making simultaneous
measurements of noncommuting observables [26,27]. Putting
such weak measurements into a hybrid random quantum cir-
cuit, as depicted in Fig. 1, thus represents an interesting class
of models that have more entanglement than its strongly pro-
jective counterpart. Previous work has shown that the MIPT
can remain in the presence of weak measurements provided
the strength of the measurement is not too weak [11,28-30].
For the MIPT in the ¢ — oo limit it is expected that the
nature of the universality class is independent of the type
of random local measurements being strongly projective or
weak [31]. However, detailed studies of the role of different
types of local measurements and different types of gates, e.g.,
Haar random [29,31] versus free fermions [32,33] evolution,
remains a central problem. An aspect of this question is di-
rectly investigated in this work through a detailed numerical
study of the effects of weak measurements on the MIPT
in Haar random hybrid quantum circuits. We compare and
contrast two distinct models for a weak measurement; one
representing an infinite number of measurement outcomes,
with one that has a binary outcome. We focus on dual Haar
random gates as this reduces the error in the analysis of the
transfer matrix as shown in Ref. [18]. The universality class
of the MIPT in Haar and dual Haar models are expected to be
the same [18,34] and we further verify this by computing the
remaining (straightforwardly accessible) unknown exponents
with strong projective measurements in Appendix A. Using
purification based probes on an auxiliary ancilla qubit we
provide unbiased estimates of the location of the MIPTs as
a function of the measurement strength. Across the MIPT
we use finite size scaling of the entanglement entropy of an
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FIG. 1. Circuit model and different measurement protocols:
(a) We consider models of a hybrid quantum circuit with a brick-
layer geometry acting on a chain of length L of spin-1/2 qubits
with periodic boundary conditions. The two-site unitary gates (blue
squares) are interspersed with weak measurements at every site with
probability p (red circles denote the location that a measurement has
taken place). (b) In both the models coupled to the classical pointer
(see Secs. II B 1 and 11 B 2), p(x) denotes the probability distribution
of the location of a classical Gaussian pointer coupled to a qubit.
The outcome of a readout operation on the pointer in the DGPM is
shown by the blue region of width €. The outcome of the readout
operation on the pointer in the CGPM is denoted by a continuous
position Xx. The strength of the measurement depends on the ratio of
the separation between the two Gaussian peaks (1) and the width of
the Gaussian distribution (A). (¢) The measurement set-up for the
softened projective measurement model (SPMM). For a single qubit
oriented along the | 4 n) direction in the Bloch sphere, intermediate
values of A interpolate between | + z) and | + n).

ancilla qubit, and the mutual information between a pair of
ancilla qubits to extract several critical exponents and show
that the transition remains Lorentz invariant. This allows us
to apply the bulk transfer matrix construction of Ref. [18] to
study the universal properties of the log-CFT.

To formulate the free energy of the log-CFT [18] based
on the entropy of the measurement record and further the
Lyapunov spectra of the transfer matrix, we find that it is
essential to have discrete, not continuous, measurement out-
comes. To make this construction explicit we review a model
for weak measurements with continuous outcomes to then
show how we can effectively “bin” the measurement out-
comes to a width € allowing us to construct a model with a
discrete but infinite number of measurement outcomes. Using
this approach we compute the leading Lyapunov spectrum of
the transfer matrix to extract the effective central charge of
the 1log-CFT, the typical scaling dimension of the order pa-
rameter, and the multifractal spectrum of the order parameter.
To summarize, all of the typical critical exponents agree well
with the strong projective case while the leading multifractal
exponent that we have computed does have a slightly larger
deviation. Taken together, our results strongly suggest that
the universality class of the MIPT is unaffected by going
from strong to weak measurements and they are ultimately
described by the same log-CFT.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the models of the monitored circuits

including the Haar dual unitary entangling gates and three
different protocols for weak measurements. In Sec. III, we
compute the phase diagram of the entanglement transition as a
function of the measurement strength J and measurement rate.
We provide numerical evidence of Lorentz invariance at the
transition and compute several critical exponents. In Sec. IV,
we study the log-CFT governing the transition through a
transfer-matrix based approach and calculate the effective
central charge, the typical scaling dimension of the order
parameter, and the multifractal spectrum. We conclude and
provide outlook for future works in Sec. V. In Appendix A
we compute critical exponents of the strongly projective dual
unitary Haar model, while in Appendices B and C we provide
additional details on the models with an infinite number of
measurement outcomes. Last, in Appendix D we show that
introducing a discrete measurement outcome does not affect
our estimate of the critical properties.

II. MODELS

In the following section, we will describe the models we
use for the entangling unitary gates and the various forms
of weak measurements. We consider a class of hybrid ran-
dom quantum circuits, depicted in Fig. 1(a), consisting of a
chain of qubits where the unitary dynamics is generated by
the entangling gates (blue squares) that we take to be either
randomly drawn from the Haar random or dual Haar random
distribution (defined below). Random local measurements are
applied to each site with probability p and the red circles in
Fig. 1(a) denote where a measurement has taken place. We
define one timestep as one layer of gates, followed by one
layer of measurements. With increasing p, for both strong pro-
jective measurements [8,34] and (certain strengths of) weak
measurements [28], this hybrid circuit exhibits a MIPT in its
entanglement structure. In the following, we explore the ef-
fects of different forms of weak measurements on the nature of
the universality class of the MIPT. In particular, we consider
three models that differ in the nature (or protocol) of the weak
measurement we apply. The first two models involve weak
measurements with an infinite number of outcomes that can
be continuous or discrete. The third model involves only two
outcomes but a “softened” projection operator.

A. Entangling unitary gates

We aim to study the most generic quantum many body cir-
cuit of qubits. At the level of the unitary gates this is achieved
by sampling each gate randomly from the Haar distribution
of random U(4) matrices. Importantly, previous work [18,22]
has shown that we can restrict this generic gate set to a smaller
subset of “dual-unitary” Haar (HDU) gates [35-37], which
are unitary along the space and time direction, and still probe
the same transition while obtaining more accurate numerical
results for the free energy of the log-CFT (explained in more
detail in Sec. IV and see Refs. [18,22]). In Appendix A, we
explore this universality class further to provide additional
evidence beyond Ref. [18] that the strong projective MIPT in
random HDU and random Haar circuits are within the same
universality class. As a result, for the majority of the paper,
we use two site HDU qubit gates between neighboring sites
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(unless otherwise specified) that are given by
U=e%U, U_)-V[O]-(V_®V,), (1)

where ¢,0 € R are chosen randomly from [0,7) and
Ui, Vi € SU(2), are randomly chosen from the Haar mea-
sure, and

b4

T
V[6] = exp [—I(ZO'X ® oy + )

oy, Q@ 0, + %901 ® az)].
@)

Here, 0%, 67, 0% are the Pauli spin-1/2 matrices.

B. Models for weak measurement

To implement a weak measurement locally in the circuit,
we use the generic description of the von Neumann model
[38], where the system is first entangled with an ancilla lo-
cally, and then a projective measurement is performed on
the ancilla. We consider three weak measurement models.
In the first two models, we consider a measuring device
with a “classical pointer” [28] having canonically conjugate
position X and momentum § operators, satisfying [X, §] =i
(in units with & = 1). The classical pointer interacts with a
qubit of the system for a time 8¢ with a coupling strength
A, which is then followed by a readout of the pointer posi-
tion. The readout location x, is a continuous variable with
an infinite number of outcomes. This readout operation on
the pointer updates the state of the qubit in the system either
partially or fully, being controlled by A. This implements
a weak measurement on the qubit with varying strength of
measurement. We first provide a review of the continuous
outcome model in Sec. IIB 1. However, we are unable (at
present) to form a transfer matrix description of this MIPT
due to the infinitesimal Born probabilities associated with it.
To overcome this limitation, we bin the measurement out-
comes x, to a small window € around that point to form a
discrete weak measurement model, that is described in detail
in Sec. [I B 2.

We also find it interesting to contrast and compare these
models with a weak measurement model with only a pair of
outcomes. In Sec. II B 3, we consider a weak measurement
model obtained from softening the projective measurement
of the z component of the qubit, which implements a weak
measurement with two outcomes.

1. Continuous Gaussian pointer

In this section, we review a well known model for a
weak measurement model where the system is coupled to a
classical pointer that can be measured continuously at po-
sition x [28]. We dub this the continuous Gaussian pointer
model (CGPM). This will set the stage in the following sec-
tion to define a similar model with discrete measurement
outcomes.

The wave function of the pointer is initialized in a Gaussian
state |¢(x. = 0)) of width A centered at x. = 0, which can be
expanded in terms of the position basis states |x) as

lp(xe = 0)) = % /_: a(x)|x)dx. 3

The corresponding probability amplitudes are chosen from
a squared Gaussian distribution, namely |a(x)|> = [Ga(x)]?,

and

2
—x

€242

G2l = A

“
is a Gaussian distribution of width A centered at x = 0.
However, the system is initialized in a state |yy) which can
be written in terms of the 2% product states |e;) spanning
the Hilbert space of L qubits with corresponding expansion
coefficients ¢;s as

2L
W) =Y cile. )
i=1

Hence, the system-pointer combined initial state at t = 0 is
given by

W =0) =) ® [p(x. = 0)). (6)

At the start of each measurement operation on a system qubit
(t = 0), we couple the system with the measuring device with
a tunable coupling strength A via the Hamiltonian Hjy,,

Hipe = 201)0(8t — 1o ® 4. (7

Here the pointer interacts with the jth site of the system where
z component of the spin is to be measured and ®(x) denotes
the Heaviside step function. The system-pointer interaction
is turned on for an interval of time §t imposed by the theta
function. During this time interval, the system and pointer
jointly evolve under the unitary operator,

Ui (51) = et = 1P @ 40 4 IV @ &4, (3)
where
Y =[0£o)2lon1 O

projects the z component of the jth spin onto the spin-up, or
the spin-down state. We set §¢ = 1 without any loss of gen-
erality. The unitary evolution under Uy, generates translation
of the position space wave packet of the pointer and entangles
them with the spin at the jth site as

|W(81)) = Ui |¥) ® |p(xc = 0))
=11y ® [p(x. = M)+ 1Y) ® [p(x, = —1)).
(10)

Here, |W(5¢)) denotes the combined state of the system and
the pointer after the unitary evolution that consists of two
Gaussian states |¢(x. = £A)) of the same width A with their
centers shifted to x, = A corresponding to the spin eigen-
states of az(j ),

The next step is to perform a readout operation on the
pointer location by measuring the operator Mc(x,) =1 ®
|x,) (x,], where we use the C subscript to denote continuous
measurement outcomes xo. These set of Krauss operators [25]
satisfy the completeness relation: ffooo Mg ()M (x)dx, = 1,
as required for a POVM. The system-pointer state after the

064301-3



AZIZ, CHAKRABORTY, AND PIXLEY

PHYSICAL REVIEW B 110, 064301 (2024)

readout operation is given by

(W) — ell¥) MY Galx, — 1)
IMc(x)W) | /PGos AJA)
+ VG A(x + MY @ |xo). (11)

The probability of measuring the pointer at x, is given by

P A/ A) = (WML (x)Mc(x,)| W)
= (yInY1¥) G4 (x, — 1)

+ (YT [Y)GA (xo + 1), (12)

p(x,) is schematically shown in Fig. 1(b) which consists of
two overlapping Gaussians and hence, there is no one to one
correspondence between the pointer readout position and the
spin eigenstates of the qubit. As a result, a readout/projection
of pointer location to x, does not project the state of system
to one of eigenstates of oz(j ) and the state of the spin is only
weakly measured. We recover projective measurements in the
limit of nonoverlapping Gaussians (A 3> A), as the pointer
will only have nonzero probability to be in eigenstates |x) near
the peaks of the Gaussian wave packets, x, = £A.

To summarize this subsection, we implement a weak mea-
surement protocol on a qubit by entangling it to a classical
pointer whose position can be measured in a continuous basis.
For any arbitrary strength of measurements determined by
the ratio A /A, we perform a readout operation on the pointer
with its location x, sampled from the probability distribution
p(x,; A/ A) and update the system-pointer state governed by
Eq. (11). The two step weak-measurement operation is de-
noted by the operator

Peapm = Mc () Ui (51). (13)

In the continuous model the probability density p(x,;A/A)
has the dimension of inverse length and is vanishingly small
as it has infinitesimal support in real space. That is, the Born
probability has a continuous set of outcomes and within an
infinitesimal spatial interval dx goes like

peO™ = p(x; 1/ A)dx. (14)

As a result of the infinitesimal and continuous Born prob-
ability, it is not currently straightforward to define the free
energy of the log-CFT based on the Born probabilities using
this measurement model (ellaborated on in Sec. IV). It is
however, natural to do so in the limit of a discrete number of
outcomes with a finite Born probability, and we now therefore
turn to constructing a discrete measurement model based on
the continuous pointer outcomes.

2. Discrete Gaussian pointer

We now consider a weak measurement model where the
classical pointer can be measured in discrete positions, |x;)
separated by a distance €. We call this the discrete Gaussian
pointer model (DGPM). The DGPM can be deduced from
the continuous measurement model, which replaces the basis
states |x) by |x;). The basis states |x;) are obtained by binning
the continuous pointer positions |x) over a width of €. The
measurement region € is shown schematically by the blue

rectangles in Fig. 1(b). This binning gives the orthonormal
basis states of the pointer,

1 xi+5
j?? xi—5

The pointer is initialized in a Gaussian state |¢(x. = 0)) of
width A centered at x, = 0, which can be expanded in the
discrete position basis as

|x;) = x)dx, Vi € 7. (15)

1 =00
lp(xe =0)) = ——= ajlx;), (16)

Vi
where the corresponding probabilities, |a;|*s are chosen from
a squared Gaussian distribution G5 (x) averaged over a width

€ around |x;) as

Xi+5 Xit5
|a,-|2=/ |a(x/)|2dx/=/ G4 (x)dx'. (17)

€ €
i—3 Xi—3

As previously, the system is coupled to a classical pointer
whose Hamiltonian is given by Eq. (7), but is now measured
in a discrete basis.

The readout operation on the pointer location is performed
by measuring the operator Mp(x,) = I ® |x,){x,| in discrete
basis |x,) given in Eq. (15).The measurement operation is now
denoted by the operator

Pocem = Mp(x,) Ui (81). (18)

Thus, the system-pointer state after the readout operation is
analogously given by

Mp (x,)|¥)
||Mp (x,) | W) |
1

= a1 Ve /A€

+09p_ G A/ A ONY) ® |x,),  (19)

where x, is discrete and p(x,;A/A, €) denotes the nonzero
probability amplitudes from the two Gaussian wave packets
shifted to x, = %A that is given by

|W(ér)) —

Xot5
pi(xa;A/A,e)zf 2G2A(x/:px)dx/. (20)

02

Figure 1(b) illustrates the probability distribution of the clas-
sical pointer when two Gaussians significantly overlap. In this
case the measured spin will not collapse to an eigenstate of o,
(unless it was already in an eigenstate prior to measurement
due to the overlap). Now, the Born probability of measuring
the pointer at x,, over width € is

PO A/A, €)= (WL 1Y) py(xo3 1/ A, €)

YOV p_ (3 /A, €).  (21)

In the limit of small €/A, we find analytical expressions
for the probabilities p(x,; A/A, €) given in Appendix C. In
our numerical calculation, we use at most € /A = 1073 and
thus use the Born probabilities given in Eq. (C2). In the dis-
crete measurement model, we now have a well-defined Born
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probability, p(x,; A/A, €) of the measurement outcome mea-
suring the pointer within a bin centered at x,. Therefore, we
use the discrete model in computing quantities involving the
probability of the measurement record (see Sec. IV). How-
ever, we find that the average entanglement properties such
as the half-cut and ancilla entanglement entropies are numeri-
cally equivalent between the discrete and continuous outcome
models as shown in Appendix B.

In the next subsection, we will discuss a different weak
measurement model which does not involve a system-pointer
coupling to implement the measurement protocol.

3. Softened projective measurement model

We will now illustrate a weak measurement protocol in-
troduced in Ref. [40] obtained by softening of the projective
measurement in the eigenbasis of o, by a tunable softening
parameter A. We call this model the softened projective mea-
surement model (SPMM). This weak measurement operator
at site j is defined as

=T 20+ A2
which also satisfies the completeness condition P, + P_ = 1.
Here A can be varied between [0,1] to control the strength
of the measurement. Figure 1(c) schematically shows the
effect of the weak measurement in the Bloch sphere for a
single qubit. In the limit A =0, P, reduces to the identity
(up to a multiplicative constant). At A = 1 the weak mea-
surement operators {Pfrj ) pY )} map onto the strong projector
operators {IT ., IT; _} defined in Eq. (9) implementing mea-
surement along | £ z) axis. For the intermediate values of
A, P. interpolates between |+ z) and | £ n). To perform
the weak measurement, we calculate the Born probabilities
p+(A) corresponding to the operators ﬁi’ ) from the system
wave function |v) as

pa(A) = (y|PY P |y)

1
T 2(14A?)

(22)

(1+ A* £2A |0 P]y)). (23)

Based on pi(A), we measure either pfrj ) or p&i ) and update
the state of the system to

p(J)

Peoly)

V) = — 55— (24)
P 1Y

This implements a soften version of the standard projective
measurement controlled by the parameter A.

III. PHASE DIAGRAMS OF WEAK MIPTS

In this section, we will locate the entanglement phase tran-
sition as a function of measurement strength (J) and rate (p).
To get a qualitative sense of the phase diagram, we use the
variance of the bipartite entanglement entropy as a function
of measurement strength and probability in Sec. IIT A. To
provide an accurate, unbiased estimate of the location of the
MIPT we use finite size scaling of an ancilla based local order
parameter [34,39] in Sec. IIIB. To compute all the Reyni

entropies (e.g., the half-cut bipartite Renyi entropy and the
ancilla Renyi entropies defined below) in the models with a
classical pointer coupled to the system, we use the CGPM. As
we show in Appendix B, both the CGPM and DGPM yield the
same numerical value for the Reyni entropies, up to negligible
numerical fluctuations of the order 103 times smaller than the
value of the Reyni entropies.

A. Bipartite entanglement entropy

We begin by estimating the phase boundary from fluctu-
ations in the bipartite entanglement entropy. To compute the
bipartite entanglement entropy, we divide the system into two
halves (denoted A and B) and the reduced density matrix
pa = Trg[|¥ (1)) (¥ (t)]] is used to compute the half-cut von
Neumann entanglement entropy

Su=1 = —Tralpa In p4]. (25)

Following Ref. [28], we compute the variance of the bipartite
entanglement entropy var(S) as a qualitative proxy of the
phase diagram. We compute the variance from an ensemble
of entanglement entropy values constituted from (i) the steady
state S(t = 2L) values from different quantum trajectories
[18] and (ii) S(z) values from a single trajectory choosing ¢
from a quasi-stationary regime, t = L/2 to 100. This steady-
state regime is chosen such that the initial growth of the
entropy with time has saturated. Figure 2 shows var(S) in the
two-dimensional parameter space spanned by p and J with
a color plot where the lighter color indicates larger variance.
Figure 2(a) corresponds to the CGPM while Fig. 2(b) is for the
SPMM. We average the bipartite entanglement entropy over
3000 trajectories for CGPM and 2000 trajectories for SPMM
for each values of p and J. The variance is expected to be
maximal at the critical measurement rate p = p.(J) (where
J = 1/A for CGPM/DGPM and J = A for SPMM), and as
shown in the data we see a clear maximum in the parameter
space for a fixed system size L = 12. However, the location of
this maximum is known to drift with increasing system size
[28] and therefore in the next section we consider a separate
unbiased estimate of p.(J). In particular, we use the ancilla
entanglement entropy defined below in the next subsection,
and its crossing for various system sizes as a function of p to
locate p.(J).

B. Ancilla qubit order parameter

To construct a local order parameter of the MIPT [39],
we couple an ancilla qubit locally by putting it in a Bell
pair with a spin in the system. We then apply an encoding
step to scramble the locally entangled ancilla by running the
circuit without measurements and only unitary gates out to
t, = 2L, which prepares the ancilla in a maximally entangled
states with the system. We then run the hybrid measurement
and unitary dynamics and call this time # = O in the results
presented.

As a function of time we calculate the ancilla von Neu-
mann entanglement entropy S, of the reduced density matrix
of the ancilla after integrating out all of the spins in the
circuit. In the monitored dynamics, Su(f; p,J) decreases
monotonically with time from its maximum value 1 as time
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FIG. 2. Phase diagrams for the weak measurement models considered: To qualitatively see the phase boundary we present the variance
of the bipartite entanglement entropy, var(S) as color, for a chain of L = 12 qubits with varying measurement rate p and varying strength of
measurement J = A/A [introduced in Eq. (7) for the CGPM defined in Sec. I B 1] in panel (a) and J/ = A [introduced in Eq. (22) for the
SPMM defined in Sec. II B 3] in panel (b). The blue circles track the critical measurement rate p.(J) obtained from the finite-size scaling
collapse of the ancilla entanglement entropy S, following Eq. (26) (the blue line extending to p = 1 is a guide to the eye). For small p and
weak coupling strength the models are in the volume law (VL), entangled phase, whereas for large coupling strength and measurement rate the
models have long time stead states that are area-law (AL) entangled. In both models, at the phase boundary between the area and volume law
phases, the fluctuations in S are effectively maximized shown by the light yellow color. The white line denotes the transitions that we focus on
by computing their critical exponents in Sec. III and their log-CFT properties in Sec. IV.

increases. The ancilla entanglement entropy Suc(?;p,J)
serves as an order parameter for the MIPT in the steady
state (r &~ 2L) [34,39]. To estimate the critical point p.(J), we
perform a finite-size scaling with the following ansatz:

Sanc(t; p, L) ~ Q((p — p)L'", 1 /L7), (26)

where Q(x, y) is an arbitrary scaling function, v(J) and z(J)
are the correlation length exponent and the dynamical expo-
nents of the MIPT, respectively.

We show the data for S,,.(r = 2L; p, J) versus p for the for
the CGPM model with J = A/A =1 in Fig. 3(a) and SPMM
model with J/ = A = 0.45 in Fig. 3(b), in which both display
a clear crossing at p.(J) for various systems sizes, consistent
with the scaling ansatz in Eq. (26). Fixing the aspect ratio
of time and the system-size (+ = 2L), we collapse the ancilla
order parameter for different system sizes L = 12, 16, 20 to
estimate p.(J) and v(J) as shown in the insets of Figs. 3(a)
and 3(b). This yields p.(A/A = 1) =0.19(1) and v(A/A =
1) = 1.3(3) for the CGPM and p.(A = 0.45) = 0.28(2) and
V(A = 0.45) = 1.6(3) for the SPMM. These estimates of v
agree within their numerical accuracy with the value for the
projective measurement case v & 1.2(3) [34]. We average
Sanc(t = 2L; p, J) over 3000 trajectories for CGPM and 2000
trajectories in SPMM for each values of p, L, and J.

Varying the strength of the measurements J, we calculate
pc(A/A) for the CGPM and p.(A) for the SPMM shown in
Figs. 2(a) and 2(b), respectively, as solid blue circles. The crit-
ical transition rate p.(J) increases with decreasing strength of
measurement J(= A/A or A) in both the models as expected.
This estimation of p. from the ancilla order parameter (Sync)
clearly follows (though not precisely) the locus of the max-
imum of var(S) (at fixed system size L = 12) that is shown
by bright yellow color. Interestingly, in both models we find
that if the measurement strength is too weak its not possible
to drive a phase transition out of the volume law phase with
measurements.

To estimate the dynamical exponent z, we study the time-
dependence of the ancilla order-parameter at the critical
measurement p = p.. In Fig. 3 we show Sy, (f; p.,J) as a
function of ¢ for the CPGM with A/A =1 in Fig. 3(c) and
for the SPMM with A = 0.45 in Fig. 3(d) for three different
system-sizes L = 12, 16, 20. We average the time-dependent
Sanc (t; pe, J) over 10 000 trajectories for both CGPM and and
SPMM for each values of L and J. We perform a finite size
scaling collapse of Sanc(t; pe, J) as a function of ¢ /L*Y) using
Eq. (26) and the collapsed curves are shown in the insets of
Figs. 3(c) and 3(d). We find z(A,/A = 1) = 0.94(6) and z(A =
0.45) = 0.95(5). Thus, our results provide strong numerical
evidence of conformal invariance at the weak measurement
induced transition.

C. Mutual information between two ancilla qubits

We next compute the anomalous dimension exponent 7(J)
following the protocol prescribed in Refs. [34,39]. We initial-
ize the system in a random product state and then evolve the
circuit with monitored dynamics to reach a steady state at time
t, = 20L. We note that in HDU circuit this wait time is much
longer to reach the steady state for the mutual information
between two ancillas compared to that with Haar random
gates (where t, & 2L), though we find this is important to
reach a stable (i.e., wait-time-independent) estimate of 1. We
introduce two ancilla qubits A and B, and maximally entangle
them with the circuit at the spacetime points (r, #,) and (+/, 2,).
We define the connected order-parameter correlation function
C(t —t,) as the mutual information between the ancillas A
and B. In both the volume law phase, p < p., and area law
phase, p > p., C(t —t,) ~ exp(—L/&) for L > & where & ~
(p — p.)’ is the finite correlation length at generic p # p..
At MIPT p = p.(J), C(t —t,) ~ 1/L". To compute the bulk
exponent 1, we entangle the two ancillas to antipodal sites
(r — ' = L/2) with periodic boundary conditions in the cir-
cuit and perform a finite-size scaling with the following ansatz
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FIG. 3. Properties of the ancilla entanglement entropy and associated critical exponents: Late time ancilla entanglement entropy Sy,.(t =
2L; p,J) vs p for the for the the CGPM with / = 1/A =1 in panel (a) and the SPMM with J = A = 0.45 in panel (b) show a crossing
at the critical point [34,39] p = p.(J) in each model. We define y = (p — p.)L'/". The location of MIPT p.(J) and the correlation length
exponent v(J) are obtained from a finite size scaling collapse using Eq. (26) shown in the insets. In both models, we perform the collapse with
L € {12, 16, 20}. We find p. = 0.19(1) and v = 1.3(3) for the CGPM with / = 1/A =1 and p. = 0.28(2) and v = 1.6(3) for the SPMM
with J = A = 0.45. v(J) agrees within error-bars with the strongly projective case having v = 1.3(3). We comment however that v within
these proxies is not expected to be sufficiently accurate to make conclusions about the critical properties. The dynamical critical exponent z(J)
is obtained from the time-dependence of S,..(?; p., J) at p = p.(J) shown in panel (c) for the CGPM and in panel (d) for the SPMM. Following
Eq. (26), we collapse Sun(¢; pe, J) vs t/L* as shown in the insets and obtain z(A/A = 1) = 0.94(6) for the CGPM and z(A = 0.45) = 0.95(5)
for the SPMM. In both models, we perform the collapse with L € {12, 16, 20}.

(assuming z = 1): 10* trajectories for each system size. The scaling collapse

A is shown in the inset yieldin = 0.21(3) for CGPM and

Clt = to) ~ L7 = 1)/L), @7 Z0.192) for the SEMM. We also cogn}))ute the bulk ex-

where Q(x) is an arbitrary scaling function. In Figs. 4(a) and ponent 1 for the projective measurement case in the HDU

4(b) we show C(t —t,) versus t —t, for the CGPM model circuit in Appendix A and find n = 0.23(2). Hence, based on

at \/A =1 and p = p. =0.19(1) and the SPMM model at numerical estimation of the exponents n and v, we observe

A =0.45 and p = p. = 0.28(2) for three different system that weakening the strength of measurements does not change
sizes L = 12, 16, 20. In the data presented, we average over the bulk exponents of the MIPT.

AA=1 A=0.45

FIG. 4. Mutual information between two ancillas at the critical point and exponent 7: (a) Mutual information between two ancillas
entangled at r = 1 and r' = % in the steady state of the circuit evolving with the CGPM at A/A =1 and p = p. = 0.19(3) shown in panel
(a) and that for SPMM at A = 0.45 and p = p. = 0.28(2) shown in panel (b). We use three different system sizes L = 12, 16, 20 for the
scaling collapse following Eq. (27) shown in the inset. We find the bulk exponent n = 0.19(3) in SPMM and 1 = 0.21(2) in CGPM. We
average over 10* trajectories for each system size.
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IV. TRANSFER MATRIX APPROACH
AND PROPERTIES OF THE LOG-CFT

At the critical point p = p, of the MIPT we have shown
numerical evidence of Lorentz invariance at the transition in
Figs. 3 and 4. Through mappings to classical statistical me-
chanics models via an infinite onsite Hilbert space dimension
[11,16,17] or the zeroth Renyi entropy [8] a firm connection
to percolation in 1 4+ 1-dimensions, which is a well known
example of a log-CFT [24,41-43], has been established. Mov-
ing away from these tractable limits numerical evidence for
the nature of the log-CFT in qubit chains with strong pro-
jective measurements was unveiled through a transfer matrix
description that probe the bulk [18] and the boundary [22]
critical exponents. Focusing on the bulk Lyapunov spectrum
of this nonunitary transfer matrix, the effective central charge
of the log-CFT, the leading typical scaling dimension of the
order parameter, and the potential multifractal nature of the
transition can be computed numerically by utilizing numerical
techniques from percolation applied to the MIPT [18,44,45].
In the following section, motivated by this past work and the
numerically observed Lorenz invariance of the transition in
Sec. III, we utilize this transfer matrix description to study
the nature of the log-CFT governing the MIPT with weak
measurements.

A. Lyapunov spectrum of the transfer matrix

We adopt the transfer matrix method introduced in Ref.
[18] to describe the nonunitary evolution of the hybrid circuit.
We summarize the key ingredients of the method here for both
the sake of completeness and to understand the reason why
we construct the DGPM. The time-evolution of a quantum
circuit is represented as an ensemble of quantum trajectories
where each trajectory is defined by a fixed set of unitary
gates and the location and time of measurement operations.
Each time-step of a trajectory is defined by a Krauss operator
K™ = P™U, where U, are the unitary gates acting at each
time step and P™ is the weak measurement operator defined
in Sec. II. The Krauss operators at time ¢ depends on the
history of measurement outcomes 7 in that trajectory. In the
DGPM 77t = (x},x2,x3, ...), where x' refers to the measured
pointer position at the ith measurement event and take an
infinite number of possibilities. Whereas, for the SPMM i =
(m',m?>,m3,...)and m' = %1 for the two possible outcomes
given in Eq. (23). The time evolution of the density matrix in
a trajectory is represented as

p(t) = o Knp(t = 0K, (28)

Z
where Kj; = ]_[i,zo Ktﬁ1 and Zj; is the partition function of the
statistical mechanics model describing the trajectory [17,18]
and is given by

Zn(t) = Trl[Kap(t = K1 =Y 4. (29)

Here Af“ are the Lyapunov exponents governing the exponen-
tial decays in the partition function in the long time limit
(A" < 0). The average Lyapunov exponents Ag, Aj, ... are

-

obtained by averaging A7* over trajectories /m weighing by

their corresponding Born probability pj,ie., ;i =) - p,,-l)LT.
In the next subsections, we will study the average first two
leading Lyapunov exponents Ao and A; to extract critical ex-
ponents governing the log-CFT.

B. Free energy

The leading Lyapunov exponent is related to the free
energy F = —Aot which can be calculated as the Shannon
entropy of the measurement record 77 averaging over quantum
trajectories,

F == palnps=—(npz). (30)

Here, we point out that a discrete measurement outcome is
required for the average of In p; to be well defined. At the
critical point of the MIPT p = p,, the conformal invariance
of the system dictates that the free-energy density f(L,?) =
F(L,t)/A where the (implicitly defined) space-time area is
given by A = «aLt. The space time anisotropy factor appy = 1
for the HDU gates we consider here [18], and this exact
knowledge of « is why we are considering these HDU gates. If
we consider Haar unitary gates, however, a direct computation
of o through mutual information in space and time [18], yields
agu = 0.81(9) that introduces an additional error in the free-
energy calculation. The free-energy density after long times
(t > L) for spatial periodic boundary conditions decays with
the system size as

(L) = f(L=00)

_ TTCerr
6L2

where c.gr is the effective central charge of the log-CFT.

We first calculate the free energy for the weak measure-
ment model with the DGPM illustrated in Sec. II B 2. In this
model, the Born probabilities of the measurement record are
calculated from

+oee, (31)

pa =[] p(ir/A €), (32)

where p(x’; A/ A, €) given in Eq. (21) [and in the limit € < A
by Eq. (D3)] is the probability of measuring the classical
pointer in a region of width € around x, in the ith measurement
operation in the trajectory /7. We note that f(L) in this case
explicitly depends on the choice of € which is the smallest
length scale we keep in our calculation to avoid the van-
ishingly small probabilities in the continuous measurement
case (see Sec. II B 1 for the limiting case ¢ — 0). However,
in the limit € < A, a change in € leads to a change in the
free-energy density as Af = p.In Ae leaving our estimate
of cefr unaffected in this limit (see Appendix D for more
details). However, in the strong projective limit, A/A — o0,
the probabilities p(x’; /A, €) reduce to measuring the spin
in the up or down state up to a multiplicative constant. As
we show in detail in Appendix D, the effective central charge
also remains invariant w.r.t. changes in € in the projective
measurement limit. We compute the free energy F'(L, t) start-
ing from an initial product state of the circuit. To eliminate
the effects of initial conditions in the free energy calculated
from the cumulative Born probabilities pj(¢), we waited till
t = 5L before starting to record p;(¢). In the long time limit
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FIG. 5. Properties of log-CFT in DGPM model: Panel (a) shows the decay of the free-energy density f(L) defined in Egs. (31) and (30)
vs 1/L17 by the black circles with its slope related to the effective central charge, c.;r. We perform the double fitting procedure from Ref. [18]
by successively removing the smallest system size from the fit, and then fitting the data with L > L, for Ly, € {8,10,12} shown by the
dashed lines where darker color denotes larger L. The inset shows cegt(Lmin) and we use Cefr(Linin) = Ceff (Lmin = 00) + b/Lﬁlin to obtain
Ceft (Lmin = 00) = 0.25(3) quoted in the main text. Panel (b) shows the decay of k;/Lt vs 1/L* where k; and k; are the first two cumulants of
the correlation functions (C™) defined in Eq. (37). The slope of k; /Lt gives the typical anomalous scaling dimension xiyp = 0.14(2) while that
of ky/Lt gives the leading multifractal exponent xiz) = 0.19(2). The presence of multifractality is further confirmed in panel (c) by showing
the scaling collapse of the distribution of Y (#) = — In C"(¢) onto a universal scaling function H (s), following a multifractal scaling given in
Eq. (39). The values are shown for different system sizes from L = 8 to L = 18, and using data from ¢ = 5L to ¢+ = 32L, in the solid yellow
lines. The darker color denotes a larger system size. The black dashed line shows the H (s) curve extracted from Ref. [18]. The x axis is plotted
as s — s,, where H (s) attains a minimum at s, = 0.14 ~ xtlyp. Weuse € = 0.1, A = A = 10*, p = p. = 0.19 and periodic boundary conditions
for all the plots. We use 3 x 10° quantum trajectories for statistical averaging of the f and 1.5 x 10°> quantum trajectories for averaging of the

cumulants.

(t > 5SL), F(L,t) grows linearly with time and we extract
f(L) from its slope between t = 5L and r = 32L. Figure 5(a)
shows the free-energy density f(L) versus 1/L? for different
system sizes L = 8 to 18 with black circles at the strength of
measurement A/A = 1.

The finite size scaling form in Eq. (31) provides an essen-
tial guide to obtaining the correct numerical estimate of the
free energy. An important point to note is that the DGPM
requires us to average over a much larger number of tra-
jectories (~2 x 10%) compared to the strong projective case
(~2.5 x 10%) to see the 1/L? behavior dictated by the log-
CFT. To estimate c.¢ from its slope, we use a double fitting
procedure systematically eliminating the effects of the smaller
systems sizes [18,44]. We fit the data from L = Ly, toL = 18
shown by dashed lines and estimate cegr(Lmin) shown in the
inset. Extrapolating L.,;, — 00, we obtain the effective cen-
tral charge cesf = 0.25(3) in a weakly measured DGPM at
pe(L = A) = 0.19(1), which matches quite well with the case
of strong projective measurement that finds cesr = 0.25(3) in
Ref. [18].

We next calculate the free energy for the softened projec-
tive measurement model illustrated in Sec. II B 3. In this case
the Born probabilities pj; are calculated from

pi =[] pw (B, (33)

where p,,i(A) are Born probabilities of individual mea-
surement event (denoted by m' = +£) defined in Eq. (23).
Figure 6(a) shows f(L) versus 1 JL? at A =045 having
pe = 0.28(2). We averaged over 25000 quantum trajecto-
ries initialized in both Haar random and product states and
waited till + = 4L before starting to record Born probabil-
ities. We extract the slope of f(L) versus 1/L? using the
above-explained double fitting procedure to obtain cett(Lmin)

shown in the inset. This gives c.r = 0.26(2) in the softened
projective measurement case which also closely matches with

the projective measurement case. Thus, weakening strength
of measurements does not affect the effective central charge
of the log-CFT governing the MIPT.

C. Leading scaling dimension

In this section we calculate the next leading Lyapunov
exponent A; and the associated typical and multifractal critical
exponents following Ref. [18]. To calculate A;, we construct
the two orthogonal states of the system |1;) and |y,). These
states are then evolved in time where at each time step
they are subjected to identical Krauss operators K™ with the
measurement operators, Pt’hs solely determined by the Born
probabilities calculated from |y ). After each timestep, we or-
thogonalize |¥) to |,) with a Gram-Schmidt projector Pth ,
which is akin to an additional measurement operation. The
Born probability of the measurement records in the trajectory
m corresponding the state [y,) is written as

P = || P K1) |

This gives the first generalized free energy Fi(L,t) = —At =
— Y 5 P-Inpl.. We initialize the system either in Haar state
or product state and wait till # = 5L before starting to record
I’/m (t)s to eliminate the effects of the choice of initial condi-
tions. In the long time limit (+ > 5L), Fi(L, t) is expected to
increase linearly in time and we compute the first generalized
free-energy density, f1(L) = Fi(L, t)/(Lt) from its slope be-
tweent = 5L and ¢t = 32L.

The log-CFT governing the MIPT suggests that difference
between the first two generalized free-energy densities decay
with L as (taking o = 1),

(34)

b _ - = 20
L 2
with a slope related to the typical scaling dimension of the

order parameter, x;'”. The exponent x\’* is related to the bulk

(35)
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FIG. 6. Properties of log-CFT in SPMM model: Panel (a) shows the decay of the free-energy density f(L) Eqgs. (31) and (30) vs 1/L? by the
black circles with its slope related to the effective central charge, c.¢r. We perform the double fitting procedure [18] by successively removing
the smallest system size from the fit, and then fitting the data with L > Ly, for Ly, € {8,10,12,14} shown by the dashed lines where darker
color denotes larger Lp,. The inset shows cef(Lmin) and we use Cegr(Lnin) = Ceft (Lmin = 00) + b/ernin to obtain cep (L, = 00) = 0.26(2)
quoted in the main text. Panel (b) shows the decay of k;/Lt vs 1/L? where k; and k, are the first two cumulants of the correlation functions
(C'™) defined in Eq. (37). The slope of k; /Lt gives the typical anomalous scaling dimension x;'* = 0.12(2) while that of k,/Lt gives the leading
multifractal exponent x?) = 0.14(2). The presence of multifractality is further confirmed in panel (c) by showing the scaling collapse of the
distribution of Y () = — InC™(¢) onto a universal scaling function H (s), following a multifractal scaling given in Eq. (39). The values are
shown for different system sizes from L = 8 to L = 18, using data from ¢ = 5L to t = 32L, in the solid yellow lines. The darker color denotes
a larger system size. The black dashed line shows the H (s) curve for the projective measurement case extracted from Ref. [18]. The x axis is

plotted as s — s,, where H (s) attains a minimum at s, = 0.12 & x;yp. We use A = 0.45, p = p. = 0.28 and periodic boundary conditions for

all the plots. We use 2.5 x 10* quantum trajectories for statistical averaging.

exponent 1 (computed in Sec. III through Eq. (27), and shown
in Fig. 4) as x{" = n/2.

We show the first cumulant k; /Lt given in Eq. (35) and
(taking o = 1) versus 1/L? in Fig. 5(b) for the DGPM at
A = A and in Fig. 6(b) for the SPMM at A = 0.45. From
the slope of k;/Lt, we find x{P(» = A) = 0.14(2) for the
DGPM and x"P(A = 0.45) = 0.12(2) for the SPMM, which
closely agrees with the strong projective case having xtlyp =
0.122(1) obtained in Ref. [18]. Moreover, our results are
consistent with xtlyp = 1/2 in both the models: In the SPMM,
n =0.19(3) and xtlyp = 0.12(2), and in the CGPM/DGPM

n = 0.21(2) and x;"” = 0.14(2), meaning that both results are
almost agree within statistical error bars.

D. Multifractility of the log-CFT

Going beyond the typical scaling exponent, it is also inter-
esting to probe the multifractal properties of the correlation
function. At the critical point, the system is scale-invariant
and all the moments of the correlation functions of the log-
CFT [18,46,47], C™ = exp{t (M — A} after averaging over
trajectories (denoted by ¢) decay as a power law in distance
(r) in the long time limit,

_ B,
e[{C"}"] ~

Fam

(36)

A cumulant expansion of the correlation function yields

2
In[e[{C™}"]] = ne[InC™] + %s[ﬂn C™" —e[InC™}* 1 +--- .

' (37)
This gives, x;(n) = nx® + gxiz) + O®?) for sufficiently
small n. We identify the presence of multifractality in the
spectrum of correlation functions by the a nonzero estimate
" where n > 2.

From the scaling of the second moment &, (taking o = 1)
defined as

ky &{lnC™ — ¢[lnC™]}?
Lt Lt

(38)

and its slope versus 1/L?, we find a finite x%z)()\ =A)=

0.19(2) for the DGPM and x{”(A = 0.45) = 0.14(2) for the
SPMM. Thus, our numerical results present evidence for mul-
tifractal scaling in MIPTs with weak measurements. These
estimates are similar to that in the projective measurement
case having x*’ = 0.145(2) computed in Ref. [18].

We further confirm the multifractal scaling by calculating
the probability distribution function P[Y (¢)] of the correlation
functions, where Y () = — In C"(¢). In the presence of multi-
fractality, this is expected to follow the universal scaling form

[46,47],
—2mH< Y(t)> o o
eXp[ L \zmiL)” ]

2t
P[Y ()] ~ (T)

collapsing onto a single curve H (s) having a minimum at s, =
x;'?, where we have choosen b in Eq. (39) to bring H(s,) = 0.

We compute the distribution function P[Y (¢)] using data
from systems sizes L = 8 to 18 and times ¢ = 5L and 32L
to find the universal scaling function H (s) for the weak mea-
surement models through the scaling form given in Eq. (39).
H (s) versus s — s, are shown in Fig. 5(c) for the DGPM and
in Fig. 6(c) for the SPMM. Darker colors denote larger system
sizes. We also plot the curve for projective measurement case
by black dashed lines extracting the data points from Ref. [18]
and shifting the origin of the s axis to 5, = x;"*. In both the
models of weak measurements, the curves corresponding to
weak measurements have similar shape compared to that of
the projective measurement case, though not precisely over-
lapping. This may possibly arise from differences in higher

x\"s in the multifractal spectra.

o=
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TABLE 1. Critical data of universal parameters for the various
models: central effective charge c.s, scaling dimension of the order
paramter x}'?, the multifractal critical exponent xiz), and the dy-
namical exponent z. These exponents were extracted at the critical
probability p.. At % = 1, the quantities involving the free energy
(Cett» X7, xﬁz)) were obtained from the DGPM, whereas the quantities
involving the ancilla entanglement entropy (v, z, n) were obtained
from the CGPM. Data is shown for the projective limit % = 00,

which is equivalent to A = 1.

2 =00 L= A =045

Pe 0.14(1) 0.19(1) 0.28(2)
v 1.3(3) 1.3(3) 1.6(3)

z 0.98(8) 0.94(6) 0.95(5)
n 0.23(2) 0.21(2) 0.19(3)
Ceft 0.24(2) 0.25(3) 0.26(2)
x)P 0.12(2) 0.142) 0.12(2)
X 0.142) 0.19(2) 0.14(2)

V. CONCLUSION

In this work, we have studied the effect of weak mea-
surements on the critical properties of MIPTs. The summary
of our findings are provided in Table I. Based on scaling
collapse we estimate p., v, 1, and z, which reveals a Lorentz
invariant transition with exponents that are consistent with
their values in the limit of strong projective measurements. As
prior work found it challenging to determine the universality
class from these estimates alone [34] we turned to a more
accurate transfer matrix approach. This is also based on the
Lorentz invariance of the transition and the log-CFT nature
of the field theory, allowing us to utilize universal finite size
scaling corrections to estimate the effective central charge cegr
and the scaling dimension of the order parameter x;yp =1n/2,
which both agree quite well across each model considered.
We therefore take the agreement in cer and x;'” across the
different measurement protocols as the strongest evidence that
each of these models belong to the same universality class,
namely the Haar random MIPT [18]. We find clear evidence
of multifractal scaling, which is indicative of strong quan-
tum fluctuations at the MIPT, in both measurement models.
As these moments are higher statistical quantities they also
carry much more numerical uncertainty. Therefore, the larger
discrepancies across models that we have observed in the mul-
tifractal properties, namely x?) and the shape of H (s), are not
sufficient for us to make any firm conclusions regarding their
higher moments differing. However, we leave this possibility
open for future work, which will require orders of magnitude
more statistical samples than we have considered here. xiz)
for A/A = 1 appears to have a nonoverlapping error bar when
compared to other models. Similarly, x"* = /2 for ,/A = 1
does not agree within the error bars, although in this case
the discrepancy is relatively minor. An interesting and open
question we leave for later is a construction of the log-CFT
for the continuous Gaussian pointer model. To summarize,
taking all of numerical results together lead us to conclude
that the nature of the universality class of the Haar MIPT and
its underlying log-CFT description is unaffected by weak or
strong measurement protocols.
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APPENDIX A: CRITICAL PROPERTIES
OF THE HAAR-DUAL-UNITARY STRONG
PROJECTIVE HYBRID QUANTUM CIRCUIT

In this Appendix we compute the remaining (easily acces-
sible) critical exponents of the strongly projective HDU MIPT.
In Ref. [18] p. and x;"” were computed. Here we compute
v and 7 from the ancilla probes in Sec. III to further verify
that the HDU gates do not affect the universal nature of the
MIPT. As shown in Figs. 7(a) and 7(c) we find that, for the von
Neumman entropies, 1PV = 0.23(2), and vPY = 1.3(3) for
HDU gates with strong measurement, which are close to the
values 7% = 0.19(1) and v = 1.2(2) for Haar random
gates with strong measurement as computed in Ref. [34].
Figure 7(b) also shows signatures of Lorentz invariance in
HDU circuit. In conclusion, we find good agreement between
HDU and Haar random gates as expected.

APPENDIX B: COMPARISON OF DISCRETE
AND CONTINUOUS REYNI ENTROPIES

In this Appendix, we compare the Reyni entanglement
entropies in the discrete and continuous Gaussian weak mea-
surement models. We compute both the ancilla and bipartite
entanglement entropies following the protocols explained in
Secs. IIT A and III B. We find that for L = 12 and all mea-
surement probabilities centered around the critical point p, ~
0.19, the Reyni entropies in both models are virtually indis-
tinguishable. This allows us to use either measurement model
to compute the Reyni entropies. In Fig. 8, we compute the
bipartite entanglement entropies in Fig. 8(a) and the ancilla
entanglement entropies in Fig. 8(b) for both the CGPM and
DGPM. The difference in entanglement entropies is orders
of magnitude smaller than the mean value in both instances:

%;/2 ~ 1072 and % ~ 1073. The difference is also of the

same order of magnitude as the statistical error bars in both
models, which is smaller than the size of the points.

APPENDIX C: KRAUSS OPERATORS FOR WEAK
MEASUREMENT

For DGPM, we showed that p(x,;A/A,€) could be
defined in terms of the integrals pi(x,, A/A,€), as ex-
pressed in Eq. (20). In this Appendix we describe how we
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FIG. 7. Critical properties of strong projective measurements with HDU gates: (a) Data is taken for 2000 trajectories per system size. We
find a crossing near p = p. = 0.14(1) consistent with previous work [18], and a scaling collapse of the data in the inset yielding p. = 0.14(1)
and v = 1.3(3). (b) Data is taken for 10 000 trajectories per system size. We find z = 0.98(8) from a scaling collapse of the data, as shown

L

in the inset. (c) Mutual Information between two ancilla qubits entangled at » = 1 and ' = % in the steady state of the circuit evolving with

2

projective measurements. We use three different system sizes L = 12, 16, 20 for the scaling collapse following Eq. (27) shown in the inset. We
find the bulk exponent = 0.23(2). We average over 10* trajectories for each system size.

numerically evaluate the Born probabilities pi(x,;A/A, €)
defined in Eq. (20). To numerically compute these integrals
we consider the limit € — 0. In this limit, the integral over
position can be efficiently calculated by numerical evaluation
of the error function:

A
erf(x) = —/ e "dt. (Ch)
VT Jo
In terms of the error function the probabilities become
A F2A —2x,+ €
/e = Y [en(F e
e, = Y FR 2T
F21 —2x, — €
—erf| ———— ] Cc2
er < A (C2)

Therefore, the Krauss operator which updates the state, as
represented in Eq. (19), becomes
—2x, — 21 + 6)

- 1
MD(x()) = m{[erf( A

—ZX{) — 21— € 0
—erf[ — ill_l_‘{
2A

(a) - I n
351, S 0000 AN T
. 2 VoA
3.0- < -0.025 [
a . 0.2 0.3
@ 2.51 . p
2.01 e Continous T N
Discrete ° .
0.15 0.20 0.25 0.30
p

2A
v, + 2 — ,
—erf(L>:|H(_’)}. (C3)

-2 2
+[erf( .xO+ )\,+6>

2A

APPENDIX D: CHANGING € DOES NOT AFFECT c

In this Appendix we show that for DGPM, the
effective central charge we calculated is independent
of the choice of the binning width €. In the limit
€ < A (there are no constraints on A, except noting that for
a fixed strength A/A, A depends on A) leading us to show in
this Appendix that the change in the free energy as a function
of the width of the measurement region is given by

’ €
Af = f) = fe)=—pdog(5).  ©D

where € and €’ are two different bin widths. Consequently, al-
tering €’ in this limit leaves c.g invariant, as an L-independent
shift of f only changes f(L = c0).

b ° 7
®) | ¢ 0.005{ AL 1Y,
0.8 . w3 0.000{% yig Al Y
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¢ 0.61 " 02 03
w D
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0.2- "L
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FIG. 8. Comparison of Reyni Entropies. Data is taken for L = 12 and 2000 trajectories per data point, at measurement strength % =1,
€ = 0.1 and A = 10000 for the discrete model, and % = 1 for the continuous measurement model. (a) Comparison of the bipartite entangle-
ment entropies in the continuous and discrete Gaussian measurement models. The inset is the difference in the computed entangled entropies
ASp ) = Sgi;cre‘e) — S](_C/‘z’mi"ous). (b) Comparison of the ancilla entanglement entropies in the continuous and discrete Gaussian measurement

models. The inset presents AS,,, = S{Piscrete) _ g(Continous)
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We now provide a derivation of Eq. (D1). In the limit € <
A, the integrals in Eq. (20) simplify to become

P A/ A, €) = GR (X F A)e. (D2)
Therefore, the probability in Eq. (21) becomes
P A/ A, €) = [(YITY[Y)GA (x, — 1)
IV [Y)GA (x, + M. (D3)

We use p(x{7; 1/ A, €) to denote the probability of the ith mea-
surement outcome in the DGPM, and p(x{”; 1/A) to denote
the corresponding probability density in the CGPM. Using
Nieas to indicate the total number of measurements in the cir-
cuit, we can now express the probability of the measurement

record in the trajectory p;; as

Nimeas Nimeas

P, = 1_[ P/ A, €) = €M 1_[ p(x50/A).
i=1 i=1
(D4)
We now use 77, to denote each possible measurement trajec-
tory at the corresponding bin width €. We express

e = (20, 20 56, ),

where x!(e) refers to the measured pointer position at the
ith measurement event, which can depend on €. For each
measurement we use Ny (€) to denote the number of mea-
surement outcomes for x’(¢) in a finite spatial region of width
W. We see that the number of outcomes N, depends on the
bin width € as

(D5)

w
Nout(€) = ? (D6)

For example, halving the bin width doubles the number of
measurement outcomes over any region. Therefore, the num-
ber of measurement trajectories /7, will scale as

W NmCﬂS
]Vtraj (6) = ? .

This leads to the observation that in the limit € << A, the sum
over measurement trajectories depends on the width of the
measurement region as

D7)

/ chas
€
Y=(5) 7% o9
i € Titgr
Now, recall that we can write the free energy as
(DY)
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FIG. 9. Free Energy vs €. (a) Dependence of f on € in the
Gaussian weak measurement model at p ~ p. = 0.19 and % =1
with A = 1000000 and € = 0.1 and €’ = 1.

F. represents the free energy using a bin width €. Using
Eq. (D4) to relate p;, and pj; ,, we have that

€ \ Nimeas
- pamn|pa(5) ]
- €
me
€
- Zp’he/ lnp’hg’ - Z pﬁleNmeasln(Z>
ﬁls’ e

€
= Fo — Nieas In (Z)

F.

(D10)

We now take ¢[...] to denote an average over circuits, so that
at p = p. we expect that €[Npeas] =~ tLp,. Thus,

AF = ¢[F.] — e[Fc] (D11)
= —LtpIn(£) (D12)

and
Ar=2F (€ DI3
f—L—t——Pc n(z) (D13)

A f represents the change in f(L = c0) as € is varied, which
is an L-independent shift to the free energies at all system
sizes at a fixed measurement strength. As shown in Fig. 9,
we perform a calculation of the free energy for various values
of €, at the measurement strength % = 1. We verify that our
analytical calculation for the dependence of f on € matches
the numerics.
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