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Structural glasses display at low temperature a set of anomalies in thermodynamic observables. A prominent
example is the linear-in-temperature scaling of the specific heat, at odds with the Debye cubic scaling found in
crystals, due to acoustic phonons. Such an excess of specific heat in amorphous solids is thought of arising from
phenomenological soft excitations dubbed tunneling two-level systems (TTLS). Their nature as well as their
statistical properties remain elusive from a first-principle viewpoint. In this work, we investigate the canonically
quantized version of the KHGPS model, a mean-field glass model of coupled anharmonic oscillators, across
its phase diagram, with an emphasis on the specific heat. The thermodynamics is solved in a semiclassical
expansion. We show that in the replica-symmetric region of the model, up to the marginal glass transition line
where replica symmetry gets continuously broken, a disordered version of the Debye approximation holds: the
specific heat is dominated by harmonic vibrational excitations inducing a power-law scaling at the transition,
ruled by random matrix theory. This mechanism generalizes a previous semiclassical argument in the literature.
We then study the marginal glass phase where the semiclassical expansion becomes nonperturbative due to the
emergence of instantons that overcome disordered Debye behavior. Inside the glass phase, a variational solution
to the instanton approach provides the prevailing excitations as TTLS, which generate a linear specific heat. This
phase thus hosts a mix of TTLS and harmonic excitations generated by interactions. We finally suggest to go
beyond the variational approximation through an analogy with the spin-boson model.
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I. INTRODUCTION

Uncovering the low-energy excitations of a system is es-
sential to understand its low-temperature physics, as they
represent the dominant degrees of freedom. A celebrated ex-
ample is the success of Debye’s theory of crystals [1–3],
which, by quantizing harmonic vibrations of the lattice, cor-
rectly identified acoustic phonons as the relevant excitations.
Such excitations govern the low-temperature behavior of
many thermodynamic quantities, such as the cubic temper-
ature dependence of the specific heat CV and the thermal
conductivity k. The phonon wavelength being much larger
than the lattice spacing, this mechanism is independent of the
specific structure of the lattice, hence it is universal.

One could expect this universality to extend to amorphous
solids (i.e., with disordered structure), as acoustic phonons are
still present as Goldstone modes stemming from statistical
translation invariance on large length scales. Experimental
measurements by Zeller and Pohl [4] more than fifty years ago
thus came as a surprise, revealing that the specific heat and
the thermal conductivity behave respectively as CV ∼ T and
k ∼ T 2 below 1 K. Many other dielectric, acoustic or thermal
properties of glassy materials exhibit remarkable universality,
independent of details like chemical composition [5–7]. For
instance the internal friction (related to sound attenuation)
becomes frequency independent and unexpectedly large. This
universal “anomalous” (as compared to crystals) character led
to the idea that it arises from the amorphous nature itself,
which would contain a distinct type of low-energy excitations,
besides phonons. Right after Zeller and Pohl’s measurements,
the standard tunneling model (STM) was developed [8,9] by

considering tunneling two-level systems (TTLS), phenomeno-
logical degrees of freedom thought of being single or groups
of particles—electrons, atoms, molecules, etc.—that live in a
metastable state and have another quasidegenerate configura-
tion to which they can tunnel. Schematically, these fictitious
degrees of freedom should effectively lie in a double-well
potential (DWP). Postulating the distributions of the relevant
parameters controlling the double-well shape allowed to re-
cover many of the aforementioned universal properties [5–7].

Over the decades many refinements of the STM were pro-
posed [6,7], mainly to constrain the statistical properties of
the TTLS effective degrees of freedom. The low-temperature
scale of 1 K provides a stringent upper bound for the asym-
metry between the two wells of the effective potential, and
given the disordered structure, one naturally expects a large
number of effective degrees of freedom described by such
a potential, dispersed in the random matrix of the amor-
phous solid. This naturally yields a very diverse distribution
of effective potentials, including both DWP and single-well
potentials (SWP). SWP turned out to be the vast majority of
effective potentials, generating additional soft harmonic exci-
tations [10]. An extension of the STM based on this idea, more
capable to quantitatively adapt to experimental data notably
at higher temperatures, was devised through the soft poten-
tial model (SPM) [11,12]. It describes low-energy modes in
glasses by a collection of independent soft anharmonic os-
cillators v(x) ∝ hx + ηx2 + x4 with an ad hoc distribution
P(h, η) [13,14].

Despite the great achievements of these models, they
fail to explain a number of outstanding issues ([7], Chap.
4). First, the microscopic nature of the TTLS remains a
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mystery, except in a few cases such as (KBr)(1−x)(KCN)x or
KBr(1−x)(CN)x in which they are thought to be cyanide (CN)
molecules [15,16]. Computer simulations dealing with micro-
scopic modeling have been used to reveal them but the low
density of TTLS requires a large number of atoms, a daunting
numerical challenge which began forty years ago [17]. The
most recent simulations [18–20] have found TTLS candidates
in double-well potentials formed by pairs of minima of the
energy landscape, with reasonable energy scale. These very
localized transitions would involve a few atoms, although
more rarely, in samples quenched from high temperature, up
to hundreds of atoms would be involved in such a tunneling.
Note that direct experimental evidence of actual tunneling
motion is still lacking [21,22]. Finally, TTLS couple to the
strain field in the glassy structure and can interact with each
other by exchanging phonons. This interaction was argued to
be significant [21] and a great number of subsequent experi-
mental works [23–26] confirmed it in acoustic and dielectric
properties, especially below the 100 mK range, along with
theoretical developments [27–29]. Crucially, the strain field
depends on the amorphous structure, which itself gives rise to
the density and properties of TTLS. Therefore interactions are
not only important for the dynamics of TTLS but essential to
understand their nature. Qualitative changes such as collective
effects are expected as a consequence.

Given the complexity of glassy phenomena, minimal mod-
els have been designed over the decades, with the advantage
of being amenable to an analytical solution in the mean-field
limit, where interactions can be accounted for [30]. The main
observable under scrutiny as a hallmark quantity of low-
temperature anomalies has been the specific heat, since unlike
most of the other observables it is an internal property of the
system, independent on further modeling of external degrees
of freedom. The first mean-field models in which the specific
heat in the quantum regime has been investigated came from
the spin-glass literature, hoping to get insights into the elusive
TTLS physics from a first-principle approach. Oddly, they do
not exhibit a linear specific heat. The Sherrington-Kirkpatrick
and multicomponent quantum rotor models in a transverse
field were analyzed close to the quantum critical point [31–33]
and yielded, approaching the transition from the quantum
paramagnetic side, scalings consistent with a specific heat
C ∼ T 3. However these negative results were reconsidered
in Ref. [34], arguing that replica-symmetry breaking (RSB),
that characterizes the glassy phase in these models, requires
to consider additional dangerously irrelevant terms in the
Landau free energy close to the critical point. These induce
a linear specific heat, in agreement with a similar behavior
obtained in the bosonic SU(M ) Heisenberg spin glass [34,35]
and the quantum spherical p-spin [36]. But soon after, Schehr,
Giamarchi and Le Doussal (SGLD) analyzed a set of spin-
glass models [37–39]. They showed that the marginal stability
originating from RSB imposes in fact that the prefactor of
the linear term in the low-temperature expansion of the spe-
cific heat vanishes, therefore retrieving the cubic scaling in
these models. This is compatible with a numerical solution
of the SU(2) Heisenberg spin glass [40] and a spin spectral
density linear in frequency obtained from a 1/M expansion
of the fermionic SU(M ) case [41]. Note however that an
unusual C ∼ T 2 was found earlier numerically in the bosonic

SU(M → ∞) model [42]. Nevertheless, the models consid-
ered in [37–39] are rather far from the original context of
the TTLS picture: they are models for quantum degrees of
freedom moving in a random high-dimensional landscape.

In this respect, the study [43] of the glass phase of the
Sherrington-Kirkpatrick model in a transverse field (TFSK)
could be more appealing (see Refs. [44,45] for a broader
parameter range in the phase diagram). Within a Debye ap-
proximation of the Thouless-Anderson-Palmer free energy
[46,47] it however suggests the same cubic scaling [30], at
variance with the TTLS mechanism. This is linked to the
linear-in-frequency spin susceptibility found in both [43,45].

Concerning structural glass models, so far only a surrogate
mean-field model, the spherical perceptron, has been investi-
gated in the quantum regime, resorting to the SGLD expansion
[48]. It describes a tracer moving in a quenched liquid, with
an emphasis on jamming physics [49–52]. As we shall see
this model has a structure of the impurity problem which
does not allow TTLS excitations. Yet a linear scaling of the
specific heat is present but argued to be cut off at very low
temperatures. Its mechanism is instead rooted in the proximity
of a jamming transition and the ensuing modes stemming from
isostaticity [48].

To get closer to the TTLS physics, in a series of works
Kühn and collaborators built a mean-field model inspired
from the SPM adding quenched spin-glass interactions Ji jxix j ,
where the degrees of freedom {xi} may be regarded as fluc-
tuations of positions around a local equilibrium, expanded
up to quartic order [53–55]. The classical model allows to
derive an effective single-site problem which is assumed to
give access to the statistical distribution of TTLS. Quantum
fluctuations are added a posteriori by quantizing this single
effective degree of freedom. While microscopic details and
distributions of relevant parameters differ, the ensuing phe-
nomenology is akin to the SPM. In [56] instead, the full
quantum thermodynamics was analyzed through the so-called
static approximation [57] and subsequent field-theoretical ap-
proximations. In this way it is not clear whether the linear
specific heat is recovered.

Nonetheless, from the classical viewpoint, low-energy ex-
citations in the Kühn-Horstmann model [53] were shown to be
delocalized vibrational modes with a low-frequency density
of states D(ω) ∼ ω2 [58], typical of the above-mentioned
mean-field spin-glass models [59] and of a certain class
of mean-field structural glasses [49,60–64]. This spectrum
misses, apart from trivial acoustic phonons which are also
delocalized with D(ω) ∼ ωd−1 (d being the space dimension)
and purposely absent from quenched mean-field models, lo-
calized vibrational modes ruled by the scaling D(ω) ∼ ω4

found in numerical simulations [65–74] (although some de-
bate persists [75–77]). The situation is similar in soft spin
glasses, see e.g., Refs. [59,78]. An appealing minimal argu-
ment for such a scaling was given in [79].

A mechanism for the emergence of these low-energy
modes was put forward by Gurevich, Parshin and Schober
(GPS) [80–82]. They proposed a glass model in terms of
anharmonic oscillators interacting with each other through
the surrounding elastic medium (the glass). The interaction
decays with distance r as r−d . The combined effects of
the interaction and the anharmonicity induce an instability
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characterized by new frequencies and minima of the oscil-
lators. The instability affects the density of states, which is
shown both numerically and through phenomenological argu-
ments to reproduce the scaling D(ω) ∼ ω4.

For many years, it was thus believed that mean-field mod-
els cannot develop such localized excitations [49,60–64,83],
as one may expect fully connected models to generate only
delocalized modes. The situation changed recently: build-
ing on the ideas of GPS and Kühn and Horstmann, the
KHGPS model [58,84], was put forward and solved in the
zero-temperature classical regime. The model features two
qualitatively different glassy phases described by RSB. The
first corresponds to a usual mean-field glassy phase created
by a de Almeida-Thouless instability [85,86] where the spin-
glass susceptibility diverges. It hosts delocalized modes with
density of states D(ω) ∼ ω2 and displays single-site effective
potentials consisting in SWP only. The second is induced by
a different type of RSB with finite spin-glass susceptibility
at the transition, which rules out the SGLD mechanism for
the specific heat. The low-frequency vibrations are localized
with D(ω) ∼ ω4. Importantly, although the bare potentials of
the effective degrees of freedom are all SWP, the single-site
effective potentials are either SWP or DWP. In other words,
double wells appear as an effect of the interactions, that desta-
bilize soft enough SWP. SWP bring soft vibrational modes
while DWP produce pseudogapped nonlinear excitations [87].
Interestingly the KHGPS model possesses a spin-glass transi-
tion in a field at T = 0, a much desired feature to set up a
renormalization group analysis of the fate of such transitions
in finite dimension [88]. This model could also be useful to
describe a Gardner transition in molecular glasses (if it exists),
as Ref. [89] proposed it would be described by a spin-glass
one arising from the interaction between local excitations.

The purpose of this work is to investigate the effect of
quantum fluctuations in the KHGPS model across the dif-
ferent phases, with a particular emphasis on the RSB phase
driven by DWP. In Sec. II, we derive the generic quantum-
thermodynamical equations of the model. We specialize them
in the convex replica-symmetric phase in Sec. III to solve
them in a semiclassical expansion h̄ → 0 keeping β h̄ fixed.
Then, in Sec. IV, we focus analytically and numerically on the
regime where DWP populate the impurity problem, through
the same semiclassical expansion, solved by a variational
method. In Sec. V, we unveil the effect of replica-symmetry
breaking on the latter variational results. Finally, in Sec. VI,
we outline a way beyond these variational results through an
analogy with the spin-boson model. We draw our conclusions
in Sec. VII.

II. QUANTUM THERMODYNAMICS
OF THE KHGPS MODEL

The version of the classical KHGPS model that we con-
sider in this work was introduced in [58]. It consists in a set
of N soft spins, whose coordinates are denoted by xi ∈ R,
being i = 1, . . . , N an index identifying the degrees of free-
dom. These spins are subjected to a local anharmonic quartic
potential and interact with each other with all-to-all random
quadratic interactions of the spin glass form.

We quantize the model by adding conjugate mo-
menta {p1, . . . , pN } with the canonical commutation rela-
tion [x̂i, p̂ j] = ih̄δi j . Thus the Hamiltonian of the quantum
KHGPS model reads

Ĥ =
N∑

i=1

p̂2
i

2M
+

1,N∑
i< j

Ji j x̂ix̂ j +
N∑

i=1

vκi (x̂i )

vκ (x) = κ

2
x2 + x4

4!
− hx (1)

with independent and identically distributed interaction cou-
plings Ji j = 0, J2

i j = J2/N . The local bare potentials vκi (xi )
depend on a set of N quenched random variables, κi, that are
independent and drawn from a uniform distribution p(κ ) in
[κm, κM] with κm > 0. They are anharmonic and include a cru-
cial magnetic field h which breaks explicitly the Z2 symmetry
of the model. To compute thermodynamic quantities, we need
to study the partition function of the model

Z = Tr e−βH (2)

with β = 1/T the inverse temperature (we take kB = 1
throughout) as well as the corresponding free energy

F = −T lim
N→∞

ln Z. (3)

The overline denotes the average over all sources of disorder,
namely the random couplings Ji j and the elastic constants κi.
In order to analyze the free energy we shall follow closely the
methods of [48]. The thermodynamics of the system is derived
from the Feynman representation of the partition function,
which is a path integral over periodic trajectories of the parti-
cles xi(t ), being t the imaginary time with Matsubara period
β h̄ [90]. To easily keep track of β and h̄ dependencies, we
use β h̄ as unit of time and therefore the Matsubara imaginary
times are scaled as t/(β h̄) → t in the following expressions,
unless otherwise mentioned. In this section, we derive the
disorder-averaged free energy of the system in general RSB
phases and then specialize to the replica-symmetric (RS) case.

A. Replica analysis of the free energy

The bottleneck to compute the free energy of the model lies
in the average over the disorder, which we overcome through
the replica method. We introduce n replicas of the system
and compute the average of the replicated partition function.
Similarly to Refs. [48,57,58], in the large-N limit, one can
show that this replicated path integral reads Zn = ∮ DQ eNS(Q)

with

S (Q) = −
(

βJ

2

)2 ∫ 1

0
dtds

∑
a,b

Qab(t, s)2 + lnZ (Q)

Z (Q) =
∫

d p(κ )
∮ ∏

a

Dxae
(βJ )2

2

∫ 1
0 dtds

∑
a,b Qab(t,s)xa (t )xb(s)

× e
−β
∫ 1

0 dt
∑

a

[
M

2(β h̄)2
ẋa(t )2+v(xa (t ))

]
. (4)

The order parameter Qab(t, s) =∑i〈xa
i (t )xb

i (s)〉 is the over-
lap between two replicas a and b of the system and the
brackets denote the average with respect to the replicated
path integral. In the large-N limit, the overlap concentrates
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and it is given as the solution of the saddle-point equation
Qab(t, s) = 〈xa(t )xb(s)〉Z . The average is now defined by the
single-particle generating functional Z defined in Eq. (4).
Time-translational invariance and disorder average imply that
only the diagonal part of Qab(t, s) is actually time dependent
and a function of t − s [36,48]. The integral symbol

∮
in

Eq. (4) reminds that the path integral is done over a closed
periodic contour and that the dynamical variable x(t ) is peri-
odic with Matsubara period equal to 1 in our time unit.

Since we eventually take the limit n → 0, we need to
consider a sensible ansatz for the form of the solution of the
saddle point equations. We therefore consider the following

ansatz:

Qab(t, s) = qd (t − s)δab + Q∗
ab, (5)

where Q∗
ab is a hierarchical static matrix with zero elements

on the diagonal, parametrized by a function q(y) with y ∈
[0, 1] [86]. This ansatz is the most general one capable of
describing all phases of the model. In the RS phase, q(y) is
a constant while in the RSB phase one expects that q(y) = qm

for y ∈ [0, ym], q(y) = qM for y ∈ [yM, 1] and a nontrivial
monotonously increasing curve for y ∈ [ym, yM].1 The deriva-
tion and formalism is akin2 to the one in Refs. [86,91]. We get

−βF

N
=
︷ ︸︸ ︷(

βJ

2

)2[∫ 1

0
dy q(y)2 −

∫ 1

0
dt qd (t )2

]
−
∫

d p(κ )dH Pκ (1, H )

[
fκ (1, H ) − ln

∮
Dx eA[x]

]
+
∫

d p(κ )dydH Pκ (y, H )

[
ḟκ (y, H ) + J2

2
q̇(y)( f ′′

κ (y, H ) + x( f ′
κ (y, H ))2)

]
︸ ︷︷ ︸+

∫
d p(κ ) e

J2

2 q(0)∂2
h fκ (0, h) (6)

with the dynamical action

A[x] = (βJ )2

2

∫ 1

0
dtds x(t )G(t − s)x(s)

− β

∫ 1

0
dt

[
M

2(β h̄)2

(
dx

dt

)2

+ vκ (x)

]
. (7)

In Eq. (6), we have indicated with dots the derivative with
respect to y and with primes the derivative with respect to
the effective field H . We introduced the Lagrange multiplier
Pκ (x, H ) to enforce the Parisi differential equation ruling
fκ (y, H ), given by the underbraced term (set to zero). This
equation is thus obtained by optimizing over the Lagrange
variable Pκ (y, H ). In turn, the variational equation over
fκ (y, H ) gives the equation for the Lagrange multiplier

Ṗκ (y, H ) = J2

2
q̇(y)[P′′

κ (y, H ) − 2y(Pκ (y, H ) f ′
κ (y, H ))′],

Pκ (0, H ) = γJ2q(0)(h − H ) ≡ e
− (h−H )2

2J2q(0)√
2πJ2q(0)

, (8)

where the last boundary condition is a Gaussian with variance
J2q(0). Finally, in Eq. (7), we employed the definition

G(t ) = qd (t − s) − qM . (9)

Note that G(t ) = G(−t ). It is useful to define Fourier
components:

G(t ) =
∑
n∈Z

G̃(ωn)eiωnt , G̃(ωn) =
∫ 1

0
dt G(t )e−iωnt . (10)

1The shape of q(y) depends on the form of RSB the model has. In
Ref. [87], it has been argued that at the classical level, q(y) is also a
continuous function for y sufficiently close to yM .

2For the quantum case, a similar derivation is in Ref. ([48], Secs. 2
and 3); see also Ref. [43] for the related TFSK model.

With our time unit the Matsubara frequencies are (unless
stated otherwise) ωn = 2πn.

The saddle-point equations on q(x) and qd (t ) read

q(x) =
∫

d p(κ )dH Pκ (x, H )

[
f ′
κ (x, H )

β

]2

,

qd (t − s) =
∫

d p(κ )dH Pκ (1, H )〈x(t )x(s)〉. (11)

The thermal averages are defined through the effective action:

〈•〉 ≡
∮

Dx • eA[x]∮
Dx eA[x]

. (12)

Importantly, fκ (1, H ) may be regarded as the logarithm of an
effective partition function for the single degree of freedom
x(t ), that generates the effective average:

fκ (1, h) = ln
∮

Dx eA[x] (13)

also known as an impurity problem [92].
An important difference with respect to the standard spin-

glass case [86] is that the partial differential equations for Pκ

and fκ are stochastic, in the sense that they depend on the
random variable κ that is extracted with uniform measure in
the support of p(κ ).

From these equations, one can derive the marginal stability
condition (see Refs. [48,86,91]) that signals a RSB transition:

1 =
(

J

β

)2 ∫
d p(κ )dH Pκ (1, H ) f ′′

κ (1, H )2. (14)

This condition is known as the vanishing of the replicon eigen-
value λR of the stability (Hessian) matrix in replica space.
Stability only requires an inequality � in (14).

When replica symmetry is preserved q(y) is constant,
which implies from (8) that Pκ (1, H ) = Pκ (0, H ) is Gaussian.
Furthermore, if the bound in (14) is violated, the RS solution
is no longer valid and one needs to integrate the coupled PDEs
for fκ and Pk to get the form of q(y).
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We now write the thermodynamic energy through (6),
using saddle-point relations (i.e., the derivatives of varia-
tional quantities cancel, only explicit β derivatives are needed
[36,48]—noted “ex” below):

U

N
= βJ2

2

[∫ 1

0
dt qd (t )2 −

∫ 1

0
dx q(x)2

]
−
∫

d p(κ )dH Pκ (1, H )
∂

∂β

∣∣∣∣
ex

fκ (1, H ). (15)

The latter expression is the starting point to analyze the spe-
cific heat at low temperature.

B. Replica-symmetric phase

We start the analysis of the saddle-point solution of the
RSB equations from the simplest case where the solution
is replica symmetric. This amounts to specialize the above
equations to the RS ansatz q(x) = qM = q, i.e., Qab(t, s) =
G(t − s)δab + q, which is at the basis of the developments of
the next section. Using a Hubbard-Stratonovitch transforma-
tion, we introduce a Gaussian variable z with average 0 and
variance 1, whose measure is noted Dz. The RS free energy is
then, after n → 0,

−βFRS

N
= ∂nZn

N

∣∣∣∣
n→0

=
(

βJ

2

)2[
q2 −

∫ 1

0
q2

d

]
+
∫

d p(κ )Dz ln
∮

Dx eAκ,z[x],

Aκ,z[x] = (βJ )2

2

∫ 1

0
dtds x(t )G(t − s)x(s)

− β

∫ 1

0

[
M

2(β h̄)2
ẋ2 + vκ,z(x)

]
,

vκ,z(x) = κ

2
x2 + x4

4!
− (h + zJ

√
q)x. (16)

Thermal averages are defined as in (12). The saddle-point
equations read:

qd (t − s) =
∫

d p(κ )Dz 〈x(t )x(s)〉, (17a)

q =
∫

d p(κ )Dz 〈x(t )〉2, (17b)

G(t − s) =
∫

d p(κ )Dz 〈x(t )x(s)〉c. (17c)

The index c stands for connected correlation function, see (9).
Taking the limit h̄ → 0 for all equations above (16) and (17)
one recovers the corresponding RS classical expressions of
Ref. [58].

Finally, the RS expression of the thermodynamic energy is
derived from (15):

URS

N
= −βJ2

2

∫ 1

0
dt G(t )2

+
∫

d p(κ )Dz

〈
− M

2(β h̄)2
ẋ2 + vκ,z(x)

〉
. (18)

FIG. 1. Phase diagram of the KHGPS model. Classical zero-
temperature phase diagram [58]. At large enough interaction J , there
is a transition from a convex phase described by a replica-symmetric
ansatz for the order parameter Qab to a fullRSB glassy phase. At low
enough external field h, the transition is characterized by a diverging
spin-glass susceptibility. The low-energy vibrational excitations are
obtained from the spectrum of the Hessian of the Hamiltonian in
the energy minimum, ∂2H/∂xi∂x j . At the transition the spectrum
becomes gapless and displays a low-frequency density of variational
modes scaling as D(ω) ∼ ω2. Hereafter we thus refer to the purple
dashed line as the RSB-ω2 transition line. Instead at large enough
h the transition changes nature: the spin-glass susceptibility is finite
and the Hessian spectrum scales as D(ω) ∼ ω4. It is represented by
the red solid line hereafter called RSB-ω4 line. In the RS phase and
above the RSB-ω2 line, the effective potential vκ,z(x) has a single
minimum, while above the RSB-ω4 line it develops a double-well
shape. (Inset) Quantum phase diagram at (J, h) = (0.3, 0.1). The
RSB transition ends in a quantum critical point at T = 0 (blue
cross). The line is a guide to the eye connecting the classical
finite-temperature RSB transition [87] to the dots provided by the
solution of the model within the low-temperature approximation of
Secs. IV B–IV D. In both phase diagrams (main and inset), the orange
dot signals the point (J, h, T, h̄) = (0.3, 0.1, 0, 0).

III. SEMICLASSICAL ANALYSIS AND DEBYE PHYSICS

A. Semiclassical expansion in the replica-symmetric phase

In this section, we analyze the RS phase with the idea that
it supplies the starting point to approach the RSB phases (see
Fig. 1). Equations (17) are sensibly more manageable than the
RSB ones but remain difficult to solve analytically. Therefore
we analyze them within the perturbative scheme studied in
[37–39,48], which provides an expansion in the small h̄ limit
at fixed β h̄. We are thus interested in expressing average
values of any observable (noted O) as a perturbative series
of the form

O =
∞∑

n=0

h̄nOn(β h̄). (19)

The lowest order and reference point of the expansion is thus
the classical T = 0 model. The model parameters (J, h) are
thus chosen here within the RS phase of the classical T = 0
phase diagram of Fig. 1. As we shall see, this semiclassical ap-
proach is a well-suited tool to investigate the low-temperature
phase once it is dressed by quantum fluctuations. The tech-
nical details on how to perform such an expansion are very
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close to what has been developed in Ref. ([48], Appendix).
In particular, effective averages (12) are computed order by
order through an asymptotic expansion around saddle-point
trajectories: the dynamical action appearing in the exponent
has indeed a diverging factor β ∼ 1/h̄ as in a standard semi-
classical limit.

As the lowest order of the expansion is the classical T = 0
model, we get q → q0 (classical T = 0 overlap), qd (t ) →
q0, thus G0 = 0 and βG̃(ωn) → β h̄G̃1(ωn) [notice the cor-
responding β2 dependence in the first term of Aκ,z in (16)].
Note also that in the different limit of first taking h̄ → 0 then
T → 0, we get βG̃(ωn) ∼ χclδn0, where χcl is the classical
T = 0 linear magnetic susceptibility of Ref. [58]. We thus
expect χcl to be the zero mode βG̃(0) ∼ β h̄G̃1(0) at lowest
order. For this reason, we here define instead

χ = βG̃(0). (20)

Its lowest order χ0 will be later identified as χcl, the classical
T = 0 linear magnetic susceptibility of Ref. [58].

1. Saddle-point solutions: fixed trajectories or instantons

As in Ref. ([48], Sec. 5.B), in the limit we consider we
must expand the effective averages around their saddle-point
trajectories. These verify

M

(β h̄)2
ẍ(t ) = −J2

∫ 1

0
ds βG(t − s)x(s) + v′

κ,z(x(t )), (21)

which is a Newtonian motion in a potential −vκ,z with a
nonlocal stiffness (or memory term).

Constant (classical) solutions x∗ verify

v′
m,z(x∗) = 0 with m = κ − J2χ, (22)

which is akin to the classical RS T = 0 saddle-point [58].
Note that in the present expansion at fixed Matsubara period
we have to expand q = q0 + h̄q1 + · · · and χ = χ0 + h̄χ1 +
· · · , consequently x∗ = x∗

0 + h̄x∗
1 + · · · At lowest order, the

constant solution is the classical T = 0 one x∗
0 , which is

unique in the RS phase [58]. In this phase, the quadratic coeffi-
cient m0 = κ − J2χ0 � 0 so that the potential is a single well,
with sign(x∗

0 ) = sign(h + zJ
√

q0). Neglecting for a moment
the memory term, if there is a unique constant solution, no
instanton (time-dependent solution with finite action) exists
[93,94], the particle can only go forever downhill if it de-
parts from x∗

0 , yielding an infinite action. Including now the
memory term, we can at small deviations around a constant
solution x(t ) = x∗ + δx(t ) and linearize (21) (∀n ∈ Z):

δ̃x(ωn)

[
M

(
ωn

β h̄

)2

+ v′′
κ,z(x∗) − J2βG̃(ωn)

]
= 0. (23)

Strictly speaking in our expansion the above quantities should
be the lowest order ones (i.e., q → q0, x∗ → x∗

0 , βG →
β h̄G1). No periodic mode can develop unless the bracketted
term is zero for some n. We shall see self-consistently in the
following that this is precisely the same condition as requiring
that the Hessian around the saddle-point solution develops a
zero mode, signaling a breakdown of the approach. Indeed,
as in the classical case, the mass term v′′

κ,z(x∗
0 ) − J2χ0 =

v′′
m,z(x∗

0 ), i.e., (23) at ωn = 0, then vanishes for (m, z) =
(0, h/(J

√
q0)) (purely quartic potential). This happens along

the classical RSB-ω4 line, where several constant solutions
x∗

0 appear: one thus needs to consider instanton solutions and
possibly RSB equations. In the following, we start from the
RS part of the classical phase diagram in Fig. 1 and from the
above discussion no instantons exist, the saddle-point solution
is unique and constant.

2. Asymptotic expansion around the saddle-point solution

In order to compute observables such as the energy (18),
we need to perform an asymptotic expansion of averages
around the constant saddle point. We set the fluctuation around
the saddle point ρ(t ) = x(t ) − x∗ and expand the exponent
Aκ,z[x] = −βE [x] ([48], Sec. 5.B). In this exponent, orders
in ρ greater than the quadratic one are subdominant; due to
the quartic action, there are only cubic and quartic vertices.

Diagrammatically we thus write ρ(t ) = t and

〈
ρ(t)ρ(t′)

〉
ρ

=
1
β

δ2E

δx(t)δx(t′) x∗

−1

=
t t′

= O(�)

−βE[x] = −βEG + +

EG[ρ] = E[x∗] +
1
2

1

0

dtdt′ ρ(t)
δ2E

δx(t)δx(t′) x∗
ρ(t′)

(24)

For convenience we define

v∗
κ,z = vκ,z(x∗) , v0

κ,z = vκ,z(x∗
0 ) (25)

and similarly for derivatives. Cubic vertices carry a fac-
tor = −βv(3)∗

κ,z /3! = −βx∗/3! while quartic vertices =
−βv(4)∗

κ,z /4! = −β/4!. As usual vertices contain a dummy
variable that is integrated over, in contrast with fixed variables
in outer lines represented by . We shall write explicitly
symmetry factors.

The propagator in Fourier modes reads

n
=

1

0

d(t − s) eiωn(t−s) 1
β

δ2E

δx(t)δx(s) x∗

−1

=
1
β

1

M ωn

β�

2

− J2βG(ωn) + v′′∗
κ,z

.
(26)

From (17c) we can readily get at lowest order in the
expansion from the connected correlation function (Dyson
equation)

β h̄G̃1(ωn) =
∫

d p(κ )Dz

M
(

ωn
β h̄

)2 − J2β h̄G̃1(ωn) + v′′0
κ,z

, (27)

which is also valid for n = 0, giving:

χ0 =
∫

d p(m)Dz

m + (x∗
0 )2

2

, m = κ − J2χ0, (28)

which is as expected the classical T = 0 expression for
β(qd − q) [58], i.e., the classical zero-temperature linear
magnetic susceptibility. p(m) is just the uniform distribution
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on [κm − J2χ0, κM − J2χ0] = [mm, mM]. We note that (27)
would be exact for the full G̃(ωn) if the potential vκ (x) was
at most quadratic, and represents a similar equation to the one
for the classical density of the Hessian eigenmodes [58].

As in Ref. ([48], Sec. 4.C), we need to regularize diver-
gences arising from the kinetic energy term in (18), which can
be seen at lowest order from

− M

2 (β�)2
1

0

〈
ẋ2

〉
= − M

2 (β�)2
∑
n∈

ω2
n

n
. (29)

This is done by subtracting the free-particles expression

URS

N
= URS

N
− URS(vκ,z = 0)

N
+ 1

2β

= −J2β h̄2

2

∑
n∈Z

G̃1(ωn)2 +
∫

d p(κ )Dz

[
〈vκ,z(x)〉

+ 1

2β

∑
n∈Z

−J2β h̄G̃1(ωn) + v′′∗
κ,z

M
(

ωn
β h̄

)2 − J2β h̄G̃1(ωn) + v′′∗
κ,z

]
. (30)

The average term is expanded as

〈
vκ,z(x)

〉
= v∗κ,z +

v′′∗
κ,z

2
+ 3v′∗

κ,z + O(�2) .

(31)

However we need to take into account the fact that vκ,z(x∗)
must also be itself expanded and gives extra terms at order h̄:

v∗
κ,z = v0

κ,z + h̄

[
v′0

κ,zx
∗
1 − zJx∗

0q1

2
√

q0

]
+ O(h̄2). (32)

From (22) one has

x∗
1 =

χ1J2x∗
0 + zJq1

2
√

q0

v′′0
κ,z

(33)

while the saddle-point equation for q (17b) gives

q0 = dp(κ)Dz (x∗
0)

2

�q1 = dp(κ)Dz 2x∗
0

[
�x∗

1 + 3
]

. (34)

The first equation coincides with the classical T = 0 equa-
tion for the replica overlap [58], as expected. We need one last
equation for χ1 in order to compute (32), given by χ = βG̃(0)
together with the Dyson equation for G (17c). We need to go
one higher order in the expansion of the connected correlation
function than in (28):

〈
x(t)x(s)

〉
c

=
t s

+ 4 · 3
t s

+ 6 · 3
t s

+ 6 · 3
t s

+ O(�3), (35)

which provides the equation for χ1, that we will write later in
(49) for notational convenience.

3. Low-frequency self-energy and Matsubara sums

The various diagrams can be written with Matsubara sums,
whose low-temperature limit depends on the ω → 0 behavior
of the propagator [95–98]. We define the self-energy

Ĩ (ωn) = −J2β[G̃(ωn) − G̃(0)]. (36)

From the Dyson equation (17c), we get the self-consistent
equation for the lowest order I0:

χ0 − Ĩ0(ωn)

J2
=
∫ ãM

ãm

d p(ã)
1

M
(

ωn
β h̄

)2 + ã + Ĩ0(ωn)
(37)

with

ã = v′′0
κ,z = m + (x∗

0 )2

2
; d p(ã) = d p(κ )Dz. (38)

The analysis of (37) proceeds similarly to the classical case
[58], from which we know that the distribution of the mass ã
(whose support is noted [ãm, ãM ]) is gapped everywhere in the
RS phase except at the RSB-ω4 transition line. Let us note

F (z) =
ãM

ãm

dp(ã)
ã + z

and • = dp(ã) • (39)

such that F (0) = ã−1 = χ0, F ′(0) = −ã−2 = (λ0
R − 1)/J2

with λ0
R the classical T = 0 replicon, F ′′(0) = 2ã−3. For ref-

erence we write the classical T = 0 replicon equation [58]
which is obtained through the lowest-order expansion of (14):

λ0
R = 1 − J2ã−2. (40)

We come back to the conventional time units for the rest of this
Sec. III A, ωn = 2πn/(β h̄). We set below ω = ωn and look at
the ω → 0 limit where by definition Ĩ0 → 0. Then (37) gives

0 = F ′′(0)

2
(Mω2)2 + λ0

R − 1

J2
Mω2

+ Ĩ0(ω)

(
λ0

R

J2
+ F ′′(0)Mω2

)
+ Ĩ0(ω)2 F ′′(0)

2
+ · · · (41)

(i) In the bulk of the RS phase: λ0
R �= 0 so we get the

dominant ω → 0 behavior which is analytic

Ĩ0(ω) ∼
ω→0

1 − λ0
R

λ0
R

Mω2. (42)

(ii) On the RSB-ω2 transition line: λ0
R = 0 but F ′′(0) is

finite (ã is gapped i.e., ãm > 0) [58]. Therefore the self-energy
becomes non analytic and conforms to the Schehr-Giamarchi-
Le Doussal arguments [37–39,48]

Ĩ0(ω) ∼
ω→0

B|ω|, B =
√

M

J2ã−3
. (43)

(iii) On the RSB-ω4 transition line: ãm = 0, i.e., ã becomes
gapless and we know the asymptotics near the edge ã = 0:
p(ã) ∝ ã3/2 [58]. This means F (0) and F ′(0) are finite but
F ′′(0) diverges.
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We study further (37) by defining

J2Z (ω) = Mω2 + Ĩ0(ω) → 0. (44)

We have F (J2Z (ω)) ∼
ω→0

χ0 + F ′(0)J2Z (ω) + R(ω) with

R(ω) =
∫ ãM

0
d p(ã)

[
1

ã + J2Z (ω)
− 1

ã
+ J2Z (ω)

ã2

]
= (J2Z (ω))2

∫ ãM

0
dã

ã3/2P(ã)

ã2(ã + J2Z (ω))

∼
ω→0

A(J2Z (ω))3/2
∫ ∞

0

dx

(1 + x)
√

x︸ ︷︷ ︸
=π

, (45)

where P(ã) = p(ã)/ã3/2 =
ã→0

A. Thus (37) becomes

Mω2 ∼
ω→0

λ0
RJ2Z (ω) + J2Aπ (J2Z (ω))3/2 + · · · (46)

By inverting this relationship, we get the nonanalytic expres-
sion for the self-energy

Ĩ0(ω) =
ω→0

1 − λ0
R

λ0
R

Mω2 − J2Aπ(
λ0

R

)5/2 (Mω2)3/2

︸ ︷︷ ︸
nonanalytic

+ · · · (47)

All in all, due to the diagrams, one has to compute three
Matsubara sums. Diagrams in (31), (34), and (35) contain the
first sum, another comes from the kinetic term in (30) and the
third will appear in (50):

S1(ã) = 1

β h̄

∑
n∈Z

1

Mω2
n + ã + Ĩ0(ωn)

,

S2(ã) = 1

β h̄

∑
n∈Z

ã + Ĩ0(ωn)

Mω2
n + ã + Ĩ0(ωn)

,

S3(ã) = 1

β h̄

∑
n∈Z

1[
Mω2

n + ã + I0(ωn)
]2 . (48)

Finally we may write more explicitly the equation determin-
ing χ1 by expanding χ = βG̃(0). Gathering the expansion of
the connected correlation function (35) and the equation for
χ0 (28), we get from the Dyson equation (17c):

χ1 = −1

2

S1(ã)

ã2
+ 1

2

(
x∗

0

ã

)2

S3(ã) + 1

2

(x∗
0 )2

ã3
S1(ã)

+ J2χ1ã−2 − x∗
0x∗

1

ã2
. (49)

Equations (33), (34), and (49) combined allow to determine
(x∗

1, χ1, q1) which enter in the energy through (30)–(32). x∗
1 is

directly computed from (χ1, q1) through (49); with the other
two equations we get(

χ1

q1

)
= M−1

⎛⎝ 1
2

( (x∗
0 )2

ã3 − 1
ã2

)
S1(ã) + 1

2

( x∗
0
ã

)2S3(ã)( (x∗
0 )2

ã

)
S1(ã)

⎞⎠

M =

⎛⎜⎝λ0
R + J2 (x∗

0 )2

ã3
J

2
√

q0

zx∗
0

ã3

2J2 (x∗
0 )2

ã
J√
q0

zx∗
0

ã − 1

⎞⎟⎠. (50)

4. Gaussian approximation and the classical limit

Under the RS assumption we expect the Debye approxi-
mation to be valid at lowest order in the present semiclassical
expansion [48], that is, the low-temperature physics is dom-
inated by quantizing the harmonic modes around the energy
minimum, provided by the Hessian of the classical energy
landscape. As a hint we obtained the lowest-order Dyson
equation (27) that is purely determined by the Gaussian part of
the action and formally identical to the resolvent equation for
the classical Hessian spectrum [58].

Let us then first analyze (30) keeping only the contri-
bution from Gaussian terms of the action (i.e., the non-
Gaussian vertices are set to zero). The equations for (χ1, q1)
simplify as

λ0
Rχ1 = −x∗

0x∗
1

ã2

q1 = 2x∗
0x∗

1 (51)

and x∗
1 still set by (33); the only solution in this case is

(x∗
1, χ1, q1) = (0, 0, 0). The expansion (31) without the non-

Gaussian vertices then reads at lowest order

〈vκ,z(x)〉 = v0
κ,z + 1

2β

∑
n∈Z

v′′0
κ,z

Mω2
n − J2β h̄G̃1(ωn) + v′′0

κ,z

(52)

so that all O(h̄) terms in the energy (30) can be combined into
a single one with the above denominator: indeed using (27)

(Jβ h̄)2
∑
n∈Z

G̃1(ωn)2 =
∑
n∈Z

∫
d p(κ )Dz J2β h̄G̃1(ωn)

Mω2
n − J2β h̄G̃1(ωn) + v′′0

κ,z

.

(53)

In the end, the above two terms give the same contribution as
the kinetic term. In conclusion

URS

N

∣∣∣∣
Gaussian

= v0
κ,z + h̄S2(ã) + O(h̄2), (54)

v0
κ,z is the classical ground-state energy.

Note that in the purely classical limit h̄ → 0 (at fixed T ),
which in the present expansion translates into keeping only
n = 0 modes in the Matsubara sums [48] (as |ωn| → ∞ for
n �= 0 in this limit), we directly get from (54)

URS

N
=

h̄→0
v0

κ,z + T + O(T 2), (55)

i.e., Dulong & Petit’s law, as expected from the equipar-
tition theorem [2,3]. Classically the excitations around the
energy minimum seem thus harmonic. The same result holds
performing a similar direct calculation including the non-
Gaussian vertices in the classical limit. This hints at a
cancellation of the non-Gaussian contributions, which will be
proven in Sec. III A 6.

Going back to the quantum case (54), the Matsubara sums
at low temperature are calculated through standard contour
integral methods [95–98]. The main idea3 is to transform the

3See Ref. ([48], App. B) for more details.
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FIG. 2. (a) Contour for the bulk RS phase. From (42), we know
there are no singularity around ω = 0. (b) Contour used on both
RSB-ω2 and RSB-ω4 transition lines. A branch cut extends to ω = 0,
from the singular behavior of (43) or (47).

sums in integrals through the Poisson formula ([99], Chap.
11) 2π

β h̄

∑
n∈Z δ(ω − ωn) =∑k∈Z eiβ h̄kω ⇒ Si =∑k∈Z Sik ,

where Sik is an integral over ω ← 2πn/(β h̄), and use con-
tours drawn in Fig. 2.

In the bulk of the RS phase, the behavior of the Matsubara
integrals follows closely the discussion of the edge of the
classical Hessian spectrum [58]. To make closer contact with
the notations of Ref. [58], we write the Dyson equation (37)
as

−Mω2 = F (g(ω))

F (g) ≡ −J2
∫ aM

am

d p(a)

[
g + 1

a + J2g

]
(56)

with

g(ω) ≡ Z (ω) − χ0 (57)

and a ≡ ã + J2χ0 corresponds to the distribution of
v′′0

κ,z. There is a band of forbidden real values g ∈
[−aM/J2,−am/J2] and there are two possibilities for g >

−am/J2 : (i) F has a maximum in gm > −am/J2 (spectrum
dominated by the GOE part of the Hessian Ji j + δi j (κi +
x2

i /2)); (ii) F has a maximum in gm = −am/J2 (spectrum
dominated by the diagonal part of the Hessian). The lower
edge is then in either case λm = F (gm) > 0; a similar dis-
cussion holds for g < −aM/J2 which defines the upper edge
λM = F (gM ) with gM the minimum [58]. The forbidden band
on real g corresponds through (56) to two forbidden bands
on the purely imaginary frequency ω = iIm ω with |Im ω| ∈
[
√

λm/M,
√

λM/M]. One of these branch cuts is drawn in
Fig. 2(a), with a finite gap to ω = 0 noted . The latter
gap reads from (56)  = √

λm/M, implying analycity around
ω = 0. This gap is therefore independent of any value of ã
that is a variable in most of the Matsubara sums. All sums at
low temperature are thus Si ∝ e−β h̄ in this regime, and so are
both the energy and specific heat, i.e., a gapped scaling with
the Debye spectral energy gap h̄ at this lowest semiclassical
order.

On the RSB transition lines instead, the gap closes and
Ĩ0(ω) is nonanalytic around ω = 0 (Sec. III A 3). The contour

is then of the form of Fig. 2(b). We thus derive the following
expression:

h̄S2(ã) =
∫ ∞

0

dω

π
h̄ω

(
fB(ω) + 1

2

)
2Mω

J2
Im Ĩ0(−iω + 0+)

(58)

with fB(ω) = (eβ h̄ω − 1)−1 the Bose-Einstein factor. The 1/2
term gives the vacuum energy.4

We next compare the direct Gaussian result (54) to the
Debye approximation.

5. Debye approximation

The Debye approximation for the energy is

UD

N
= eGS +

∫ ∞

0
D(ω)dω h̄ω

(
fB(ω) + 1

2

)
(59)

where eGS is the classical ground-state energy, D(ω)dω =
ρ(λ)dλ is the density of classical vibrational modes, related
to the Hessian spectral density

ρ(λ) = (1/π )Im g(λ − i0+) (60)

obtained in [58], with the correspondence λ = Mω2.
(i) In the bulk of the RS phase: the support of D(ω) is

bounded from below by the spectral gap h̄, providing the
above-mentioned gapped scaling for T → 0.

When the gap closes we can read off (58) the direct rela-
tionship between the two approaches

D(ω) =
ω→0

2Mω

πJ2
Im Ĩ0(ωn)|ωn→−iω+0+ (61)

which is easily related to the Hessian spectral density above:
the factor 1/π comes from its definition (60), 2Mω from the
change of variable λ ↔ ω and Im Ĩ0/J2 is directly related to
Im g defined below (56).

(ii) On the RSB-ω2 transition line: ρ(λ) ∼
λ→0√

λ/(πJ3
√

ã−3) [58] which yields the same result as (61) with
(43). For completeness, we give the final low-temperature
behavior:

CRS
V

N
∼ 8π3

15

M3/2

J3
√

ã−3

(
T

h̄

)3

, (62)

a similar scaling as in the marginal (fullRSB) phase in
[30,39,43,48]. The linearity in frequency of the spectral den-
sity ρ(ω2), or equivalently of the self-energy Im Ĩ0(ω), is akin
to the same frequency behavior found in the spin susceptibility
of quantum spin-glass models such as the TFSK [30,43,45] or
in structural glass models [48,52].

(iii) On the RSB-ω4 transition line:
ρ(λ) ∼

λ→0
Aλ3/2/(λ0

R)5/2 [58] which gives the same result

as (61) with (47). The final low-temperature behavior is

CRS
V

N
∼ 32π6

21
A

(
M

λ0
R

)5/2(T

h̄

)5.

(63)

4It corresponds to the k = 0 term of the Poisson summation defined
below (50), while all k �= 0 bring the Bose-Einstein factor.
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To show the latter scalings are exact, we prove independently
in the next section that non-Gaussian terms vanish at O(h̄).

6. Cancellation of the non-Gaussian terms

Let us demonstrate that non-Gaussian terms vanish at O(h̄)
for any value of β h̄. We examine the terms we left out from
(30) in the Gaussian case (54):

URS

N
− URS

N Gaussian
= 1 + 2

1 = −�

2
v′0

κ,zx
∗
0

ã
S1(ã)

2 = �J2χ1

v′0
κ,zx

∗
0

ã
+ �q1

J

2
√

q0

zv′0
κ,z

ã
− zx∗

0

(64)

The only missing piece is to know how to compute the dif-
ferent averages over ã. This is done as in ([58], App. D)
by rewriting the averages and enforcing the value of x∗

0 (22)
through a Dirac delta function

f (m, z, x∗
0 )

ãn
=
∫

dxd p(m)Dz
f (m, z, x)(
m + x2

2

)n−1

× δ

(
mx + x3

3!
− h − zJ

√
q0

)
=
∫

dxd p(m)
dx̂

2π
Dz

f (m, z, x)(
m + x2

2

)n−1

× e
ix̂
(

mx+ x3

3! −h−zJ
√

q0

)
. (65)

Depending on the actual form of f (m, z, x∗
0 ), one can integrate

over the Gaussian z then x̂ variables. Through integrations by
parts we get the following relations covering all types of such
averages encountered in the energy calculation:

{•} ≡
∫

dxd p(m)√
2πJ2q0

• e
−
(

mx+ x3
3! −h

)2

2J2q0 ,

f (x∗
0 )

ãn
=
{

f (x)(
m + x2

2

)n−1

}
,

z
f (x∗

0 )

ãn
= 1√

J2q0

{
f (x)

(
mx + x3

3! − h
)(

m + x2

2

)n−1

}
,

z2
f (x∗

0 )

ãn
= 1

J2q0

{
f (x)

(
mx + x3

3! − h
)2(

m + x2

2

)n−1

}
. (66)

Note that χ0 = {1} in this notation. These relations are always
convergent for the RSB-ω2 line. For the RSB-ω4 they are
formally valid.5 Solving the linear system (50), we get

2© = h̄
J2χ0

2
{x2S1(ã)}, (68)

5Due to divergences one may find more appropriate to reduce
the powers of ã in the denominators, as there ã−3 = {(m + x2

2 )−2}
becomes the first divergent moment (all higher powers diverge). For
this purpose, one can once again use integrations by parts to prove

which is easily seen to cancel the other term 1© using the
above formulas (66)-(67). We conclude that at the lowest
order in the present semiclassical expansion, in the RS phase
including the transition lines, the Debye approximation and
the direct calculation coincide, i.e., non-Gaussian vertices do
not contribute.

B. The RSB-SWP phase

Now let’s briefly consider the starting point of the expan-
sion within the marginal phase, close enough to the RSB-ω2

line. There the saddle-point equation (21) has a single con-
stant solution x∗. In the following, we thus call RSB-SWP
phase such a state of the system. As x∗ is unique and the
mass ã = v′′

m(x∗
0 ) is nonzero, no other instanton solution can

develop and the situation is analog to the RSB phase of the
quantum spherical perceptron [48]: most of the expansion in
the RS phase worked out in Sec. III A is readily translated to
the RSB phase, provided we replace the Gaussian weight Dz
by dH P(0)

κ (1, H ) (with h + zJ
√

q0 → H). In particular one
retrieves the Dyson equation

β h̄G̃1(ωn) =
∫

d p(m)dH P(0)
κ (1, H )

M
(

ωn
β h̄

)2 − J2β h̄G̃1(ωn) + v′′
m(x∗

0 )
. (69)

Combined with the marginal stability condition λR = 0 (14)
at lowest order, (69) brings the usual nonanalytic self-energy

Ĩ0(ω) ∼
ω→0

B|ω| (70)

with B given as in (43), replacing ã−3 →∫
d p(m)dH P(0)

κ (1, H )/[m + (x∗
0 )2/2]3. Regarding now

the energy (15), doing the semiclassical expansion one
has to consider the perturbation Pκ (1, H ) = P(0)

κ (1, H ) +
h̄P(1)

κ (1, H ) + O(h̄2). Similarly to (54) and (64), at O(h̄)
one gets three contributions: (i) the one from the Gaussian
part of the imaginary-time action coming from the potential
average ∂β fκ (1, H ) ∼ 〈vm(x)〉, weighted by P(0)

κ (1, H ) (ii)
the non-Gaussian contribution from the vertices of the
same average and weight as in (i) and (iii) the contribution
from the pertubation of Pκ (1, H ), which simply reads
h̄
∫

d p(m)dH P(1)
κ (1, H )vm(x∗

0 ). The Gaussian part (i) yields
the Debye approximation corresponding to the self-energy
(70) [i.e., D(ω) ∼ ω2], as in Sec. III A 5, inducing the specific
heat CV ∼ T 3—i.e., (62) with the above replacement for
the prefactor. The other contributions (ii)-(iii) were shown
to cancel in the RS phase (Sec. III A 6), but we could not
check it without explicit knowledge of P(1)

κ (1, H ), which
should be obtained by expanding the partial differential

the formal relationship{
f (x)

(m + x2

2 )n

}
= 1

n − 1

{ d
dx ( f (x)

x )

(m + x2

2 )n−1

}

− 1

J2q0

{
f (x)

x

mx + x3

3! − h

(m + x2

2 )n−2

}
(67)

useful only if f (x) →
x→0

0 at least linearly with x to get less diverging

expressions.
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equation (8). Anticipating the cancellation mechanism
suggested by Schehr-Giamarchi-Le Doussal, one can
expand the marginal stability condition λR = 0 up to
O(h̄), which provides a sum rule satisfied by P(1)

κ (1, H ),
in terms of non-Gaussian contributions [coming from the
ones in (35)]. Unfortunately this sum rule is unhelpful to
prove the cancellation of (ii) and (iii). This is the same
situation as in the RSB phase of the quantum spherical
perceptron [48].

C. Generic mechanism with replica symmetry: loop expansion
and Debye approximation

The structure of the expansion around the saddle-point for
h̄ → 0 at fixed Matsubara period (24) shows that the fluctua-

tion x − x∗ around the saddle-point value typically scales as√
h̄; besides, the fact that non-Gaussian terms do not con-

tribute at O(h̄) lead to the following generic argument.
We come back to standard notations in this section. Not-

ing the canonical position variables by x = (x1, . . . , xN ), the
partition function is

Z =
∮

Dx e
− 1

h̄

∫ β h̄
0 dt

[
ẋ(t )2

2M +V (x(t ))
]
. (71)

Assuming there is a unique global minimum x∗ of the N-
dimensional energy landscape V (x), we expand at all orders
around the minimum x = x∗ + u

√
h̄. The factor

√
h̄ accounts

for the above-mentioned fluctuation scaling.

ln Z = −βV (x∗) +

D︷ ︸︸ ︷
ln Du e−

1
2

β�

0 dtds ui(t)G−1
ij (t−s)uj(s) + ln

〈
e
− β�

0 dt
√

�

3! uiujuk∂3
ijkV (x∗)+ �

4! uiujukul∂
4
ijklV (x∗)+...

〉

(72)

Repeated indices are summed over, and we noted

G−1
i j (t − s) = −Mδi jδ(t − s)

∂2

∂s2
+ ∂2

i jV (x∗),

〈δxi(t )δx j (s)〉 = Gi j (t − s). (73)

In (72) the first term is the classical ground-state energy

and is the partition function of harmonic oscillators with
propagator G, i.e., the Debye contribution. The last term is
an average with respect to the Gaussian saddle-point action
(defined by the latter propagator G) which groups all non-
Gaussian perturbations. These can be evaluated through a
loop expansion ([100], Chap. 7). Fixing β h̄ and taking h̄ → 0
makes clear that at lowest order (only) in this expansion, one
must recover the Debye approximation:

D = − 1
2
Tr ln −M∂2

t + ∂2V (x∗)
)

=N dρ(λ)

[
−1

2

∑
n

ln
(
Mω2

n + λ
)]

=N dρ(λ) ln Tr e
−β p̂2

2M + λ
2 x̂2

= − N dρ(λ) ln

⎡
⎣2 sinh

(
β�

2

√
λ

M

)⎤
⎦

(74)

The overline stands for a disorder average if there is disorder;
ρ(λ) is the (disorder-averaged) density of eigenvalues of the
Hessian evaluated at the minimum ∂2V (x∗). The contribution

of this term to the energy is

UD = −∂ D
∂β

= N dρ(λ) �Ω(λ)
[
1
2

+ fB(Ω(λ))
]

(75)

where one recognizes the usual Debye expression with the
zero-point energy and the Bose-Einstein factor at frequency
�(λ) = √

λ/M.
This loop expansion is in fact the one we performed on the

disorder-averaged energy, where the action is advantageously
reduced to a single degree of freedom. However, starting from
the energy rather than the free energy, we had to push to one
higher order in the loop expansion than needed to check that
non-Gaussian terms do not contribute to the energy at the
lowest nontrivial order O(h̄). The loop expansion from the
free energy thus gives a more direct result. Yet when disorder
averaging is done first, the replicated action becomes less con-
venient to work with: one has to introduce extra replicas6 to
handle the unknown disorder-dependent minimum x∗. It is so
far unclear to us whether such a formalism would provide an
easier way to compute semiclassical corrections to the Debye
formula.

D. Conclusion

In this section, we have studied a semiclassical expansion
(h̄ → 0 with β h̄ fixed) to solve the quantum thermodynamics
of the model and get analytically important quantities such as
the self-energy and the specific heat, starting from a known
solution of the classical model in the zero-temperature limit.
By first simplifying the quantum thermodynamics through the
large N limit, yielding an effective single-particle impurity

6In an analogous way to the Franz-Parisi scheme [101].
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problem, one can perturbatively compute thermal observables
order by order in h̄ via an asymptotic expansion around the
semiclassical saddle point.

At first order in this expansion, in line with the earlier
works by Schehr-Giamarchi-Le Doussal (SGLD) and on the
spherical quantum perceptron [37–39,48], a gapped scaling
of thermodynamic quantities arises in the bulk of the RS
phase, while at the RSB transition lines where the system
becomes marginal, the self-energy develops a singularity and
the specific heat is a power law in temperature. Due to the
marginal condition (14), a cancellation occurs in the first
power in temperature, which impedes a linear scaling of
the specific heat. This was the mechanism put forward by
SGLD to explain the cubic scaling in the models they had
analyzed. The interest of the KHGPS model is that there is
a RSB transition line without a vanishing replicon (RSB-ω4

line), thus precluding the SGLD mechanism, in addition to
the usual de Almeida-Thouless transition line (RSB-ω2 line)
where λR = 0. The latter displays a cubic scaling of the spe-
cific heat while the former is quintic. We showed that the
origin of the power-law exponent is actually not the vanish-
ing of the replicon eigenvalue. The mechanism is criticality,
which brings gaplessness, combined with a Debye analysis
provided by random matrix theory applied to the Hessian of
the classical energy landscape. This is fine for glass models
with continuous degrees of freedom, as in structural glasses
or continuous spin glasses. For discrete degrees of freedom,
it is less clear how to define a Debye approximation. In the
Sherrington-Kirkpatrick model in a transverse field [43], it
was done by approximating the TAP free energy, an argument
made generic in [30]. We comment further on this point in
Sec. VII.

We have thus shown that the first order in the semiclas-
sical expansion coincides with such a “disordered Debye”
approximation, i.e., setting the specific results of the KHGPS
model and of [48] on a general ground. This order is given
by the Gaussian action around the semiclassical saddle-point.
Technically, the assumption of a single minimum in the en-
ergy landscape in the RS phase is akin to the single constant
saddle-point solution x∗ (22) found in the impurity problem.
Both reflect the replica-symmetric structure. The perturba-
tive expansion can be seen as a semiclassical scheme that
generalizes Debye’s approximation, as in principle one can
compute higher-order corrections that are by construction ab-
sent from Debye’s approximation (where one cannot have
energies other than linear in h̄; in principle higher orders may
be expected). These higher orders include contributions from
the non-Gaussianity of the action around the semiclassical
saddle point.

Based on the analysis of the multiple Matsubara sums that
appear for the higher orders in perturbation, SGLD argued
that, at criticality,7 only the prefactor of the specific heat
gets perturbatively renormalized, but the power-law exponent
remains unchanged. In the KHGPS model and in [48], these

7Similarly one can argue that in a gapped phase, the energy gap gets
perturbative corrections in h̄, as the position of the lower boundary
of the branch cut in the self-energy does.

higher orders are more involved, as, due to the self-consistent
structure, one has to investigate a higher number of loops. This
point deserves more examination in these models. Through a
scaling argument and a conflict with Heisenberg inequality, it
was argued in [48] that these higher orders may modify the
power-law exponent, i.e., leading to a breakdown of Debye’s
approximation, in the case of the jamming transition. Another
point which would deserve a careful assessment is how the
transition lines get shifted by the quantum fluctuations, and
if this is accessible through the same perturbative strategy
[102–104].

We next looked at the RSB-SWP phase. Right at the
RSB-ω2 line the Debye approximation holds at first order. It
remains to be understood whether it is as well true within the
bulk of this usual spin-glass marginal phase where the repli-
con vanishes. Here the above generic argument fails because
one cannot assume a single global minimum of the energy
landscape. Instead the direct calculation hints at the validity
of the Debye approximation, brought by a SGLD cancellation
in the self-energy. However, the cancellation of the related
non-Gaussian terms at the energy level—thus whether or not
the specific heat is actually determined by this disordered
Debye scaling CV ∼ T 3—could not be checked, exactly as in
the analysis of the spin-glass phase in the quantum spherical
perceptron [48].

What happens when several semiclassical saddle points are
present, i.e., in the case of the appearance of DWP in the
impurity problem, is the subject of the next section.

IV. AWAY FROM DEBYE BEHAVIOR:
TUNNELING PHYSICS

A very interesting feature of the KHGPS model is that,
while it couples together a collection of SWP (κm > 0), the
interaction may create effective potentials that are either SWP
or DWP, thus destabilizing SWP. This is akin to the GPS
vibrational instability [80,81], or to the mass renormalization
felt by a particle coupled to harmonic oscillators, usually
compensated by the introduction of counter-terms [105–107]
(see Sec. VI). In the following, we consider the semiclas-
sical analysis of Sec. III A, but the starting point (J, h) of
the analysis lies inside the classical T = 0 RSB phase where
effective double-well potentials appear (see Fig. 1), contrary
to the previous section. When h̄ is increased, we expect replica
symmetry to be restored. Starting close enough to the classical
RSB-ω4 line, the saddle-point equation (21) has now two
constant solutions corresponding to minima of an effective
DWP. We dub this a RS(B)-DWP phase. We now explore the
influence of these DWP.

A semiclassical computation of the partition function
therefore requires to consider instanton solutions [93,94,100].
These are imaginary-time-dependent saddle-point solutions
in the limit h̄ → 0 with a finite action; all quantities can be
computed by asymptotic expansion around these solutions. At
variance with quantum field theory, in statistical mechanics
h̄ → 0 also appears in the upper boundary of the imaginary
time integrals and as a result one must consider either T → 0
first or β h̄ fixed in order to extremize a well-defined ac-
tion. In other words this is the semiclassical expansion we
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have explored so far. Most importantly, it is able to capture
nonperturbative effects such as tunneling, while the analy-
sis of the previous section was purely perturbative. Indeed,
when restricting to single-particle quantum mechanics it be-
comes equivalent to the WKB method [93,94,100,108], and
the h̄ dependence cannot be perturbative anymore. The in-
stanton trajectories are nevertheless still ruled by the same
equation that extremizes the action (21). Here there are two
specific analytic obstacles: (i) one should solve this equa-
tion in a self-consistent manner with respect to the variational
equation for G(t ) = qd (t ) − q(1) (11); without further ap-
proximations this cannot be done but numerically. (ii) The
presence of a nonlocal (memory) term complexifies the task
compared to instantonic solutions of local-in-time models,
obtained analytically [94]. Once equipped with a kink solution
going from one well to the other, one usually has to resort
to approximation schemes to resum the vastly many possible
kink-antikink trajectories on the whole imaginary time inter-
val [0, β h̄].

This is a very difficult task and in this section we per-
form a simpler self-consistent variational computation. We
expect that, starting from a point (J, h) within the classical
T = 0 RSB-DWP phase, upon increasing temperature or h̄
one should hit a boundary where replica symmetry is restored
(see Fig. 1). So, we consider h̄ finite so that we are in such a
phase and take the limit T → 0. We still solve the problem
using the instanton method to uncover TTLS physics and
perform a variational approximation that avoids the nonlocal
analysis, turning the problem into an effective single-particle
quantum-mechanical one. The approximation can be viewed
as a self-consistent quantum version of Kühn and collabora-
tors’ analysis in [54,55,109,110]. The main objectives here are

to probe the phase diagram of the system in this regime, un-
cover the dominant low-temperature excitations and derive the
corresponding behavior of the specific heat, both numerically
and analytically.

A. A variational expression for the energy

We define as before χ = βG̃(0). The energy (15) depends
in particular on the effective partition function fκ (1, H ) (13).
The latter is difficult to handle due to the memory term in the
action A (7). In the following we will resort to a variational
approximation that simplifies this memory term. As our ap-
proach is devised for low temperature, we will right away con-
sider only dominant term in the free energy for T → 0. In this
limit, βG is naturally of order one from (7), meaning qd →
q(1). Separating q(x)2 − qd (t )2 = q(x)2 − q(1)2 + q(1)2 −
qd (t )2, we rewrite the overbraced free energy term in (6) as(

βJ

2

)2 ∫ 1

0
dx[q(x)2 − q(1)2] − βJ2

2
q(1)χ

−
(

J

2

)2 ∫ 1

0
dt [βG(t )]2. (76)

For β → ∞, the last term (βG)2 in (76) is order one and
thus subdominant: we discard it from the start. Next, we
consider a “Markovian” simplification by using a variational
parametrization

βG(t ) = χδ(t ), (77)

which gives the low-temperature variational approximation
of the free energy (6) parametrized by {q(x), χ}:

−βF a

N
=
(

βJ

2

)2 ∫ 1

0
dx [q(x)2 − q(1)2] − β

2
J2q(1)χ −

∫
d p(κ )

∫
dH Pκ (1, H )[ fκ (1, H ) − ln Tr e−βĤeff ]

+
∫

d p(κ ) e
J2

2 q(0) ∂2

∂h2 fκ (0, h) +
∫

d p(κ )
∫ 1

0
dx
∫

dH Pκ (x, H )

[
ḟκ (x, H ) + J2

2
q̇(x)( f ′′

κ (x, H ) + x( f ′
κ (x, H ))2)

]
.

(78)

Indeed, this approximation neglects the nonlocality through∫ 1
0 ds βG(t − s)x(s) = χx(t ); thus A becomes the standard

quantum-mechanical action of a particle in a potential vm(x)
(1) with m = κ − J2χ , meaning8 fκ (1, H ) is approximated as

fκ (1, H ) → fm(H ) = ln Tr e−βĤeff ,

Ĥeff = p̂2

2M
+ vm(x̂). (79)

Averages over the impurity problem become standard
single-particle averages:

〈•〉 → Tr • e−βĤeff

Tr e−βĤeff
.

(80)

8This subdominant term would pointlessly complicate the varia-
tional approximation we study here (formally divergent).

The saddle-point equations are obtained through extrem-
ization of the approximate free energy (78). The fullRSB
equations for Pκ and fκ remain unchanged except for the
boundary condition fκ (1, H ) (79). The exact remaining
equations from Sec. II A are

q(x) =
∫

d p(κ )dH Pκ (x, H )

[
f ′
κ (x, H )

β

]2

, (81a)

χ = βG̃(0) =
∫

d p(κ )dH Pκ (1, H )
f ′′
κ (1, H )

β
, (81b)

1 = J2
∫

d p(κ )dH Pκ (1, H )

[
f ′′
κ (1, H )

β

]2

, (81c)

the last one being the marginal stability condition associated
to the replicon. Equations (81a) and (81b) are indeed
obtained extremizing with respect to χ and q(x), except
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that the equation for q(x) is slightly different.9 However at
dominant order in temperature it is identical to (81a) and
one may consider either one, as expected from the present
low-temperature simplification.

From the variational principle, this approximate free en-
ergy bounds from above the correct one [111]. The energy
(15) becomes

U a

N
= βJ2

2

∫ 1

0
dx q(1)2 − q(x)2] + J2q(1)χ

2

+
∫

d p(κ )dH Pκ (1, H )〈Ĥeff〉. (83)

The fullRSB equations will be useful in Sec. V but in this
section, as previously mentioned, we shall specialize to a
RS phase taking h̄ sufficiently large and then T → 0. Here
the only parameters are the overlap q(x) = q and G(t ) =
qd (t ) − q. The RS equations for (χ, q) and the marginal sta-
bility equations are given by (81) with x = 1 and Pκ (x, H ) →
γJ2q(H − h) (8). This simply means that we integrate with
the Gaussian measure DJ2qH = γJ2q(H − h)dH . Taking the
classical limit h̄ → 0 one recovers10 the classical equations of
[58] for T → 0, apart from the kinetic term p2/(2M )—the
present approximation thus does not spoil this aspect. The RS
low-T variational approximation for the energy reads

U a
RS

N
= J2qχ

2
+
∫

d p(m)DJ2qH 〈Ĥeff〉. (84)

B. Low-energy excitations

The crucial input is the partition function fm(H ). The po-
tential vm(x), depending on (m, H ) values, displays either a
single well (SWP) or double well (DWP). The model is now
very reminiscent of the soft potential model ([6], Chap. 9):
we have a collection of independent particles in either a SWP
or a DWP, although here the original interparticle interaction
is manifesting through self-consistent determination of the
potential parameters and their distribution. At low temperature
for SWP, the partition function can be replaced by the one
of a harmonic oscillator in the bottom of the well, while for
some DWP tunneling must be taken into account. We do so
in the simplest manner restricting ourselves to the first two
levels and their tunnel amplitude. Both regimes break down
close to the origin in the (m, H ) plane, corresponding to the
purely quartic potential. At low temperature, this region is

9The extremization over χ indeed yields

q(x) =
∫

d p(κ )dH Pκ (x, H )〈x2〉 (82)

with 〈x2〉 = [ f ′
κ (1, H )2 + f ′′

κ (1, H )]/β2. We expect the
difference with (81a) to be subdominant, owing to
f ′′
κ (1, H )/β2 � [ f ′

κ (1, H )/β]2 as the logarithm of the effective
partition function fκ (1, H ) ∼

T →0
−βEg(κ, H ), Eg being the

ground-state energy of the impurity problem. This is self-consistently
confirmed by the low-temperature expressions (86) and (90).

10For h̄ → 0, the free energy (78) becomes the exact classical one
apart from a term −(Jχcl/2)2 that we dropped in (76), which for
T → 0 is only an irrelevant constant in the free energy.

truncated to the first two eigenlevels, computed independently
and exactly for this special case. In this section, we first study
the associated low-energy single-particle excitations of each
region, which as an aside allows to fix the regions’ boundaries.
Then we will proceed in Sec. IV C to numerical checks of the
approximations.

The extrema of the potential can be obtained analytically
as v′

m(x) = 0 is a cubic depressed equation [112]. We note xa

the absolute minimum and xs the secondary one when it exists
(only when the discriminant D < 0):

xa(m, H ) = 2sign(H )
√

2|m|Fsign(m)(y) ,

F+(y) = sinh

[
1

3
arcsinh(y)

]
, y ≡ 3|H |

(2|m|)3/2 ,

F−(y) =
{

cos
[

1
3 arccos(y)

]
, y < 1

cosh
[

1
3 arccosh(y)

]
, y > 1

,

xs(m, H ) = 2sign(H )
√

2|m|G(y),

G(y) = cos

[
1

3
arccos(y) − 4π

3

]
,

y = 1 ⇔ D ≡ m3 + 9

8
H2 = 0.

(85)

1. Harmonic oscillators

When the potential is a SWP (D > 0) or if it is DWP (D <

0) with one well much lower than the other (precised later on),
one can approximate the low-energy spectrum by the one of a
harmonic oscillator (HO) around the global minimum, whose
partition function11 is

f HO
m (H ) = −βva − ln

[
2 sinh

(
β h̄ωa

2

)]
with v∗ = vm(x∗), ω∗ =

√
v′′

m(x∗)

M
, ∗ = a, s (86)

The harmonic approximation fails for (m, H ) close to the
origin (0,0) (purely quartic potential). In this case we consider
a two-level truncation (valid for low temperatures) similar to
tunneling DWP, discussed below.

2. Tunneling two-level systems

For DWP with significant tunneling, we instead approxi-
mate using the two-level system (TLS) model [5,6,8,9]. At
each bottom of a well, the Hamiltonian Ĥeff is approximated
by the corresponding harmonic oscillator Ĥ∗ = p̂2

2M + v∗ +
Mω2

∗
2 (x̂ − x∗)2, ∗ = a, s. The ground state |φ∗〉 of each oscilla-

tor, satisfying H∗|φ∗〉 = E∗|φ∗〉, and the transition amplitude
between them, provide an approximate low-energy trunca-
tion of the Hamiltonian. The transition amplitude gives rise
to tunneling and is assessed through a WKB method [113,
Eq. (39)]-[114,115] matching the wave function within the
barrier with the one of the harmonic wells beyond. As men-
tioned earlier the WKB result is equivalent to the instanton

11At low temperatures only the gap is important and we could have
truncated the harmonic oscillator to its two lowest levels.
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one for single-particle quantum mechanics [93,94,100,108],
consistently with our strategy.12 We note this tunneling ampli-
tude 0/2. The Hamiltonian is therefore restricted to a 2 × 2
low-energy sector {|φa〉, |φs〉}

Ĥeff ≈
(

Ea 〈φa|Ĥeff |φs〉
〈φs|Ĥeff |φa〉 Es

)
=
(

Ea ∗
0/2

0/2 Es

)
,

E∗ = v∗ + h̄ω∗
2

, ∗ = a, s;

0 = h̄

√
ωaωs

πe
exp

(
−1

h̄

∫ b

a
dx
√

2(vm(x) − E )

)
(87)

with a(m, H ) and b(m, H ) respectively the left and right
classical turning points at energy E (i.e., the solutions of
vm(x) = E within the barrier). E is in fact Es due to the
matching with harmonic wells [113] and is obtained explicitly
from the latter quartic equation.13 One requirement of the
latter formula is that the wells are deep enough (e.g., |m|
large enough). Thus Es − vs = h̄ωs/2 � |vs|. This means we
rather set E = vs which ensures positivity inside the square
root. Note indeed that in the instanton approach, any small
in h̄ deviation of E from vs is a perturbation, and would
only change the prefactor of the exponential—a particularly
weak effect. We shall instead see that when h̄ becomes large,
this TTLS-WKB approximation is not anymore the correct
regime, replaced by the quartic potential scalings, which are
studied below. Finally, these choices do not preserve analytic-
ity in H , which we will come back to in Sec. V A. Except these
precautions, the particular choice of E has negligible impact
on our numerics in Sec. IV D.

In the following, we will be interested only in the eigenval-
ues of the Hamiltonian, so that 0 can be taken real. One has

12An instanton trajectory from a to b has the constant of motion
E = ẋ2

2 − vm(x), from which the action reads
∫ β h̄

0 dt[ ẋ2

2 + vm(x)] =
−β h̄E + ∫ β h̄

0 dt ẋ
√

2(vm(x) − E )= − β h̄E+ ∫ b
a dx

√
2(vm(x) − E ).

This is where the exponent of the tunneling amplitude 0 (87) comes
from; the exponential (in h̄) form stems from summing over many
kink-antikink solutions in the dilute approximation (well-separated
kinks) [93]. Instead, HO potentials do not involve any instanton, i.e.,
Debye approximation is valid for them, resulting in a very different
(linear) scaling in h̄ of the gap.

13The quartic equation vm(x) = E is written in depressed quartic
form as x4 + αx2 + βx + γ = 0 [116] with α = 12m, β = −4!H ,
γ = −4!E , providing four solutions

x =
±1W ±2

√
−(3α + 2y ±1

2β

W

)
2

with W = √
α + 2y,

y = −5

6
α +

{
− 3

√
Q, U = 0

U − P
3U , U �= 0

,

with P = − α2

12 − γ , Q = − α3

108 + αγ

3 − β2

8 , U = 3
√

R, R = − Q
2 +√

Q2

4 + P3

27 . Fixed sign ±1 solutions have same sign; a(m, H ) is
obtained for (±1, ±2) = (−,+) whereas b(m, H ) is obtained for
(±1,±2) = (+, −).

in the pseudospin representation

Ĥeff = ε̄ 1̂ + 0

2
σ̂x + 

2
σ̂z ,  = Es − Ea,

ε̄ = Ea + Es

2
, ε =

√
2 + 2

0 (gap), (88)

where σ̂i are the Pauli matrices, generating two levels at en-
ergies ε̄ ± ε/2. To fix ideas, simple expressions are obtained
for E = vs in the symmetric case H → 0, which maximizes
tunneling at fixed m. One has xa,s = ±√

6|m| + O(H ), ωa,s =√
2|m| + O(H ),  = O(H ) [see also Figs. 12(a) and 13(a)

graphically] and the WKB integral can be computed analyt-
ically, providing

ε(H = 0) = 0(H = 0) = 2h̄√
eπ

|m|e−4
√

2 |m|3/2/h̄. (89)

The corresponding logarithm of the partition function is

f TLS
m (H ) = −βε̄ + ln

[
2 cosh

(
βε

2

)]
. (90)

Notice further that all formulas depend on M through h̄/
√

M.
We now set M = 1 for convenience. Moreover, the Hamilto-
nian possesses the symmetry {H, x} → {−H,−x} so that we
can always restrict to H � 0 integrations.

3. Quartic oscillators

Close to the quartic region (m, H ) � (0, 0), we use the
same truncation to two levels (90) parametrized by (ε̄, ε),
except that in practice these parameters are not assessed
by a semiclassical WKB method but by solving the static
Schrödinger equation for the two lowest levels ε̄ ± ε/2. Nu-
merically we perform it in MATHEMATICA using the matrix
algorithm described in Refs. [117,118] for polynomial po-
tentials in one dimension, writing position and momentum
operators in the basis of harmonic-oscillator eigenfunctions. A
sketch of the three different regimes in the (m, H ) plane is
displayed in Fig. 3.

4. Boundaries of the three low-energy excitation regimes

We now need to delimit the different regimes (HO, TTLS
and quartic) in the (m, H ) diagram. The HO potentials are
either SWP or DWP with negligible tunneling, typically very
asymmetric. TTLS potentials are typically almost symmet-
ric DWP with moderately high barrier to ensure significant
tunneling [119]. Both regimes fail close to the quartic point
(m, H ) = (0, 0), see below. To gain insight on these regimes,
in the rest of the section we compare them to a numerical
solution of the static Schrödinger equation for Ĥeff (79), as
described in the previous section.

We seek a HO/TTLS cutoff line within the DWP region
D < 0, yet both regimes must be bounded from above on the
m axis: indeed the purely quartic potential x4/4! has a gap
(for h̄/

√
M = 1, we compute it numerically as 0.598) whereas

both HO/TTLS predict a vanishing gap (ωa =  = 0 = 0).
This large gap brings an exponentially small specific heat,
making such values of m negligible for this quantity. At small
|m| with H = 0, the levels given by the static Schrödinger
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FIG. 3. Nature of the potential vm(x) = m
2 x2 + x4

4! − Hx as a
function of (m, H ) with boundaries m ∈ [mm, mM ] (dashed red) for
mm < 0 and mM > 0. A second minimum appears (DWP) when the
discriminant D = m3 + 9

8 H 2 < 0 while for D > 0 there is a single
minimum of the potential (SWP). Both regimes are separated by the
green line. The yellow center zone is the quartic zone |m| � h̄2/3,
|H | � h̄, see (98). The thin blue zone below is where TTLS are
found, see (99) and Sec. V. Outside these zones, for low temperature
the harmonic approximation around the (lowest) minimum is valid.
In inset are shown potentials vm(x) with their first ten energy levels
(horizontal lines) and corresponding wave functions for the Hamil-
tonian Ĥeff (79). Tunneling is only observed in the nearly symmetric
DWP (m � −h̄2/3, H � 0), the other DWP has same value of m but
larger H > 0 (still within D < 0). The inset SWP has m > 0 and
H < 0. For a nearly symmetric DWP, the energy levels within the
wells come in pair, unlike the well-separated energy levels of the
harmonic oscillator.

equation are (
− h̄2∇2

2
+ x4

4!

)
ψ (x) = Eψ (x). (91)

We look for a scaling in h̄ of the energy E . As xa → 0, scaling
x ∼ h̄α implies that both left-hand-side terms are of the same
order iff α = 1/3, thus

E ∼ h̄4/3 (92)

is a typical scaling of the gap around the origin (m, H ) =
(0, 0). Close to the purely quartic potential, requesting that
m
2 x2 ∼ x4/4!, i.e., x ∼ √|m|, one gets the harmonic gap

h̄ω = h̄

√
m + x2

2
∼ h̄
√

|m|. (93)

Numerically we see that the above harmonic gap is a good ap-
proximation at large m > 0, but as we lower |m| the harmonic
gap ω decreases down to 0, departing from the true finite gap
as soon as the correct gap scaling (92) becomes comparable
to the harmonic one (93), i.e., when

|m| ∼ h̄2/3. (94)

This is valid for either m > 0 (SWP) or m < 0 (DWP) regimes
and comes from the above fact that in the quartic region
mx2/2 ∼ h̄4/3 with x ∼ h̄1/3.

Furthermore, this lower bound on |m| is recovered con-
sistently from the validity of the WKB approximation for

the TTLS expressions (87). Semiclassicality requires that the
action

∫ |p|dx � h̄, which is the same condition as having an
instanton solution (finite action with respect to h̄). From (89)
this condition is equivalent to large values of the exponential
argument, which breaks down when the condition (94) is
satisfied.14

Besides, reinstating the field term −Hxψ (x) in the
Schrödinger equation, the same scaling argument provides the
scaling

H ∼ h̄ (95)

in this region around the purely quartic potential (m, H ) =
(0, 0). Therefore this quartic region has extension

mH ∼ h̄5/3. (96)

These h̄ scalings can be successfully tested numerically, see
Fig. 4.

Let us come back to the HO/TTLS cutoff in the DWP
region (fixing m � −h̄2/3). It is in principle temperature de-
pendent: the crucial variables scaling with temperature are
β h̄ωa for HO and βε for TTLS. As soon as these variables
become large we get f TLS

m (H ) ∼ f HO
m (H ) ∼ −βEa; either

regime is valid. Thus the cutoff is allowed to be quantitatively
imprecise at low enough temperature. It is sufficient that only
TTLS with vanishing gap ε ∼ T be counted as TTLS, the
rest can be assigned as HO. With this in mind, numerics
(see Sec. IV C) validate the following approximate criterion
to separate HO from TTLS potentials: HO potentials need
localized energy levels in the deepest well, which cannot be
true if the two wells’ levels start hybridizing, giving rise to
tunneling. Thus the first excited energy level within the deep-
est well must not exceed the classical energy of the secondary
minimum:

HO ⇒ Ea + h̄ωa < vs. (97)

This criterion gives a line noted ±Hc(m) depending on the
sign of H in the DWP sector, see Fig. 5. In other words,
if the classical energy difference vs − va is smaller than the
harmonic gap, we assign the potential to be TTLS.

C. Numerical assessment of the WKB approximation

In Figs. 6 and 7, we contrast the WKB approximation with
a numerical solution of the static Schrödinger equation for a
particle in a DWP. WKB computations are done with E = vs.

In Figs. 6(a) and 7(a), at fixed m there is a linear depen-
dence of the gap ε ∝ H close to H = 0 well captured by the
WKB expression. This regime extends linearly as h̄ is in-
creased, as the TTLS region is upper bounded by Hc(m) ∝ h̄,
see (95) and (97) and Fig. 4(a). Beyond the linear regime,
a slightly increasing plateau appears, well approximated by
the harmonic gap. Finally for h̄ = 5 in Fig. 7(a), we uncover
another regime before the linear one, in which the gap is
quadratic ε ∝ H2. This regime is studied further in Sec. V A

14One consequence is that the WKB formula (89) incorrectly pre-
dicts that the gap vanishes for |m| → 0, i.e., outside its validity
domain.

064203-16



TWO-LEVEL SYSTEMS AND HARMONIC EXCITATIONS IN … PHYSICAL REVIEW B 110, 064203 (2024)

(a)

(b)

FIG. 4. (a) h̄ scaling of (solid line) the boundary point of the
quartic region H = Hc(m = −h̄2/3) [computed according to the cri-
terion Eq. (97)], (dashed) the purely quartic potential’s gap. Dots
represent the numerical data while the lines are power-law fits. The
Hc line is Hc(m = −h̄2/3) = 0.491 . . . h̄ [Eq. (95)] and the gap line
is ε(m = 0, H = 0) = 0.598 . . . h̄4/3 [Eq. (92)]. (b) h̄ scaling of the
quartic region [delimited by (98)] contribution, noted UQ, to the
absolute value of the full energy, Eq. (84), for two temperatures. The
self-consistent values of χ (T ), q(T ) have been input (see Sec. IV D).
Circles are for β h̄ = 1, + signs for β h̄ = 105. The former have
UQ > 0, while the latter has UQ < 0 for h̄ � 0.05 and UQ > 0 above
(delimited by the vertical dashed line). Dotted lines represent a power
law ∝ h̄3 as UQ/N ∼ mH ε f (βε) combined with the scalings
(92) and (96) and that for low enough h̄ the function f should not
vary much, as βε ∼ (β h̄)h̄1/3 with β h̄ fixed here. For large h̄ instead
the whole fixed interval [mm(χ ), mM (χ )] is completely included in
the quartic window (see Fig. 8). Therefore UQ/N ∼ ε ∼ h̄4/3 (dot-
dashed line).

and stems from analyticity arguments in H = 0. It spans how-
ever an exponentially tiny range of h̄ as m decreases, hence
remains hidden in other plots.

As anticipated in the previous section, TTLS-WKB ap-
proximation is thus useful only close to H = 0; further the
Debye approximation (HO) is valid. Besides, one notices
that for |m| � h̄2/3 the WKB approximation breaks down as
discussed above, e.g., in Fig. 6(b), for h̄ = 5 in Fig. 7(a),
or in Fig. 7(b). In the latter, the Debye harmonic approx-
imation badly fails for the symmetric DWP and the WKB
approximation seems valid only at |m| > h̄2/3. In numerical
computations we hence delimit the quartic region by

|m| � h̄2/3 , |H | � Hc = 0.491 . . . h̄ (98)

FIG. 5. Green solid line: boundary SWP/DWP. Yellow solid
line: HO/TTLS boundary from criterion (97). Dashed lines delimit
the quartic region at m < 0. Here h̄ = 1 but others values only rescale
the axes, see (98) and Fig. 4(a). (Inset) HO/TTLS boundary for a
larger range of m. It is almost a constant in m and in our numerics is
approximated by Hc = 0.491 . . . h̄ Fig. 4(a).

as these scalings and prefactors are adequate from the above
numerical tests. The TTLS-WKB approximation fits in the
region

m < −h̄2/3 , |H | � Hc = 0.491 . . . h̄. (99)

FIG. 6. (a) TTLS gap ε (88) via WKB approximation (red)
against “exact” numerical gap (cyan) for h̄ = 1. The gap has a linear
H dependence close to H = 0, captured by both curves which yet
differ at larger H (as WKB breaks down). The WKB approximation
also fails around the origin (m, H ) = (0, 0). (b) is a zoom into this
discrepancy, with data only for DWP parameters (D < 0).
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(a)

(b)

FIG. 7. Gap ε (88) via WKB approximation (solid red line),
“exact” numerical gap (dashed yellow), Debye harmonic gap h̄ωa

(86) (dotted green). In each plot h̄ increases from bottom to top. (a)
m = −2, h̄ = 0.1, 1, 5. Vertical dotted lines exhibit the crossover be-
tween TTLS and HO regimes as given by the criterion (97) and (99)
for each value of h̄, increasing from left to right. The gap has a linear
regime in H close to H = 0, but for h̄ large enough (h̄ = 5 curve)
this regime is cut off and seems quadratic very close to H = 0 (see
discussion in Sec. V B). (b) H = 0, h̄ = 0.2, 1, 5. The Debye gap
is clearly off. Here vertical dotted lines locate the threshold −h̄2/3,
which separates well the departure of the WKB approximation from
the exact gap.

In the other domains, the harmonic approximation (HO) is
valid.

D. Numerical results in the RS-DWP phase

Here we discuss our direct numerical solution of the RS-
DWP problem. We fix κm = 0.1, κ = 1, M = 1, J = 0.3, and
h = 0.1 (a point in the zero-temperature classical RS-DWP
phase [58]) and vary T and h̄. The numerical procedure starts
by solving the RS equations for (χ, q) (81b) and (81a) under
the low-temperature approximation detailed in Sec. IV B. We
make use of a self-consistent algorithm: the first value of
the couple (χ, q) is the classical one15 at the correspond-
ing T . We then iterate by plugging the nth value (χn, qn)
in the rhs integrals (81b) and (81a), obtaining a new couple

15These classical values are obtained by a self-consistent algorithm,
similar to the one described here, on the h̄ → 0 version of (81a)

(χn+1, qn+1). This is done with a damping i.e., the actual out-
put value is shifted to prevent oscillating behavior: χn+1 ←
(1 − δ)χn+1 + δχn, with 0.01 � δ � 0.1. This procedure is
repeated until convergence, i.e., both |χn+1/χn| and |qn+1/qn|
are 1 up to a ε = 10−3 threshold. Throughout, the integration
intervals are fixed using H → h + zJ

√
q so that DJ2qH → Dz

does not depend anymore on q. In practice z ∈ [−10, 10] is
enough. Integrals are separated into the (up to three) possible
domains of Fig. 3 according to the value of [mm, mM]. In the
quartic and TTLS domains, we make a double integration
by parts in the expression for χ (81b) in order to least rely
on the second derivative of fm(H ), which is less accurately
computed numerically. Indeed the TLS parameters (ε, ε̄) and
their numerical H derivatives are sampled beforehand in the
(m, H ) plane to speed the process up, and the higher the H
derivative the noisier the data gets. We get these parameters
from a numerical solution of the static Schrödinger equa-
tion for Ĥeff (79) (see Sec. IV B 3) in the quartic domain, and
from WKB expressions (87) in the TTLS domain. The HO
domain parameters (va, ωa) are instead analytically known
(86). In practice the lowest temperature that we regard as close
enough to T = 0 for each h̄ is T = h̄/(β h̄) with β h̄ = 105.
Equipped with the values of (χ, q) we numerically compute
the energy (84), specific heat and replicon (81c). In particular,
the replicon values give access to the phase diagram shown in
Fig. 1 (inset).

The ε = 10−3 threshold is good enough for the absolute
values but not for a precise assessment of the temperature
dependence of (χ, q) at low T . It is the main bottleneck: our
algorithm is not capable of converging for finer thresholds,
which traces back to numerical errors in sampling precisely
the H dependence of H derivatives of the TTLS gap ε. Conse-
quently the specific heat dependence on temperature inherited
from this (χ (T ), q(T )) dependence cannot be tracked at the
lowest temperatures, see Fig. 11(a).

In Figs. 8(a) and 8(b), we display the converged values of
(χ, q) at T → 0 for four decades of h̄. The small h̄ data is in
excellent agreement with an independent numerical solution
of the classical equations (100) (see footnote 15). As h̄ grows
both quantities relax to zero, making the TTLS-WKB region
and eventually all DWP disappear. For h̄ � 1, the quartic
region dominates entirely the whole interval [mm, mM ]. The
behavior is then unusual: only SWP are present but the HO
approximation falls short. In the inset of Fig. 8(b), we pinpoint
that for β h̄ < 1 (a simple heuristic value, T � Egap a typical
energy gap of the system would be more accurate) we usually
see signs of the breakdown of the low-T approximation, here
manifested by an odd regime of increasing q with temperature,

and (81b):

qcl =
∫ mcl

M

mcl
m

d p(m)
∫

DJ2qcl
H

(∫
dx x e−βvm (x)∫
dx e−βvm (x)

)2

,

χcl =
∫ mcl

M

mcl
m

d p(m)
∫

DJ2qcl
H

∂2
H ln

∫
dx e−βvm (x)

β
. (100)

Other starting points have been tested, with no impact on the final
values.

064203-18



TWO-LEVEL SYSTEMS AND HARMONIC EXCITATIONS IN … PHYSICAL REVIEW B 110, 064203 (2024)

FIG. 8. [(a)–(c)] T → 0 values as a function of h̄. (a) (solid blue
line) χ (h̄) (horizontal dot-dashed) classical value of χcl (T → 0)
(horizontal dashed) κm/J2,i.e., the value of χ for which mm = 0;
if χ is above, there exist DWP, below only SWP. On the same
plot is shown (red lines) [mm, mM ] as a function of h̄ and (green
lines) ±h̄2/3 in order to show the importance of the quartic region.
Above h̄ ≈ 0.05 the TTLS-WKB region is overrun by the quartic
region. (b) (Solid line) q(h̄) (horizontal dot-dashed) classical value
of qcl (T → 0). We note that the lowest value of h̄ = 10−3 gives
the classical T → 0 values of these quantities, namely (χcl, qcl ) �
(2.60, 0.47), as calculated independently from (100). (Inset) q(T )
for h̄ = 10−3. The vertical dashed line signals the heuristic value
β h̄ = 1. (c) Replicon. The vertical dashed line signals the transition
at h̄ � 0.15.

quickly overcoming 1. This is unphysical and stems from not
accounting of higher energy levels that get populated.

In Fig. 8(c), the replicon becomes negative at h̄ < h̄c �
0.15, pointing towards a quantum critical point announcing a
RSB phase. At lower h̄, although ∂2

H fm appearing in the inte-
grand (81c) becomes noisier in the TTLS and quartic regimes,
the replicon clearly goes very quickly towards −∞, as ex-
pected from the classical RS case without pseudogap in the H
distribution [87]. We elaborate on this point in Sec. V. The
quantum critical point h̄c approximately coincides with the
disappearance of TTLS in the system (measured at h̄ ≈ 0.05),
as mm � −h̄2/3, see Fig. 8(a). Only HO and quartic potentials
remain. Interestingly, this hints at a fullRSB phase physically
dominated by TTLS physics, while the RS phase for larger h̄
is dominated by Debye or quartic oscillator physics (see also
Fig. 15).

As in the classical case we expect the ensuing RSB phase to
be marginally stable, which entails power-law behavior of the
specific heat due to a vanishing many-body gap. Nonetheless
a crucial comment is in order: we went beyond the assump-
tion of replica symmetry and made an additional variational
approximation which turns the problem into a single-particle
one, albeit very close in spirit to the full mean-field one.
The latter approximation, as discussed in Sec. IV E, intro-
duces a necessarily finite gap of the system, a flaw of the
simplification. For temperatures below this gap, the energy is
exponentially damped, which may forbid the observation of
power laws: (i) the absence of TTLS at the critical point im-
plies a large value of the (HO or quartic) gaps, as these scale as
a power law in h̄ and not exponentially small in h̄. These large
gaps impede the observation of power laws right at the critical
point. Indeed fitting the specific heat contribution of the HO
and quartic regions at the transition h̄c with an exponential
form ∝ e−Egap/T we obtain respectively EHO

gap = 0.11, EQ
gap =

0.044. Notice that the quartic gap scale (92) h̄4/3
c � 0.08 or the

HO scale h̄c � 0.15 are indeed a correct order of magnitude.
(ii) For h̄ � h̄c nevertheless the gaps become small enough to
observe the (pre-exponential) power laws in, e.g., the energy.
Note that below this critical value of h̄ the RS ansatz is strictly
speaking an approximation, although we argue in Sec. V that
this should not modify the present conclusions. We show the
contribution of each domain in Fig. 9, fixing (χ, q) to their
T → 0 values. This is because their temperature dependence
at very low T becomes dominated by numerical errors due
to the convergence procedure and is thus not reliable. We
observe the scaling of the energy in each domain as T 2 for
TTLS, T 6 for HO and a crossover value in between ≈ T 3 for
the quartic region. These laws are predicted by the analysis of
the full energy (including (χ, q)’s temperature dependence)
in Sec. IV E above a domain-dependent threshold temperature
given by the small gap of the (HO, quartic or TTLS) domain
Egap. This gap is determined by a fit and agrees with the
expected order of magnitude for each domain, as detailed in
Fig. 10 for comparison.

The specific heat scaling, as calculated numerically by tem-
perature derivation of the energy, is displayed in Fig. 11(a) for
h̄ = 10−3. The noisy convergence data gives rise to a spurious
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FIG. 9. [(a)–(c)] Energies in the different regions as a function of
temperature at fixed (χ, q) = (χ (T → 0), q(T → 0)) for h̄ = 10−3.
They are shifted with their T → 0 limit so that they go to zero in that
limit. (a) (red solid line) harmonic domain UHO/N , (solid black line)
T 6, (dotted) T (high-T limit of harmonic oscillators), (dashed line)
exponential fit Ce−Egap/T , with C � 1.5 × 10−8, Egap � 1.2 × 10−4.
Note that indeed the smallest harmonic gaps are of order h̄4/3 =
10−4. Due to the large exponent and the rather high gap h̄4/3, it is
difficult to see a clean power law on a large interval. Thus for tem-
peratures below this gap the exponential contribution is felt. (b) (Red
solid line) quartic domain UQ/N . (solid black line) T 3 as an approxi-
mate fit in this quartic region, which is a crossover between TTLS
T 2 and Debye T 6 scalings—see discussion after (108). (dashed)
exponential fit with C � 2.4 × 10−14, Egap � 3.1 × 10−6. The gap’s
order of magnitude is roughly in line with typical small gaps of ef-
fective DWP, see Fig. 10(a). (c) (Red solid line) TTLS-WKB domain
UTTLS/N . (Solid black line) T 2 (dashed) is an exponential fit with
C � 1.4 × 10−14, Egap � 1.2 × 10−7. The gap’s order of magnitude

FIG. 10. h̄ = 10−3. (a) Values of the gap between the first two
levels ε in the quartic region, obtained from direct solution of
the static Schrödinger equation. (b) Values of the gap ε in the
TTLS region obtained from the WKB approximation. The scales
are logarithmic in order to focus on the H → 0 part, which varies
exponentially. The m axis goes from m = −h̄2/3 = −0.01 (left) to
m = −0.17 < m(χ < 3), so as to focus on the effectively sampled
region for h̄ = 10−3 at low temperatures [see Fig. 8(a)]. (cyan) direct
numerical solution of the static Schrödinger equation (orange) WKB
approximation [(87) and (88)] with E = Es (purple) with E = vs. As
expected, the direct numerical solution for H → 0 is more unstable.
For |H | � 10−8, all methods match quite well.

negative specific heat below T ∼ 10−5, and does not allow to
resolve the very low T , likely dominated by the TTLS-WKB
region, expected to occur for T � 10−5 from the cyan curve
in which (χ, q) are instead fixed to their T → 0 values. The
latter curve exhibits the expected behavior (see also Fig. 14):
at T � Egap, the specific heat is gapped, at higher temperature
we have the TTLS linear T dependence and then a crossover
to the HO T 5 scaling. When h̄ is increased in Fig. 11(b), the
TTLS linear behavior is wiped out close to h̄c (actually at the
previously mentioned threshold h̄ ≈ 0.05). This is because
h̄ becomes so large that the mm boundary hits the quartic
region: for h̄ = |mm|3/2 the m < 0 axis is entirely contained in

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
is the lowest of all regions, as expected from typical double-well gap
values, see Fig. 10(b). Both UQ and UTTLS go to a constant value for
high temperature, which is easily seen for a two-level system with
finite gap—of course, the large-temperature limit within the present
low-temperature scheme has no physical meaning. The relative val-
ues of each energy term is also important, the T → 0 value is (i)
for HO, −0.090 (ii) for quartic, −1.8 × 10−10 (iii) for TTLS-WKB,
−2.3 × 10−6.
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(a)

(b)

FIG. 11. Total CV (T )/N for (a) h̄ = 10−3 (b) various h̄. (Top)
(Cyan) (χ, q) are fixed to their T → 0 values. Solid blue, orange,
and black lines are respectively T , T , and T 5. The dashed blue line is
an exponential fit Ce−Egap/T with C � 1.2 × 10−7, Egap � 4.8 × 10−8

(dashed red) data for the full CV (T )/N including the temperature
dependence of (χ (T ), q(T )). Due to numerical imprecision of the
self-consistent algorithm used, the latter dependence plateaus at low
T instead of tracking the approach to the T = 0 values. Conse-
quently at temperature below the T 5 regime, this curve spuriously
drops sharply to zero. (b) Increasing h̄ from left to right. (χ, q)
are fixed to their T → 0 values. Solid curves have respectively
h̄ = 0.009, 0.03, 0.04, 0.05, 0.15. Dashed curve is T , dot-dashed T 2

and dotted T 5. The linear behavior is not seen for h̄ � 0.05 due to
the absence of the TTLS-WKB region [see Fig. 8(a)].

the quartic region and the TTLS-WKB region does not exist
anymore. It is replaced by an exponential behavior (gapped) at
low T , the quartic gap being roughly ∝ h̄4/3. For χ = χ (h̄ =
0.05, T → 0) � 2.58 [see Fig. 8(a)], this indeed happens for
h̄ = (J2χ − κm)3/2 � 0.048, showing that this TTLS thresh-
old value h̄ = 0.05 and the self-consistent value of χ provided
by the algorithm are coherent. The quartic behavior ∝ T 2 for
h̄ < 0.04 is not seen, it is either dominated by the TTLS-WKB
behavior at low T or by the HO behavior at higher T . For
h̄ > 0.04 it is hidden by the h̄4/3 gap or dominated by HO.
Only very close to h̄ = 0.04 is it seen at intermediate T values.

E. Analytical study of the specific heat scaling
at low temperature

Here we complement the previous numerical study of the
RS-DWP phase with an analytical examination of the specific

FIG. 12. h̄ = 1. (a) Debye harmonic gap h̄ωa (86). (b) “Exact”
numeric gap.

heat from the variational approximation of the thermodynamic
energy (84).

1. Finiteness of the gap

To understand the thermodynamic properties at T → 0,
one must first examine what happens to the gap of the system.
In the HO region the gap h̄ωa goes to zero as (m, H ) goes
to the origin, see Fig. 12(a). Eventually this gap is finite if
h̄ is not negligible: it is of order h̄4/3 around (m, H ) = (0, 0)
(92), when ωa ∼ h̄1/3 (quartic region). In the TTLS domain

the gap ε =
√

2 + 2
0 is minimum when both  and 0

are minimized. This occurs for H = 0 and |m| as large as
possible (note that m is bounded from below by mm). Thus
strictly speaking the gap cannot vanish in this setting, yet
it can be made exponentially small in |m|3/2/h̄ (89). There-
fore we expect the specific heat to display a gapped scaling
CV ∼ e−βEgap , but the exponential can be very close to 1 if
the gap Egap � T . This is already what was argued in the
seminal TLS papers [8,9]. In the soft potential model and
early TLS papers [5,8,9,13,120], the lowest value of m (or any
equivalent mechanism) was provided by a physical argument:
the experimental time is limited and tunneling must be faster,
imposing an upper bound on the DWP barrier.

The fact that there is a finite gap is not surprising here as
the second term of (84) is the energy of an effective one-
dimensional quantum mechanical particle: in one dimension
there are no degenerate bound states16 for normalizable wave
functions [121, pp. 98–106]. Consequently, even though there

16Here is the Wronskian argument: let ψ1 and ψ2 be wave functions
at energy E both fulfilling the static Schrödinger equation

− h̄2

2M
ψ ′′

i + V ψi = Eψi , i = 1, 2, (101)
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is a numerically predicted RSB transition from the present
variational approximation [Fig. 8(c)], by construction the
energy gap cannot vanish. This is an inconsistency of this
approximation, which we discuss further in Sec. VI. Note in
addition that the energy (84) contains another term J2qχ/2,
not clearly in the form of an effective energy, whose scaling is
studied later on.

2. Chain-rule expansion

Let us now analyze the T → 0 scaling of the energy (84).
With the help of the variational equation for χ (81b), inte-
grated twice by parts, we get

U a
RS

N
=
∫

d p(m)dH

[
ζq(H )

fm(H )

β
− �q(H )

∂ fm(H )

∂β

]
,

(102)

where the integrands have been symmetrized H → −H by
introducing

�q(H ) ≡ γJ2q(H + h) + γJ2q(H − h),

ζq(H ) ≡ J2q

2
∂2

HγJ2q(H − h) + (H → −H ). (103)

fm(H ) is given on each domain respectively by (86) and
(90). In the limit β → ∞, we can analyze each integrand,
providing

U a
RS(T = 0)

N
=
∫

TLS
(�q∞ (H ) − ζq∞ (H ))

(
ε̄ − ε

2

)
+
∫

HO
(�q∞ (H ) − ζq∞ (H ))

(
va + h̄ωa

2

)
,

(104)

which is the ground-state energy. We noted q∞ ≡ q(β → ∞).
The integrals without measure mean

∫
H�0 d p(m)dH over the

HO or TLS domain (or both if unspecified). The latter includes
TTLS but many steps can be applied verbatim on the quartic
region in which only the first two levels are considered (ε
is the gap and ε̄ − ε/2 the ground state); nonetheless we
comment in Sec. IV F specifically on this domain. Subtracting
(104) to (102),

U a
RS

N
=

T →0

U a
RS(T = 0)

N
+
∫

HO

[
�q∞ (H )

h̄ωa

2

(
coth

β h̄ωa

2
− 1

)
− ζq∞ (H )

ln(1 − e−β h̄ωa )

β

]

+
∫

TLS

[
�q∞ (H )

ε

2

(
1 − tanh

βε

2

)
+ ζq∞ (H )

ln(1 + e−βε )

β

]
+ (q − q∞)

∂

∂q

U a
RS

N
+ (χ − χ∞)

∂

∂χ

U a
RS

N

+ (q − q∞)2

2

∂2

∂q2

U a
RS

N
+ (q − q∞)(χ − χ∞)

∂2

∂q∂χ

U a
RS

N
+ (χ − χ∞)2

2

∂2

∂χ2

U a
RS

N
+ · · · (105)

This is a chain rule expansion for T → 0, distinguishing ex-
plicit β dependence and the one coming from (χ (β ), q(β )).
In the last two lines, the partial derivatives are evaluated at
T = 0 where (χ, q) = (χ∞, q∞).

3. Three low-energy excitations

The low-temperature scaling of each term can now be
assessed. The q dependence is contained in the functions
(�q, ζq ) while the χ dependence is in the integral boundaries,
as m = κ − J2χ . In the following we call δq = q − q∞ and
δχ = χ − χ∞. Dividing the (m, H ) plane in three regions (see
Fig. 3), we obtain some basic scalings.

(1) In the HO domain, the parameters are (va, ωa) (86)
whose (m, H ) dependence is set by (85). In the following,
we note θ (y) any function of y ∝ H/|m|3/2 whose precise
details are irrelevant to the scaling argument. We have that

then ψ1ψ
′′
2 − ψ2ψ

′′
1 = 0, so that ψ1ψ

′
2 − ψ2ψ

′
1 = constant = 0 (the

last equality being true if we consider bound states for a dis-
crete spectrum, as wavefunctions must vanish at infinity), implying
(ψ1/ψ2)′ = 0, i.e., in the end, ψ1 ∝ ψ2 both represent the same
physical eigenstate of the system.

xa = √|m|θ1(y), therefore va = vm(xa) = m2θ2(y) as each of
its three terms scales that way. Besides ωa = √|m|θ3(y) where
θ3(y) cannot vanish. Similarly, H derivatives scale like ∂H =
|m|−3/2∂y. For β → ∞ the critical region of HO integrals is
where h̄ωa ∼ T , which is bound to happen close to (m, H ) =
(0, 0), see Fig. 12(a). This last criterion means that the im-
portant scaling variable is m ∼ (β h̄)−2, whereas y turns out to
be irrelevant. |m| is bounded by h̄2/3 (94), implying there is a
gap. We call this lowest HO gap (on the verge of quarticity)
ε0 ∼ h̄4/3 as given by the scaling argument leading to (92),
or noticing that the exponential temperature dependence in
the following calculations are given by (exponential minus)
β h̄

√|m| ∼ β h̄4/3. Note that this is nevertheless vanishing in
the semiclassical limit h̄ → 0 with β h̄ fixed, recovering the
Debye power laws previously discussed in Sec. III A 5.

(2) In the TLS domains, the parameters are (ε̄, ε) [(87)
and (88)]. The important scaling variable is ε and the critical
region is ε ∼ T . Recall that (m = 0, H = 0) does not yield
a small ε due to the finite gap (92) at finite h̄. We need to
distinguish two cases: (i) Quartic region |m| � h̄2/3 (around
the origin m = H = 0 dominated by the purely quartic poten-
tial). In this region the harmonic approximation fails and, for
negative m, the WKB approximation fails as well, and (ε̄, ε)
was computed numerically in Sec. IV D. The gap ε0 ∼ h̄4/3
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FIG. 13. TTLS parameters for h̄ = 1. (a) Ground-state energy
difference between the wells  (88). (b) Tunneling amplitude 0

(87) from WKB. (c) TTLS parameter ε̄ (88).

is rather large in this region, compared to the TTLS gaps. In
the following, we shall thus rather focus on the TTLS-WKB
excitations; we comment in Sec. IV F on the quartic case. (ii)
TTLS-WKB region |m| � h̄2/3. The H dependence of ε on
a very narrow interval close to H = 0 is quadratic in H (see
Sec. V B), and beyond it is linear in H up to the crossover
to HO behavior. This can be seen from Figs. 7(a) and 7(b)
although the quadratic behavior is only visible for the highest
value of h̄ = 5. The quadratic zone is so tiny (exponentially
small in |m|3/2/h̄) that it does not impact scalings numerically,
and in most of the [0, Hc] interval the gap is linear in H . We
have [see Fig. 13(c) for ε̄]

ε̄ = ν̄0(m) + ν̄2(m)H2 + O(H4),

ε � ν0(m) + ν1(m)|H | + O(H2),

ν0(m) = 0(H = 0) , ν̄0(m) = h̄

√
|m|
2

− 3

2
m2,

ν̄2(m) = 1

2m
− 7

8

h̄

(2|m|)5/2 , ν1(m) > 0,

(106)

which are the leading-order expressions in terms of (m, H ).
An explicit expression for ν1(m) is cumbersome from the
WKB expression (87), although it is clear from the numerics
that it is positive. Therefore, for β → ∞, the critical region
of TTLS integrals is where βε ∼ 1, meaning the important
scaling variable is H ∼ T .

4. Scalings

Let us begin with the terms from 〈Ĥeff〉 in (105). First we
note that at finite ωa (HO region) or finite ε (TTLS region), all
integrals go exponentially to zero when β → ∞. The scaling
regions β h̄ωa ∼ 1 or βε ∼ 1 provide the dominant contribu-
tions. Therefore

blue
∫

=
∫

HO
d p(m)|m|3/2dy �q∞ (y|m|3/2)

× h̄
√

|m|θ3(y)[coth(β h̄
√

|m|θ3(y)) − 1]

= O((T/h̄)6e−βε0 ); (107)

as for β → ∞, the integral is dominated by |m| ∼ (β h̄)−2,
we use this rescaling around m = 0. We have indicated in the
last line the gap ε0 ∼ h̄4/3 to remind of its finiteness. Thus for
T � ε0 the behavior is power law but exponentially damped
for T � ε0.

For the corresponding TTLS term, we change variables
H ↔ ε and then set u ≡ β(ε − ν0(m)) ∈ [0,+∞[ :

red
∫

�
T →0

∫
d p(m)

ν1(m)

∫
ν0(m)

dε �q∞

(
ε − ν0(m)

ν1(m)

)
ε

2

(
1 − tanh

βε

2

){ ∝
T →0

T 2 if βν0(m) � 1

= T �q∞ (0)
∫

m
ν0(m)
ν1(m) e

−βν0(m) if βν0(m) � 1
. (108)

We sometimes write
∫

m ≡ ∫ d p(m) for notational conve-
nience. With the same reasonings, the orange and green terms
from J2qχ/2 in (105) respectively scale similarly. We con-
clude that these terms yield typical scalings as expected: apart
from the quartic gap which brings e−βε0 for T � ε0, the HO

domain gives O((T/h̄)6) in agreement with the Debye approx-
imation for a Hessian with eigenvalue density ρ(λ) ∼ λ3/2,
whereas the TTLS domain yields O(T 2), apart from the TTLS
gap bringing e−βν0(m) if T � ν0(m).
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We now analyze the (δq, δχ ) contributions using (81a)
and (81b). The variational equation for χ can be rewrit-
ten as done in (105) via the chain rule: χ − χ∞ = δχHO +
δχTLS + (χ − χ∞) · · · + (q − q∞) . . . , same for the equa-
tion for q: q − q∞ = δqHO + δqTLS + (χ − χ∞) · · · + (q −
q∞) · · · Once we have studied the HO and TLS explicit contri-
butions of the integrands, we get a linear system for (δq, δχ ).
We have

δχHO = 2

J2q∞
× orange term ∝ (T/h̄)6e−βε0 ,

δχTLS = 2

J2q∞
× green term ∝ T 2

∫
m

e−βν0(m)

ν1(m)
, (109)

as these come from the J2qχ/2 part of the energy, and

δqHO =
∫

HO
�q∞ (H )h̄∂Hva∂Hωa

[
coth

(
β h̄ωa

2

)
− 1

]

+
∫

HO
�q∞ (H )

[
∂H ln tanh

(
β h̄ωa

4

)
β

]2

= O((T/h̄)4e−βε0 ) + O((T/h̄)e−βε0 ), (110)

δqTLS =
∫

TLS
�q∞ (H )

{[
−∂H ε̄ + ∂Hε

2
tanh

βε

2

]2

−
[
−∂H ε̄ + ∂Hε

2

]2
}

∼
∫

m

ν1(m)

4

∫
ν0(m)

dε

[
tanh2

(
βε

2

)
− 1

]
∝ − T

∫
m

ν1(m)e−βν0(m). (111)

A crucial order of magnitude is that the gaps ε0 ∼ h̄4/3 �
ν0(m), the latter being exponentially small in h̄. Hence, for
T � ε0, the HO contributions are damped and we drop them
here.17 All in all, the linear system for T → 0 is of the
form (

δχ

δq

)
= M−1

(
O
(
T 2
∫

m e−βν0(m)
)

O
(
T
∫

m e−βν0(m)
) ), (112)

where M is a 2 × 2 matrix independent of the temperature;
thus we expect18 both δχ, δq = O(T

∫
m e−βν0(m) ).

Finally we look at the partial derivatives over (χ, q) in
(105). The q derivatives involve only the Gaussian func-
tion γJ2q. One uses that it satisfies a diffusion equation

17Note however that the δqHO contribution brings a linear term
(110), as well as δqTLS does.

18The derivative coefficients constituting the matrix M [meaning
the . . . coefficients in the (δχ, δq) equations above (109)] tend to
a nonzero constant for T → 0. This can be seen for q derivatives
using the same diffusion equation argument as in Eq. (113), giving
an identical expression to the T → 0 equations for χ and q, albeit
with a second H derivative of �q(H ). For χ derivatives, the T → 0
constants are J2

∫
�q∞ (H )〈x̂〉∂H 〈x̂2〉 for δχ and

∫
∂2

H�q∞ (H )〈x̂2〉 for
δq. Hence the linear T term in (112) dominates.

∂qγJ2q(H ) = J2

2 ∂2
HγJ2q(H ). As a consequence

∂

∂q

U a
RS

N
=J2

2

∫
∂2

H�q(H )

[
fm(H )

β
− ∂ fm(H )

∂β

]
(113)

where we used the variational equation for χ (81b) integrated
by parts twice. The integrand is the same as the explicit β

dependence (colored terms) in (105), apart from the global
factor ∂2

H�q∞ (H ) instead of �q∞ (H ) or ζq∞ (H ). This does not
impact the scalings as all these functions tend to a constant
for H → 0 (i.e., in the scaling region important for T → 0).
Therefore the term ∂qU a

RS/N vanishes with the same scaling as
the explicit β dependence of (105). Incidentally this happens
for higher q derivatives as well, using repeatedly the diffusion
equation for the Gaussian γq. As it gets multiplied by (q −
q∞) → 0, it is subdominant with respect to the latter explicit
β-dependent terms.

Concerning the χ derivative, it is readily done from the
shift m → κ − J2χ in the last term of (84), generating an
effective-particle average ∝ 〈x2〉. Such averages of powers of
x̂ are also present in the saddle equation for q (81a) and we ex-
press them with H derivatives of fm(H ). Combined, they read

∂

∂χ

U a
RS

N
= A + B

= −J2

2

∫
�q(H )

[
∂

∂β

(
∂2

H fm

β

)

+β
∂

∂β

(
∂H fm

β

)2
]
. (114)

We analyze both contributions separately. All integrands go
to 0 in the β → ∞ limit, and the same scalings dominate as
before. The second derivative (A) can be integrated twice by
parts:

AHO = J2

2

∫
HO

∂2
H�q(H )

∂

∂β

ln(1 − e−β h̄ωa )

β

= O((T/h̄)7e−βε0 ),

ATLS ∝
{

T 3 if βν0(m) � 1
T 2
∫

d p(m)e−βν0(m) if βν0(m) � 1
. (115)

The other term (B) is akin to δq in (110):

BHO = O((T/h̄)4) + O(T/h̄),

BTLS ∝
{

T if βν0(m) � 1∫
d p(m)ν1(m)e−βν0(m) if βν0(m) � 1

. (116)

Hence it turns out that the B term, linear in T , dominates
∂χU a

RS/N .
Furthermore, using the earlier diffusion equation argument

for q derivatives and applying it to (114) makes the crossed
derivative ∂2

qχU a
RS/N (or higher q derivative) scale identically

to ∂χU a
RS/N .
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Concerning χ derivatives of at least second order, again
with the shift m → κ − J2χ we have from (84)

∂n

∂χn

U a
RS

N
= (−1)n+1J2n ∂

∂β

∫
∂n

∂mn
fm(H ),

∂n

∂mn
fm(H ) = (−β/2)nCn(x2) (117)

with Cn(x2) the cumulant19 of order n in the variable x2, due
to the free-energy nature of fm. In the low-temperature limit,
the biggest contribution from these cumulants is close to the
symmetric case H = 0 in the TLS domain and close to the
origin in the HO domain, as further away the energy gaps get
larger. In this limit all cumulants vanish (at least linearly in T )
implying ∂n

χU a
RS/N = O(βn−2) for n � 2. Again with the dif-

fusion equation argument any cross derivative ∂ l
q∂

k
χU a

RS/N =
O(βk−2) with k � 2. Note that in the expansion such a term
gets multiplied by (q − q∞)l (χ − χ∞)k = O(β−k−l ) so that
this total contribution is negligible with respect to T 2.

5. Conclusion

In the previous calculations, we only considered scalings
from the HO and TTLS domains, but not of the quartic region.
This stems from the numerical evidence that it is a small
crossover region between the both regimes, its extension being
of order h̄5/3 (96). Thus it has a non-negligible value only for
large enough h̄, which happens only close to the quantum
critical point or beyond it in the RS phase. In the present
variational approximation it nonetheless implies a gap of order
h̄4/3, which then becomes rather large and damps the energy
as e−βε0 for T � ε0. In particular, in the above computations
(107) and (108) the scaling partly relies on the H dependence
of the gap. In the quartic region, increasing m it crosses over
from the linear dependence of ε of the TTLS-WKB region
(106) to the quadratic behavior20 of h̄ωa for m > 0. As a
consequence one expects the energy in this quartic domain to
cross over as well and lie in between the TTLS T 2 scaling and
the T 6 Debye scaling—exponential gap dependences aside.
This crossover has been studied in the numerical results of
Sec. IV D; see also Sec. V for a further discussion of the gap’s
H dependence and its influence on the specific heat.

In conclusion, we gather all the previous scalings in (105):

U a
RS

N
=

T →0

U a
RS(T = 0)

N
+

O(T 2 )+Debye O((T/h̄)6 )︷ ︸︸ ︷
explicit β dependence (colored terms) +

O(T )︷ ︸︸ ︷
(q − q∞)

same as explicit︷ ︸︸ ︷
∂

∂q

U a
RS

N
+

O(T )︷ ︸︸ ︷
(χ − χ∞)

O(T )︷ ︸︸ ︷
∂

∂χ

U a
RS

N

+ (q − q∞)2

2︸ ︷︷ ︸
O(T 2 )

∂2

∂q2

U a
RS

N︸ ︷︷ ︸
same as explicit

+ (q − q∞)︸ ︷︷ ︸
O(T )

(χ − χ∞)︸ ︷︷ ︸
O(T )

∂2

∂q∂χ

U a
RS

N︸ ︷︷ ︸
O(T )

+ (χ − χ∞)2

2︸ ︷︷ ︸
O(T 2 )

∂2

∂χ2

U a
RS

N︸ ︷︷ ︸
const.

+ · · · (118)

As shown above higher-order terms in the expansion are sub-
dominant. In (118) we deliberately left out the exponential
dependencies stemming from the finite gaps Egap. These ex-
ponentials are negligible when T � Egap and one observes
the power laws. Yet if T becomes too high, one starts to ex-
cite the rest of the spectrum and the present low-temperature
approximation breaks down. We have found out three types
of gaps: the TTLS-WKB one that is exponentially small in
h̄, the quartic gap ∼h̄4/3 and the harmonic one ∼h̄. In the
present semiclassical analysis, the former two are the smallest.
A summary of the scales is given in Fig. 14. The analytical
computation of the specific heat, relying on a low-temperature
expansion and critical scalings of each integration domain,
corresponds to the complementary numerical assessment of
Sec. IV D for the “explicit” temperature dependence. How-
ever the contribution due to the temperature dependence of
(χ (T ), q(T )) could not be properly probed in the numerics.
It is studied further here, revealing that they do not spoil the
linear scaling of the specific heat, as they bring a similar linear
contribution.

19For example, C2(y) = 〈(y − 〈y〉)2〉, C3(y) = 〈(y − 〈y〉)3〉, etc.
20For m > 0, one has ωa =

H→0

√
m + H2

4m5/2 + O(H 4).

F. Conclusion

In this section, we have applied the semiclassical analysis
of Sec. III but starting from the classical RSB phase bearing
effective DWP. The presence of these DWP changes radically
the structure of the expansion: in particular it cannot be pertur-
bative anymore as the semiclassical saddle-point solutions are

FIG. 14. Summary of the energy gap scales and corresponding
temperature scaling of the energy in each domain: HO, quartic (Q),
TTLS. There is yet another higher energy gap scale, the harmonic
one Egap ∝ h̄ which we do not display as it is rather close to the
quartic gap, semiclassically. In practice in the numerics, the gap
separation may not be very sharp, see Fig. 9. For each domain, as the
temperature rises much above the typical gap, higher energy levels
could start to be excited, and two-level truncations should break
down. For example, at high temperature, the two-level approximation
implies a constant energy.
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instantons. We then approached the RSB phase from the RS
phase by letting h̄ finite, large enough. We simplified the self-
consistent problem by building a variational approximation,
that retains the qualitatively new features of this phase and
remains coherent with the classical limit. It amounts to replace
the full dynamical impurity problem by a static one, different
from the usual “static approximation” of quantum mean-field
glasses [36,56,57]. The impurity problem becomes standard
single-particle quantum mechanics. A further simplification
was considered by investigating directly the low-temperature
limit. The collection of (effective) single particles induces,
depending on the parameters of the effective potentials, three
types of elementary excitations: (i) Debye excitations, i.e.,
quantum harmonic oscillators in the bottom of a well (ii) tun-
neling two-level systems (TTLS) (iii) quartic excitations, i.e.,
particles in a potential energy well (or double well) very close
to a purely quartic potential, that cannot be approximated by a
harmonic well and where the wave function is widely spread
spatially, contrary to TTLS exhibiting localized probability of
presence only close to the bottom of each well through tunnel-
ing. Numerical checks of the low-temperature approximation
for the quartic excitation and the TTLS one (WKB method)
have been performed. Then we solved numerically the self-
consistent variational equations. We found a RSB transition,
which for T = 0 amounts to a quantum critical point (see the
inset in Fig. 1). Much above this critical point, only Debye
excitations are present, and only SWP populate the effective
potentials. Lowering h̄, close to the quantum critical point
there are both Debye and quartic excitations; DWP are found
around the quantum critical point but no tunneling two-level
systems exist yet. One has to be within the RSB phase to find
occurences of TTLS, which dominate the specific heat. The
specific heat has been only partially computed numerically,
but we provided analytic arguments for its low-temperature
scaling. TTLS bring a dominant CV ∼ T contribution, as can
be expected from these degrees of freedom, with the caution
that the total energy of the system is not simply a sum of in-
dividual energies of effective degrees of freedom. We showed
that other contributions to the thermodynamic energy do not
impair the linear scaling. The Debye behavior is CV ∼ T 5

seen at larger temperatures, and the quartic excitations yield a
crossover exponent in between (evaluated numerically around
2). Figure 15 points out the principal features of the phase
diagram found in this approach.

However, a first issue concerns the variational approxima-
tion itself. Although it predicts a RSB transition to a marginal
glassy phase, at the quantum critical point the many-body
energy gap does not vanish, and one ultimately finds at T → 0
exponentially damped specific heats. This may be expected
from a semiclassical approach, where small gaps may be
missed. Here the rationale is within the variational approxi-
mation that ascribes the many-body gap to a single-particle
one, which always remains finite. The transition occurs for a
sizable value of h̄ where gaps are large enough, so that in addi-
tion the power-law scaling right at the transition is numerically
unclear. This is related as well to the critical frequency scaling
of the propagator (77), which is necessarily incorrect in this
approximation. For example, if one hits the transition to the
RSB-DWP phase from the RS phase where only single wells
are present (as in Sec. III), plugging the present variational

FIG. 15. Sketch of the quantum phase diagram displayed in
Fig. 1 (inset), within the variational approximation. Excitations dom-
inating the specific heat for T → 0, with the boundaries of their
regime, are shown close to the h̄ axis. From right to left, new excita-
tions appear on top of the previous (on the right) ones. The incorrect
finiteness of the gap at the quantum critical point is mentioned.

approximation and making the analytical analysis of Sec. IV E
(getting rid of TTLS contributions) would provide the Debye
contribution CV ∼ T 5 but likely another spurious21 linear-in-
T term from the temperature dependence of χ (T ). Note that
when TTLS are present, at variance such contributions do
not harm the overall linear scaling, as the individual TTLS
contribution is robustly linear in T , a contribution difficult to
avoid, that is presumably decisive. A possible way to resolve
these issues is presented in Sec. VI.

A second issue concerns the RSB phase. Strictly speaking
the previous analysis assumes the RS ansatz. In Sec. V, we
discuss the impact of RSB on the above physical picture.

V. RSB-DWP PHASE: SPECIFIC HEAT, PSEUDOGAP,
AND MARGINAL STABILITY CONDITION

In Sec. IV, we applied a variational approximation to
simplify the impurity problem in the RS phase, i.e., at large
enough h̄. In this section we discuss what happens lowering h̄
so that we enter the RSB-DWP phase, still under this simplify-
ing variational scheme for T → 0. A crucial quantity appears
in this fullRSB phase: the field distribution Pκ (x, H ), espe-
cially at level x = 1, see the energy (83). We can reproduce
the same analysis as in Sec. IV E for the T → 0 behavior
of the energy; the essential difference here is that the field
distribution may not be Gaussian anymore, which may change
the temperature scalings with respect to the RS case, if this
distribution vanishes at H = 0. Thus we need to understand
better the behavior of Pκ (1, H ) for H → 0. Indeed, in the
classical T → 0 case [87], Pκ (1, H ) is regular for m > 0 while
for m < 0 it has a linear pseudogap Pκ (1, H ) ∼ γκ |H | for
|H | ∼ T . This pseudogap is mandatory to cure the singular
behavior of the classical replicon λR → −∞, giving it a finite
value that vanishes at the RSB-ω4 transition.

Here we argue that around H = 0, Pκ (1, H ) is regular for
finite h̄ but vanishes in the limit h̄ → 0 in order to satisfy the
marginal stability condition. As a consequence the RS-DWP

21This comes from the term δχ∂χU a
RS in (105), combining the HO

contribution to δχ from (110) and (112), with the HO contribution in
(114) and (116).
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T → 0 scaling of the specific heat (118) holds within the
marginal phase at finite h̄ as well.

To see this, we consider the marginal stability condition
(81c). It must be verified in the fullRSB phase. At T → 0, we
have that

fκ (1, H )

β
=

β→∞
−Eg(κ, H ) (119)

with Eg(κ, H ) the ground-state energy of the impurity prob-
lem. This means one has to understand the behavior of the
ground state energy to get the analytic behavior of the field
distribution. At finite h̄, the ground-state behaves far from
classically and remains smooth with H , so that f ′′

κ (1, H ) is
smooth too, hence nothing dramatic happens in the replicon’s
integral. Thus we expect a smooth dependence as well of
Pκ (1, H ) to satisfy the marginal condition, notably that it goes
to a finite constant for H → 0. This is akin to what happens in
the quantum SK model in a transverse field at finite quantum
fluctuations (the transverse field itself) [43,45]. Nonetheless
when h̄ is decreased a singularity could emerge in f ′′

κ (1, H )
near symmetric DWPs as the degeneracy gets unlifted: indeed
in the classical model for m < 0 f ′′

κ (1, H ) is very singular
in H = 0 and there is a low-temperature linear pseudogap
in Pκ (1, H ) to counterbalance it [87]. We now focus on the
emergence of this singularity as h̄ is lowered, as it may affect
thermodynamic quantities. For instance, the replicon has an
odd diverging behavior when h̄ → 0, see discussion around
Fig. 8(c).

A. Ground-state analyticity

We need first to understand the behavior of f ′′
κ (1, H )/β

close to H = 0, appearing in the marginal stability condition
(81c). It is easier to investigate it examining

f ′
κ (1, H )

β
= Tr x̂ e−βĤeff

Tr e−βĤeff
→

β→∞
−E ′

g(m, H ). (120)

Note that (120) is singular in the classical limit at H = 0,
T = 0. Indeed in this case for DWP (m < 0), f ′

κ (1, H )/β →
xa(m, H ) = sign(H )(

√
6|m| + O(H )). xa is the absolute min-

imum and satisfies ∂xvm(xa(m, H ), H ) = 0. By differentiating
over H the latter equation, one has ([58], App. B)

f ′′
κ (1, H )

β
= ∂xa

∂H
= 1

ã
+ [xa(m, 0+) − xa(m, 0−)]δ(H ),

(121)

i.e., the singular classical T = 0 behavior of f ′′
κ (1, H )/β.

The regular part corresponds to the static susceptibility
f ′′
κ (1, H )/β = β[〈x2〉 − 〈x〉2] = 1/ã = 1/(m + x2

a/2) we en-
countered in the single-well case (m � 0) of Sec. III A, see
(28) and (38).

Now in the quantum case, let us note that for m > 0
(SWP) Eg � va + h̄ωa/2 is analytic: va and ωa are analytic
functions of xa, which from (85) is an analytic odd function
of H , xa(m, H ) = 2

√
2|m| sinh[ 1

3 arcsinh(3H/(2|m|)3/2)]. No
issue is suspected here, and this should hold irrespective of
the harmonic approximation. Therefore this m > 0 region
does not need any regularization mechanism and we expect
smoothness of the corresponding Pκ (1, H ). Similarly, in the
DWP-HO region (Fig. 3) the HO expressions are smooth due

to smoothness of the functions in (85). We need to assess what
can happen for m � 0 close to H = 0, i.e., within the quartic
and TTLS regions.

Let us then consider almost symmetric DWP at h̄ > 0.
The singular behavior seen in (121) is cutoff, as can be seen
numerically. This stems from, in the limit T → 0,

f ′
κ (1, H )

β
= Tr x̂ e−βĤeff

Tr e−βĤeff
→

β→∞
〈−|x̂|−〉 =

∫
dx x|ψ−(x)|2,

(122)

where the analyticity and h̄ dependence is now buried into
the wavefunction ψ−(x) = 〈x|−〉. |−〉 is the ground state and
equivalently the lowest level in the TLS approximation for
Ĥeff . It satisfies −(h̄2/2)∂2

x ψ− + vm(x)ψ− = Eg(m, H )ψ−,
and is smooth due to the Laplacian term. For H = 0, due to
parity of the Hamiltonian, ψ−(x) is an even function (with no
node, a bump within each well, going to zero at infinities, see
bottom-left inset in Fig. 3) ([121], Chap. III). Then from (122)
using x → −x one gets22 f ′

κ (1, 0)/β = 0. This is in contrast
with the classical T = 0 result discussed above.

B. Ground-state scalings in h̄ for almost symmetric double wells

The previous observations mean that there is an h̄ depen-
dent regime, going to zero in the classical limit, in which
analyticity of fκ (1, H )/β is reinstated.

In the quartic region, for the scaling reasons presented in
Sec. IV B 4, we have the following scaling

Eg(m, H ) = h̄4/3Ẽg

(
m

h̄2/3 ,
H

h̄

)
. (123)

This is shown numerically in Fig. 16(a), as well as the analyt-
icity for H → 0. The H interval that interpolates the quantum
to classical crossover is therefore linear in h̄ in this region. In
the TTLS-WKB domain m � −h̄2/3, numerically there is an
exponentially small regime of H that interpolates from H = 0
where E ′

g = 0 to the classical values at larger H [Fig. 16(b)].
The rationale for different scalings according to the order

of magnitude of m lies in the fact that close to the quartic
potential, the action

S =
∫ β h̄

0
dt

[
ẋ2

2
+ vm(x)

]
∝ h̄4/3 � h̄ , (124)

22Incidentally, these general properties are recovered within the
WKB approximation (in the TTLS region) for the ground-state en-
ergy Eg = ε̄ − ε/2 only for an analytic choice of energy E inside
the WKB integral (87). Indeed, ε̄ is analytic and 2 ∝ H 2 as well
(Fig. 13). Therefore, as 0(H = 0) > 0, ε will be analytic unless
0 is not. In (87), the product ωaωs is an even analytic function of
H . Finally, we numerically see that the WKB integral is analytic if
and only if E is analytic (note that E also enters into the defintion
of a and b). However the choices E = vs (made in the numerics)
or E = Es imply a nonanalytic dependence of the WKB integral,
yielding λR →

h̄→0
−∞—which occurs for small h̄ in Fig. 8(c). This is

akin to the classical RS case where the pseudogap mechanism curing
the singularity is absent [58,87].
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(a)

(b)

FIG. 16. (a) Scaling of E ′
g = ∂H Eg = −〈−|x̂|−〉 given by (123),

exactly obeyed ∀h̄. Black/red: m/h̄2/3 = −10−4 (close to m = 0)
with h̄ = 0.1 (black), h̄ = 10 (red). Blue/green: m = −h̄2/3 (bound-
ary with TTLS-WKB region) with h̄ = 0.1 (green), h̄ = 10 (blue).
Away from the vertical dotted lines signaling H = ±Hc � ±0.49h̄
[(98) and Fig. 5], the lines are continued by their HO approxi-
mations, showing the correct connection between the two regimes.
When h̄ → 0, the interpolating regime H ∝ h̄ shrinks and E ′

g ∼ −xa

becomes discontinuous. Note that at the threshold value m = −h̄2/3

(blue/green) we start to see that the scaling H ∝ h̄ is not anymore
appropriate to account for the variation of E ′

g. (b) Log-plot of the first
derivative of the ground-state energy with respect to H , obtained by
solving the static Schrödinger equation, for h̄ = 10−3 (hence some
numerical noise). The range of m is in the TTLS-WKB regime,
−0.15 < m < −0.01. As m decreases (ln10 |m| increases), the range
of H that interpolates from the classical value E ′

g � −xa to 0 de-
creases exponentially.

in other words there are no instantons (finite-action solution
of the saddle-point equation) [93,94] and the quartic scalings
prevail. For m � −h̄2/3, these scalings break down, instan-
ton solutions become possible (the action becomes order
one). Summing over an infinite number of bounces drastically
changes the h̄ dependence from perturbative to nonperturba-
tive (compare the HO gap scaling Egap ∝ h̄, or quartic Egap ∝
h̄4/3, to the instantonic/WKB Egap ∝ e−S0/h̄, with S0 the kink
solution (87)) [93].

We now assess what is this exponentially small in h̄ regime
in the TTLS domain. For the vanishing of the replicon and
from (120), we are interested in the (H, h̄) dependence of
the second derivative of Eg. From the previous analyticity
discussion and the symmetry H → −H it follows that we can

expand, fixing m and h̄,

Eg(H ) = ε̄ − ε

2
= Eg(0) + H2

2
E ′′

g (0) + O(H4)

⇒ E ′
g(H ) ∼

H→0
HE ′′

g (0) = H
∂2

∂H2

(
ε̄ − ε

2

)∣∣∣∣
H=0

. (125)

The h̄ dependence of ε̄ and  is linear. However, ε(H = 0) =
̂0 ∼ e−S0/h̄ (87) (we put wide hats on quantities taken at H =
0) is exponentially small in h̄, see (89) for an approximation.
Expanding ε =

√
2 + 2

0 (88), one has

ε = ̂0 + H2

4

⎛⎝(̂2
0

)′′
̂0

+
̂(2)′′

̂0

⎞⎠+ O(H4). (126)

Now notice that the tunneling amplitude 0 (87), after any
H derivation taken in H = 0, retains an overall exponentially
small factor e−S0/h̄; other factors are mild. Thus exponen-

tially speaking ̂(2
0)′′ ∼ (̂0)2. So, the quadratic term in H

in (126) is dominated by the exponentially large ̂(2)′′/̂0 ∼
1/̂0. We conclude from (120), (125), and (126) that E ′′

g (0) ∼
−ε′′(0)/2 ∼ −1/̂0 is exponentially large and

f ′
κ (1, H )/β ∼ −E ′

g ∼
H→0

H/̂0. (127)

Therefore f ′
κ (1, H )/β goes from 0 at H = 0 to a scale

at large enough H roughly given by matching the HO
approximation, f ′

κ (1, H )/β � −(va + h̄ωa/2)′ =
H→0

√
6|m| +

h̄
√

3/(8m) which is of order 1. This means that the H scale
over which f ′

κ (1, H )/β vanishes is exponentially small and
given by the tunnel splitting:

H ∼ ̂0 ∼ e−S0/h̄ = ε(H = 0). (128)

This is confirmed numerically in Fig. 16. Note that the
same analysis holds for ε, and explains that the quadratic
regime ε − ε(H = 0) ∝ H2 happens on this exponentially
small scale, hence it is seen only at fairly large h̄ in Fig. 7(a).
Then it crosses over to a linear regime ε ∝ H on a much larger
linear scale in h̄, up to H � Hc(m) ∝ h̄, to eventually reach the
HO value ε ∼ h̄ωa. This explains why the quadratic regime
is irrelevant for the tunneling two-level system contribution
to the specific heat, which is dominated by the much larger
portion of the (m, H ) plane where the linear regime ε ∝ H is
valid.

C. Tunneling two-level systems imply a pseudogap
at zero temperature for h̄ → 0

We now have everything at hand to show that singulari-
ties in the marginal stability condition (81c) for T = 0 and
h̄ → 0 are avoided due to a pseudogap in the field distribution
for m � −h̄2/3, leading to the possibility of verifying this
condition and thus the persistence of a fullRSB phase when
lowering h̄. Indeed, in this limit for m < 0, f ′′

κ (1, H ) takes the
classical value given by the regular part of (121) everywhere,
except in a small region scaling with h̄ close to H = 0. This
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regular part can be safely extended for h̄ → 0 to H = 0, thus
the integral becomes

∫
d p(ã)/ã2 in the notations of Sec. III A

(ã = v′′
m(xa)). This is convergent even in (m, H ) → (0, 0)

where xa = 0, owing to p(ã) ∼ ã3/2, see Sec. III A 3 [58,87].

Yet for the m < 0 region close to H = 0, we need to separate
the quartic regime m � −h̄2/3 where H ∝ h̄ from the TTLS-
WKB regime m � −h̄2/3 where H ∝ ̂0(m). The replicon
then reads

λR ∝

λ
regular
R >0︷ ︸︸ ︷

1 − J2
∫ mM

0
d p(m)

∫ ∞

−∞
dH Pκ (1, H )[v′′

m(xa)]−2 −h̄1/3J2
∫ 0

−1
d p(m̃)

∫ ∞

−∞
dH̃ Pκ (1, h̄H̃ )[∂2

H̃ Ẽg(H̃ , m̃)]2

− J2
∫ −h̄2/3

mm

d p(m)
∫ ∞

−∞
dĤ

Pκ (1, ̂0(m)Ĥ )

̂0(m)
[∂Ĥ 〈−|x̂|−〉]2. (129)

The first contribution to the replicon is the regular part of the
classical replicon for positive m. In the quartic region, we fac-
tor out the h̄ dependence using the quartic scalings of (123),
i.e., m̃ = m/h̄2/3, H̃ = H/h̄. Note that Ẽg is a smooth function.
This quartic contribution vanishes as h̄1/3 in the classical limit,
and there is no need for a regularization mechanism in the
field distribution at these scales. Instead in the TTLS-WKB
domain, we use the scaling variable Ĥ = H/̂0(m). The di-
vergence that gives birth to the singular part of the classical
equation (121) manifests itself in the factor 1/̂0(m) inside
the integrand, quickly diverging when h̄ → 0. To balance it,
we need Pκ (1, 0) to vanish and postulate a pseudogap for
m � −h̄2/3:

Pκ (1, H ) ∝
H→0

|H |ν . (130)

Then the last integral of (129) is proportional to ̂0(m)ν−1.
If ν > 1, this TTLS-WKB integral vanishes for h̄ → 0 and
the replicon is positive. This contradicts our hypothesis of a
marginal stability transition; we thus need this H → 0 region
to contribute so that λR = 0. However, if ν < 1, this term
diverges for h̄ → 0 and λR → −∞ as in the classical RS
limit [58,87], recovering the brutal effect of the singularity
of (121). This cannot be and we conclude that the pseudogap
must be linear, ν = 1, which makes contact and agrees with
the classical T → 0 analysis [87]. This pseudogap induces a
crossover of the specific heat scaling in temperature, from the
linear quantum one to the classical one.

D. Conclusion

We have examined how taking into account fullRSB within
the variational approximation of Sec. IV, i.e., in the phase
where TTLS appear, changes the conclusions of Sec. IV.
We argued that at finite h̄ this modification would enforce
marginal stability while not impairing the linear scaling of
the specific heat. This is due to the regularity of the field
distribution, as opposed to the classical case where it is pseu-
dogapped. However, in the limit h̄ → 0, if TTLS are present,
the same linear pseudogap as in the classical T → 0 regime
is mandatory for m � −h̄2/3 to preserve marginal stability.
Indeed these excitations create a singularity in the marginal
stability condition, regularized by such a pseudogap in the
field distribution. This singularity extends over an exponen-
tially small scale of the field H , given by the tunnel splitting.
This is the same small scale over which the TTLS gap ε is not
anymore linear in H but quadratic, as found numerically in

Sec. IV. The narrowness of this quadratic regime implies its
irrelevance on the specific heat scaling. The specific heat then
crosses over to its classical regime.

VI. TOWARDS A CONSISTENT SOLUTION
IN THE RSB-DWP PHASE

A. Inconsistent imaginary-time dependence and many-body gap
under the variational approximation

In the previous Secs. IV and V, we have studied the
RS-DWP phase through a variational approximation for the
impurity problem, which captures the essential semiclassical
physics of tunneling through potential barriers. In the RS-
DWP phase, the many-body gap should be finite in agreement
with the variational approximation. For T → 0, we expect
instead the many-body gap to vanish at the continuous RSB
transition and within the RSB-DWP phase. The variational
scheme is thus inconsistent as it predicts a zero-temperature
continuous RSB transition without a vanishing energy gap.
In this section, we point out that this discrepancy must be
resolved by a proper treatment of the nonlocal dynamical
equations of the impurity problem, and mention a possible
way via an analogy with the spin-boson model, as well as its
consequences. We now work in the conventional time unit.

An internal inconsistency of the RS variational
approximation can be guessed in the time dependence of G(t ).
Here we investigate it further, computing it self-consistently
at low temperature within the variational approximation
βG(t ) = χδ(t ). Recall that G(t ) is given self-consistently by
(9) and (11)

G(t ) =
∫

d p(κ )dH Pκ (1, H )〈x(t )x(0)〉c. (131)

For (m, H ) outside the HO region, for β → ∞, we truncate
to the first two levels, one can then extract the correlation
function23 defining G(t ):

〈x(t )x(s)〉 =Tr e−βĤeffT x̂(t )x̂(s)

Tr e−βĤeff
∝

|t−s|→∞
e−ε|t−s|/h̄, (133)

23In the pseudospin representation, we approximate x̂ ≈
(

xa 0
0 xs

)
.

The prefactor of e−ε|t−s|/h̄ in (133) is then

|〈−|x̂|+〉|2 = (xa − xs )24
0

4
[
2

0 − (ε − )
]2 (132)

with |±〉 the ground and excited states of Ĥeff (88).
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T is the time-ordering operator. In the low-temperature limit,
as expected from general arguments in presence of a gap
([100], Sec. 2.4), one recovers an exponential relaxation
for the TTLS part of G(t ) due to the nonzero gap ε. Now
for (m, H ) in the HO region dominated by a single well,
there is a finite O(h̄) gap, in the quartic region where it is
O(h̄4/3)24. Putting both two-level and HO regions together,
G(t ) is obtained by an integral over exponential decays with
a featureless weight Pκ (1, H ).

This result differs from the original Dirac delta (77). Worst,
at the T → 0 RSB transition the replicon should vanish
with a concomitant power-law-tailed G(t ) (critical scaling)
[30,122,123], as happens in Sec. III A 3 when approaching
the RSB transitions. This calls for a proper solution to the
imaginary-time problem. If this impurity problem is prop-
erly handled, then the RS or RSB off-diagonal structure
of the overlap order parameter is inferred from the replica
equations requiring the dynamical content as an input (see
Sec. II A). These equations are readily solved in the RS case or
efficiently computed numerically from the partial differential
equations in the RSB case.

B. Approximate mapping to the spin-boson model

For a fully consistent solution of the model, the crucial im-
provement over the variational approximation is thus to tackle
the nonlocality of the dynamical impurity problem. In par-
ticular, one needs to compute the effective partition function
fκ (1, H ) and connected correlation functions in imaginary
time [to get G(t ) (131) or the self-energy]. In the spirit of
the previous sections, one could again resort to compute the
saddle-point trajectories (instantons) from (21) (written in the
RS assumption, but extendable almost verbatim to the RSB
phase), which are time dependent, resum all instanton con-
tributions and perform an asymptotic expansion around these
saddle points as in Sec. III A. A kink trajectory retaining the
time nonlocality of (21) does not have an analytic expression,
which makes this strategy a difficult task. In the following,
for generality we consider the fullRSB equations although the
focus is on the dynamical impurity problem.

Let us consider the problem from a different angle. Fixing
G(t ), A[x] in (7) describes the action of a single degree of
freedom with non-Markovian self-interaction. This is very
reminiscent of the action of a particle linearly coupled to a
bath of oscillators [124]. We can unfold the action A[x] à la
Caldeira-Leggett [105,125], its Hamiltonian reading

H̃ = p̂2

2M
+ vκ (x̂) +

∑
α

p̂2
α

2mα

+ mαω2
α

2
x̂2
α − cα x̂α x̂. (134)

Writing the Feynman path integral for the partition func-
tion Z̃ = Tr e−βH̃ , we get the dynamical input of the replica

24In Sec. III A, within the semiclassical expansion this quartic gap
goes to zero, in agreement with the gapless Debye frequency scalings
of Sec. III A 3.

equations:

fκ (1, H ) = ln
∮

Dx eA[x] = ln(Z̃/Zbath ),

Zbath =
∏
α

1

2 sinh(β h̄ωα/2)
. (135)

Zbath is the partition function of the collection of harmonic
oscillators alone. The coupling to the bath brings a renormal-
ization of the quadratic term of the potential [105–107], which
is apparent when writing the action in terms of the self-energy
(36)25

A[x] = − 1

h̄

∫ β h̄

0
dt

[
M

2
ẋ2 + vm(x)

]
− 1

2β h̄2

∫ β h̄

0
dtds x(t )I (t − s)x(s) (137)

with m = κ − J2χ the renormalized quadratic coefficient.
Defining the bath spectral function [107]

J̃ (ω) = π

2

∑
α

c2
α

mαωα

δ(ω − ωα ) , (138)

the KHGPS quantities are then identified by the mapping:

J2χ = 2

π

∫ ∞

0
dω

J̃ (ω)

ω
,

Ĩ (ωn) = 2

π
ω2

n

∫ ∞

0

dω

ω

J̃ (ω)

ω2
n + ω2

. (139)

In the spin-boson model, the bath spectral function is assumed
gapless from the outset: J̃ (ω) ∼

ω→0
ωs. In the KHGPS model,

as a consequence of (139), this scaling corresponds to a crit-
ical RSB transition where the self-energy Ĩ (ω) ∼

ω→0
ωs may

become nonanalytic at zero frequency. For this reason, this
“mapping” may be well suited to study the RSB transition.

A possible program for a solution through this framework
is to start from a guess (given, e.g., by the variational ap-
proximation of Sec. IV) for the susceptibility χ and replica
parameters q(x). An ansatz for the self-energy I could be
provided by setting

J̃ (ω) = C(T )ωse−ω/ωcut . (140)

Then one has to enforce the self-consistent equations [such
as the replica partial differential equations, (81a), (81b), and
(131)] and obtain their fixed point for all these parameters. For
the self-energy this amounts to match (131) and (139). As the
replica equations are coupled, an iterative way to get the fixed
point is to update the values at each iteration, compute the
dynamical functions [correlations, fκ (1, H ) and its H deriva-
tives, see (81a) and (81b)] and repeat until convergence, as in

25We could have equivalently considered the Hamiltonian in the
counter-term form:

H̃ = p̂2

2M
+ vm(x̂) +

∑
α

p̂2
α

2mα

+ mαω
2
α

2

(
x̂α − cα

mαω2
α

x̂

)2

. (136)
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Sec. IV D. In doing so, one has to average over (κ, H ) dynam-
ical averages [for q(x), χ or Ĩ (ω)] or to get the effective free
energy [for fκ (1, H )]. In the case where the single-particle
potential vm(x) is a SWP, one can put to work methods from
the damped harmonic oscillator problem ([107], Chap. 6) to
get these dynamical observables. Similarly, if the potential is
a DWP, one truncates first the model (134) and (137) to the
spin-boson one [106,107] (up to a constant energy)

H̃ ∼ 0

2
σ̂x + 

2
σ̂z − 1

2
σ̂z

∑
α

h̄λα (b̂α + b̂†
α ) +

∑
α

h̄ωα b̂†
α b̂α

(141)

using x̂α =
√

h̄
2mαωα

(b̂α + b̂†
α ), p̂α = i

√
mαωα h̄

2 (b̂†
α − b̂α ),

and λα = xacα

√
2

h̄mαωα
. b̂†

α , b̂α are usual bosonic

creation/annihilation operators [b̂α, b̂γ ] = 0, [b̂α, b̂†
γ ] = δαγ .

Then one extracts dynamical observables using methods
from the dissipative two-level system problem [107, Part.
IV]. Self-consistency of the dynamical equation (131) is
a priori preserved in the crucial low-frequency limit, as in
either harmonic or two-state dissipative quantum models,
the imaginary-time position correlation function decays as
〈x(t )x(0)〉c ∼ t−(s+1), matching the above ωs low-frequency
behavior of Ĩ (ω) and J̃ (ω). Regarding the effective free
energy fκ (1, H ), note that in the above partition function
(135), one would have to subtract the contribution of the
fictive bath Zbath.

This mapping is approximate, as unlike the KHGPS model
the spin-boson model has no self-consistent structure and
takes the bath spectral functions as given (corresponding to
the critical regime in the KHGPS model). Here one has to
enforce the self-consistent equations to determine all quan-
tities, including the bath spectral function. Note in addition
that the latter function may contain a temperature dependence
[beyond the one incorporated by the Matsubara frequencies
ωn = 2πn/(β h̄)]. This is absent from the spin-boson model
and may affect some scalings. To take this into account, we
proposed the ansatz (140) with an extra temperature depen-
dence in the prefactor. Nonetheless note that in the results
of Sec. III A, where only SWP are present, there is no such
explicit T dependence in the self-energy at first semiclassical
order.

The marginal condition (14) provides the glass transition
line, i.e., for T = 0 the quantum critical point h̄c discussed
in Sec. IV D. Finally, the specific heat should be revealed by,
from (15): (i) computing the extra interaction terms (first line)
and comparing it to the other term (ii), as was done in the
variational approximation in Sec. IV E, and (ii) an average
over (κ, H ) of the impurity specific heat provided by the
spin-boson model (second line). Only (κ, H ) regions with the
dominant specific heat contributes to the critical scaling, i.e.,
only the dominant quantum excitations should be taken into
account. For instance, expecting TTLS to yield the dominant
contribution, in the dissipative model (134) their specific heat
scales as CV ∼ T s [107,126] in the symmetric DWP region,
meaning that a linear specific heat corresponds to the Ohmic
case s = 1. Therefore, taking into account the nonlocality
in time of the problem induces the vanishing of the gap as
expected.

Interestingly, at zero temperature, if s < 1 (sub-Ohmic
case), or at strong enough system-bath coupling (here
embodied by the prefactor of the bath spectral function
or the self-energy) in the Ohmic case s = 1, the two-
level system gap 0 = 0 vanishes. This corresponds to a
dissipation-induced suppression of tunneling at T = 0, i.e.,
the localization phenomenon first found by Chakravarty and
Bray & Moore [127,128]. This is a polaronic effect coming
from dressing of the tunneling amplitude by the coupling to
high-frequency bath modes (known as adiabatic renormal-
ization [106,107,127,128]).26 In the variational approach of
Sec. IV, gaplessness is missing due to the nonvanishing of this
single-particle tunneling amplitude, which is resolved by this
dissipation-induced localization. Yet it is not the only route
to a vanishing gap of the many-body system: if s > 1 (super-
Ohmic case), the effective two-level system is tunneling and
has a finite gap 0 > 0. Here the criticality of the bath is
enough to induce the one of the whole (system and bath). Such
a program is left for future work.

VII. CONCLUDING DISCUSSION

The standard tunneling model (STM) [8,9] (or its exten-
sion as the soft potential model, SPM), relying primarily on
TTLS excitations, successfully accounts for low-temperature
properties of real glasses around 1 K, except for essential
questions that remain to clarify, such as the physical nature
of tunneling entities and the role of interactions. Mean-field
models are more amenable to an analytic solution and critical
scalings are usually sharper than in finite dimension. The main
motivation of this work is the curiosity that the relevance of
TTLS in mean-field quantum glasses is far from established,
whereas it is a pivotal concept in finite-dimensional ones. Here
we studied the low-temperature quantum thermodynamics in
the KHGPS model, a mean-field model whose low-energy
excitations are similar to the ones of actual glasses.

Because the problem remains difficult to solve analyti-
cally, following earlier works [37–39,48] we chose as angle
of attack to perform a semiclassical limit of h̄ → 0 with
β h̄ fixed. We understood that this scheme technically corre-
sponds to a standard loop expansion around the semiclassical
saddle-point trajectories, which helps to grasp the prevail-
ing low-energy excitations. If this trajectory is trivial (static
classical zero-temperature solution), the underlying physics is
ruled to first order by a Debye approximation on a disordered
energy landscape. Instead the trajectories may be instantons,
which connects with different nonperturbative physics (here
of tunneling in double-well potentials).

26Wegner flow equations ([107], Sec. 18.1) supply a self-consistent
equation for the renormalized tunneling amplitude r

0 :

r
0 = 0 exp

(
− x2

a

2π h̄

∫ ∞

0
dω

J̃ (ω)

ω2 − (r
0 )2

)
(142)

with 0 ∝ e−S0/h̄ the bare tunneling amplitude [see (87) and (124)
and footnote 12], which can be calculated through instanton or WKB
methods. For the sub-Ohmic case, r

0 = 0 comes consistently from
the divergence of the frequency integral, whereas it remains finite in
the super-Ohmic case.
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In the phase where the classical energy landscape is convex
(replica-symmetric phase at T = 0), the specific heat ex-
hibits a gapped scaling. Approaching the glass phases where
replica symmetry gets broken, the many-body energy gap
vanishes and a critical power-law scaling of the specific heat
is obtained. This scaling depends on the underlying domi-
nant physical excitations of the system. When the mean-field
impurity problem contains only a collection of single-well
potentials, as in the noninteracting model, the scaling is cubic
while when the interaction between the bare degrees of free-
dom (harmonic oscillators in a single well) is on the verge of
creating effective double-well potentials, the scaling is quin-
tic. This mirrors the predominant harmonic excitations and the
nature of their instability towards replica-symmetry breaking.
Beyond the transition line where the scaling is cubic, one
finds a marginal spin-glass phase where replica symmetry is
continuously broken, hosting only single-well potentials in
the impurity problem (RSB-SWP phase). The semiclassical
expansion there hints at the same disordered Debye behav-
ior as on the transition line at the level of the self-energy,
yet the cancellation of non-Debye terms in the specific heat
could not be entirely resolved. This is a similar situation
to the fullRSB phase of the quantum spherical perceptron
[48].

We identified a generic argument for such exponents,
which corresponds to a disordered version of the Debye ap-
proximation well known for crystals. It rationalizes previous
perturbative results from such a semiclassical scheme [48].
Namely, the mechanism is criticality (implying a gapless
phase, here provoked by the GPS instability) combined with
random matrix theory for the density of classical vibrational
modes of the system. It generalizes (somewhat more phys-
ically) the SGLD argument previously put forward in the
literature [37–39] in which only the vanishing of the replicon
eigenvalue would determine the scaling of the specific heat.
This left out other cases, such as the quintic scaling above
where the spin-glass susceptibility is finite at the transition
(finite replicon), or the case of jamming where the replicon
cancels but the first perturbative order yields a different (lin-
ear) Debye scaling [48], or even cases where this framework
becomes non perturbative, here in presence of two-level tun-
neling impurities.

Indeed, we next studied the physically most interesting
phase where effective double-well potentials start populat-
ing the impurity problem (RSB-DWP phase), through the
same semiclassical strategy. There, the semiclassical expan-
sion looses its perturbative nature as non-Debye excitations
appear due to the double wells. Instantons need to be consid-
ered in the dynamical impurity problem, contrary to the Debye
case. Through a variational approximation designed to retain
this instantonic character, we investigated both numerically
and analytically the phase diagram and the specific heat for
T → 0. Tuning h̄ one goes from a RSB phase (small enough
h̄) to a RS phase (high enough h̄) separated by a quantum
critical point. At low temperature, TTLS dominate the inner
RSB phase, bringing a linear scaling of the specific heat, while
they are absent in the RS phase or close to the quantum critical
point where harmonic and quartic modes prevail. In the inner
RSB phase, Debye quintic scaling is then seen only as a
crossover at higher temperature. The global physical picture

is similar to the one of the phenomenological soft potential
model, in which a mixture of soft harmonic excitations and
of TTLS determine the behavior of the specific heat. It points
towards the emergence of TTLS inside the marginal quantum
glass phase, a different scenario from the ones displayed by
other mean-field quantum glass models. We showed robust-
ness of the linear specific heat scaling in the RSB phase within
the variational approximation, by studying the marginal sta-
bility condition and the emergence of a pseudogap in the
field distribution for h̄ → 0. Overall the quantum regime of
the KHGPS model within a ‘local’ variational approximation
shows faithful mean-field transposition of the SPM designed
for the phenomenology of actual low-temperature glasses,
connecting these phenomenological concepts to mean-field
glass theory ones. Although the low-temperature expansion of
the specific heat displays some robust features, our variational
approximation is not a fully consistent solution, which may
ultimately jeopardize the obtained linear scaling. We finally
proposed a way to fix its main inconsistence through a fuller
solution of the dynamical impurity problem, by considering
the similarity of the Matsubara impurity action with the one
of the spin-boson model. This would give a scenario for the
vanishing of the many-body gap at the quantum critical point,
missed by the variational approximation, either through super-
Ohmic criticality of the effective bath provided by the system
itself, or by bath-induced quantum localization of the TTLS
degrees of freedom.

The main progresses from the present model in the
approach of solving mean-field models bearing more prox-
imity with low-temperature excitations in actual glasses,
pioneered by Kühn and collaborators, concern (i) the classical
spectrum of the vibrational modes exhibiting the universal
low-frequency scaling of the density of modes D(ω) ∼ ω4

seen in finite dimensions, concomitant with a finite spin-
glass susceptibility at T = 0 (ii) a physical understanding of
the approach to the quantum marginally stable phases and
the dominant low-energy excitations (iii) a direct study of the
quantum thermodynamics. Regarding this last point, previous
works by Kühn and collaborators considered either (i) the
total thermodynamic energy as only the part consisting in
the effective single-particle problem resulting from mean-field
decoupling, quantized a posteriori [53–55], (ii) the first-
principles quantum thermodynamic energy within the usual
static approximation [36,57], (iii) further field-theoretical loop
approximations (in the order parameter Qab(t )) [56]. (i) is
unsatisfying from a first-principle viewpoint. For (ii), we note
that in the KHGPS model we avoided this static approxi-
mation as it would wipe out the emergence of double-well
potentials in the system27 and relied instead on a variational
method. Both the usual static and the present variational
approximations cannot truly address the imaginary-time im-
purity problem, essential for critical scalings. (iii), at variance,

27Indeed, in the static approximation, G(t ) → qd − q which makes
the nonlocal term of the impurity action only renormalize the single-
particle linear (field) term, after Hubbard-Stratonovitch uncoupling.
The result is only a slight change of the H field distribution, while
the instability of the single wells is driven by the distribution of the
quadratic term.
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tackles the field theory, though with mitigated results and
without considering crucial effects of RSB marginality.

In phenomenological models, the ground-state energy can-
not be predicted. The focus there is on the energy gaps that
are enough to compute, e.g., the specific heat. A related ba-
sic assumption is the behavior of the distribution of TTLS
parameters P(,0). In the STM one has that P(,λ) =
constant, where λ = e−0 , meaning that P(,0) ∝ 1/0.
In the KHGPS model, we correspondingly get28

P(,λ) =0P(,0)

∼
H→0

Pκ (1, H )

κM − κm

0(m, H )∣∣ ∂0
∂m (m, H )

[
2
√

6|m| +
√

3
4

h̄
m

]∣∣ , (144)

which is valid only close to H = 0 within the variational
approximation. 0 is given by (87) and approximately given
by (89) for H = 0. This is not constant in terms of (,λ),
as in the SPM ([6], Chap. 9) and in Kühn’s work [55]. TTLS
get slightly depleted as m decreases and more strongly so in
the classical limit h̄ → 0 in the vicinity of the marginal glassy
phase, due to the pseudogap in the field distribution Pκ (1, H )
at small H . Such a depletion was indeed anticipated by Kühn
as an effect of replica symmetry breaking in Ref. [55].

The quantum KHGPS model may behave differently from
the quantum Sherrington-Kirkpatrick model in a transverse
field (TFSK). Indeed, naively, the former may be thought as
a soft-spin version of the latter, composed of interacting two-
level systems (Pauli spins σμ) from the outset. The replicated
free energy is formally identical to the KHGPS one (6) and
the impurity problem is ruled by a similar action to the one
studied here, except that the double wells are “hard” (quantum
half spins):

Seff (h) = J2

2

∫ β

0
dtdt ′ σ̂ z(t )G(t − t ′)σ̂ z(t ′)

+
∫ β

0
dt[hσ̂ z(t ) + �σ̂ x(t )],

G(t − t ′) =
∫

dh P(1, h)〈T σ̂ z(t )σ̂ z(t ′)〉Seff (h) − q(1),

(145)

where � is the transverse field, J the disordered coupling
strength and h̄ = 1. Notice that the time-local part of the
action directly represents a TTLS with the longitudinal field
as the only fluctuating variable due to interactions, instead of
a disordered collection anharmonic oscillators in the KHGPS
model where both the field H and the elastic constant m
are fluctuating. Nevertheless, in the TFSK, both close to
the quantum critical point or in the marginal glass phase,
previous studies found no trace [33,43–45] of the TTLS be-
havior universal in finite-dimensional glasses (same situation

28Simplifying in the limit H → 0 relevant to low temperatures:

 =
H→0

−
[

2
√

6|m| +
√

3

4

h̄

m

]
H + O(H 3) (143)

and 0 given at first order by (87). This is enough to compute the
Jacobian at small H for the change of variables (m, H ) → (,0 ).

in the related SU(2) Heisenberg spin glass [40]). Following
Ref. [43]’s arguments, its specific heat should read CV ∼ T 3,
governed only by disordered Debye excitations with a den-
sity of states D(ω) ∼ ω2, as in the marginal glass phase of
most quantum mean-field models [39,48]. This is analogous
to the physical picture we advocate in the replica-symmetric
or RSB-SWP phases of the KHGPS model. The TFSK was
not part of the models analyzed by Schehr, Giamarchi and Le
Doussal. It would then certainly be beneficial to perform a
similar semiclassical expansion in order to make contact with
the Debye interpretation of the collective low-energy modes in
the TFSK [30,43]. The transverse field hybridizes low-energy
classical states, giving rise to collective (delocalized) spin
waves [43]. In contrast, within the variational approximation,
it seems that the single- and double-well degrees of freedom
in the KHGPS model, created by virtue of the interactions be-
tween the microscopic single-site potentials, do not hybridize
once dressed with the quantized momentum. The system be-
haves as a collection of independent such degrees of freedom,
echoing the original STM and the SPM. Among them, the
double wells corresponding to TTLS degrees of freedom thus
maintain their TTLS nature. Whether this is a side effect of
the variational approximation, of ‘single-particle’ character,
remains to be understood. However note that such locality
is also found classically in e.g., the localized eigenvectors
corresponding to the soft modes of the Hessian of the classical
Hamiltonian in minima [58], related to the softest single-well
potentials. They appear through the GPS instability that pro-
duces the double wells at the origin of the TTLS. Together
with the avoided classical pseudogap in the field distribution
Pκ (1, H ) for finite quantum fluctuations, these TTLS would be
responsible for the linear specific heat. A proper solution, val-
idating or not this scenario, remains to be found; we described
a potential fuller solution in Sec. VI.

We proved validity of the disordered version of Debye
approximation at first order in the semiclassical loop expan-
sion in the replica-symmetric phase. An important perspective
would be to adapt the arguments of Schehr [39] for higher
orders, which in particular leave untouched the power-law
scaling but only renormalize perturbatively the prefactors, to
the general case of mean-field models described by a self-
consistent impurity problem (such as the present one and
Ref. [48]). In the RSB-DWP phase, an analytical solution
through the approximate spin-boson mapping of Sec. VI could
be very interesting to better understand the quantum critical
point and the (possibly suppressed) tunneling behavior in
the marginal phase. Quantum Monte Carlo algorithms may
be complementarily much welcome for the comprehension
of the quantum phase diagram and the low-temperature be-
havior of thermodynamic observables such as the specific
heat, although we expect accessing low temperatures to be
challenging.
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