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Disorder-induced topological quantum phase transitions in multigap Euler semimetals
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We study the effect of disorder in systems having a nontrivial Euler class. As these recently proposed multigap
topological phases come about by braiding non-Abelian charged band nodes residing between different bands
to induce stable pairs within isolated band subspaces, novel properties may be expected. Namely, a modified
stability and critical phases under the unbraiding to metals can arise when the disorder preserves the underlying
C2T or PT symmetry on average. Employing elaborate numerical computations, we verify the robustness of
associated topology by evaluating the changes in the average densities of states and conductivities for different
types of disorders. Upon performing a scaling analysis around the corresponding quantum critical points, we
retrieve a universality for the localization length exponent of ν = 1.4 ± 0.1 for Euler-protected phases, relating
to two-dimensional percolation models. We generically find that quenched disorder drives Euler semimetals
into critical metallic phases. Finally, we show that magnetic disorder can also induce topological transitions
to quantum anomalous Hall plaquettes with local Chern numbers determined by the initial value of the Euler
invariant.
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I. INTRODUCTION

The study of topological semimetals has become a promi-
nent forefront of condensed-matter physics over the past
decade [1]. With the surge of interest in graphene [2–5] due
to its readily experimental availability, a focus proceeded
towards three-dimensional (3D) Dirac and Weyl semimetals
[1,6–10], the pursuit of which by now has found experimental
realizations in materials such as TaAs, NbP, and TaP [11–14].
Arguably, these pursuits have also fueled the intensive re-
search efforts in topological materials as the presence of an
unpaired Dirac fermion on the boundary is one of the most
notable consequences of many band topologies [15–17].

As defects and disorder are realistically unavoidable in any
physical realization, their fundamental role and interplay with
the present topology are of primary importance [18]. In Weyl
semimetals, for example, quenched disorder was found to
induce quantum phase transitions (QPTs) to metals [19–23],
further succeeded by strong localization transitions to Ander-
son insulators [24] for larger disorder strengths. In addition,
deeper connections between general percolation arguments as
captured by the Chalker-Coddington model [25] and paradig-
matic Chern insulators have been established [26,27].
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Given this importance we address here the effects of dis-
order in systems with finite Euler class [28,29]. This recently
proposed invariant thrives on the concept of multigap topol-
ogy [30], going beyond well established symmetry-indicated
paradigms [31–36]. Indeed, rather than considering how
bands transform at high symmetry points and induce relations
between irreducible representations in which they transform,
these phases arise by momentum space braiding of band nodes
residing between different bands. For systems having C2T
(twofold rotations and time-reversal) or spinless PT (parity
and time-reversal) symmetry, the Hamiltonian can always be
brought in real form [28,29]. Accordingly, band nodes be-
tween different bands can be shown by homotopy arguments
[30] to have non-Abelian frame charges, akin to π -vortices in
biaxial nematics [10,37–40], coinciding with the quaternion
charges Q = {±1,±i,± j,±k} for three-band systems and the
so-called Salingaros group for many-band systems [28,41].
Physically, the frame charges of these nodes correspond to dif-
ferent accumulated angles acquired by the eigenvector frame
when parallel-transported over loops around nodes corre-
sponding to points of band-energy crossing between adjacent
bands [28,29]. As a result, braiding nodes in momentum space
can result in band subspaces with similarly valued nodes that
can no longer be annihilated, see Fig. 1, in contrast to pairs
of Weyl nodes that act as monopole sources and sinks of
Abelian Berry curvature that can be gapped upon bringing
them together. The stability of the nodes within this two-band
subspace is quantified by the Euler class invariant χ over any
patch D in the Brillouin zone (BZ) that excludes nodes from
other band spaces [28],

χ = 1

2π

∫
D∈BZ

d2k Eu − 1

2π

∮
∂D

dk · a, (1)
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FIG. 1. Momentum space structure of Euler semimetals.
(a) Braiding nodes residing between different gaps (denoted by
charges i and j) result in a two-band subspace with similarly val-
ued nodes as a function of “time parameter” α. A stable pair of
nodes with a nonzero patch Euler class and quadratic dispersion
can be obtained, for example, by merging two nodes of identical
frame charge q. (b) Euler nodes in the Brillouin zone. Blue arrows
denote nodes that can be annihilated. The line indicates a Dirac
string that when crossed changes the frame charge q to −q. The
red circle indicates a patch with Euler class χ = 1 hosting a stable
quadratic node. (c) Sections of a semimetallic band structure [from
Eq. (2) with (t, t ′) = (0, 1)] occupied up to the nodes (dotted red
line) without Euler class and protection, along high-symmetry lines
from (b). (d) An Euler semimetal with (t, t ′) = (1, −0.2) protected
by the patch Euler class χ = 1 of the two superposed nodes at �.
Importantly, two bands (black arrow) with χ = 0 can be gapped.
Such a gap prevents braiding, which can remove the protection.

where a is the Euler connection defined in terms of the
Pfaffian of the non-Abelian Berry connection An,n+1(k) =
〈un|∇kun+1〉, and Eu = ∇k × a is the Euler curvature,
both defined from two successive real Bloch eigenvectors
{|un〉, |un+1〉}. Considering more bands and different partitions
thereof, more general multigap phases and interplays with
crystalline symmetry can arise to induce Euler-characterized
band subspaces that can be gapped or connected to the other
parts of the spectrum, characterized by richer homotopies on
the associated Grassmannian or flag classifying spaces [30].
Most importantly, however, these phases are increasingly be-
ing related to novel physical effects in and out of equilibrium
in systems ranging from metamaterials and trapped-ion insu-
lators to electronic and phononic spectra in both experimental
and theoretical settings [28–30,41–58].

In this work, we focus on the effects of disorder in Euler
semimetals in two spatial dimensions. As the nontriviality
of Euler class provides an obstruction to annihilating the
associated nodes, one may expect an extended regime of dis-
order, rather than a transition point, to “unbraid” the nodes
and induce a bulk delocalization transition to a metal. To
study such QPTs quantitatively, we perform a scaling analysis
at corresponding quantum critical points found numerically
from average density of states (ADOS) calculations using the

kernel polynomial method (KPM) [59]. We deduce associated
universal dynamical scaling and localization length expo-
nents, consistent with classical 2D percolation and quantum
network models [27]. Moreover, in meronic Euler phases [43],
that is, three-band phases with odd χ , we analyze the effects
of disorder on edge modes due to a π -Zak phase, which we
find to be protected by braiding up to the critical points,
contrary to the Fermi arcs of Weyl semimetals dissolving
at subcritical disorder [19,23]. Finally, on adding magnetic
disorder, breaking time-reversal (T ) symmetry locally, as
well as C2T or PT protecting the Euler invariant, while
preserving these symmetries on average [60], we show an
emergence of plaquettes with local Chern numbers descendent
from the Euler class. This corroborates the observation in
Ref. [30] that adding such effectively generated T -breaking
terms already gaps the nodes into Chernful bands in the
nondisordered case.

II. MODEL SETTING

For concreteness, we analyze three-band and four-band
Euler semimetals (see Appendix A) subject to disorder. The
three-band cases can in particular be modeled on a kagome
lattice (see Fig. 5, Appendix A), which will be the focus
of this work, although we have checked our findings also
in the contexts of other lattices, such as the square models
of Refs. [30,61]. To generate nodes with a patch Euler class
χ = 1 we require only nearest-neighbor (t ) and next-nearest-
neighbor hoppings (t ′), originally setting the on-site energies
of all orbitals to εi = 0. The corresponding tight-binding
Hamiltonian can be written as

H =
∑

i

εic
†
i ci + t

∑
〈i j〉

(c†
i c j + H.c.) + t ′ ∑

〈〈i j〉〉
(c†

i c j + H.c.).

(2)

The patch Euler class ensures topological protection of a pair
of nodes, as long as a multigap node braiding [Fig. 1(a)]
does not trivialize it to χ = 0 in the semimetallic subspace.
Such trivialization can be prevented by gapping out pairs of
oppositely charged nodes, which, as we show, ensures the
protection up to closing this gap with disorder. The gap clos-
ing is necessary for the recreation of the quaternion-valued
nodes between the upper bands, as these can unbraid with
the nodes residing between the bottom bands, trivializing the
invariant. For the definitions of the Euler invariant and un-
braiding in weakly disordered systems lacking translational
symmetries, see the Appendix B. Once the upper gap closes
at the critical point, the unbraiding accompanied by a bulk
delocalization transition to a metal occurs, which is studied
next. As long as the nodes are protected, we observe a stability
of an associated edge mode in a continuous window, which we
refer to as an unbraiding regime, as detailed in the subsequent
sections. We stress that edge states in Euler phases have been
corroborated in this and several other models using either a
Zak phase argument [43,46] or an intricate interplay between
Wyckoff-position and twisted-band induced Zak phases [42]
but that a full bulk-boundary correspondence for Euler class is
still an open question. For our purposes, it suffices that there
exists an edge state in the discussed χ = 1 configuration in
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FIG. 2. Scaling of the ADOS ρ(E ) (a) and averaged conductivity (b) up to bulk criticality. ADOS scaling around the Euler nodes (c) and
at gap-closing quantum critical point (Wc = 1.05 ± 0.05) (d) of braided three-band Euler semimetal with χ = 1. The scaling of conductivity
and ρ(E ) vs E determines the dynamical scaling exponent z (see also Appendix C); ρ(0) vs (W − Wc )/Wc describes the critical scaling of
localization length exponent, which we find universally to be ν = 1.4 ± 0.1 for nontrivial Euler class.

the clean limit [42,43,46,53]. We then subsequently analyze
its behavior subject to disorder.

III. DISORDER-INDUCED QPT OF EULER
SEMIMETAL-METALS

We now characterize the criticality of the Euler semimetal-
metal QPTs under disorder by deducing dynamical scaling
exponents (z) and localization exponents (ν) (see Ap-
pendix C). In three-band kagome models with nodes of
opposite, nonstable, quaternion charges (q = ±i), such as
(t, t ′) = (0, 1) [Fig. 1(c)], we find z = 0.9 ± 0.1 and ν =
1.0 ± 0.1 (see Appendix D), as in graphene [62,63], consis-
tently with no braiding-based topological protection against
disorder.

Intriguingly, we can contrast this result and consider a
filling up until nodes have a nontrivial invariant χ . To this end,
we consider a protected, stable, Euler semimetal by taking
(t, t ′) = (1,−0.2), which isolates Euler nodes around the BZ
� point from the flat band, see Fig. 1(d), and gapping out
the top two bands by annihilating nodes with frame charges
q = ±i, see Fig. 1(b). The latter can be achieved by adding
a mass term of the form diag(−1,−1, 0), which breaks the
C6-symmetry of the kagome lattice, symmetrically splitting
the � node into two nodes of the same quaternion charge,
maintaining an Euler patch around � as in Fig. 1(b). Taking
a filling up to these nodes results in a stable Euler semimetal.
That is, the gap to the top band protects the χ invariant of
the bottom two bands from trivializing by unbraiding. We can
subsequently study how disorder then induces a QPT upon
closing the gap and facilitating this process.

At criticality corresponding to closing a gap (Fig. 2), we
universally find z = 0.7 ± 0.1 and ν = 1.4 ± 0.1, with the lo-
calization length scaling exponent consistent with the classical
percolation study (ν = 4/3) of two-dimensional disordered
systems [64–66]. We argue that such a percolation limit ap-
plies, given the moderate disorder strengths corresponding to
QPTs, with random potentials varying slowly over the system
size, thus reducing quantum tunneling and interference effects
[67]. Namely, we speculate that the clustering of trivialized
real-space puddles, as described by classical percolation, is
responsible for the value of ν.

We stress that the scaling is universal for the phases with
stable Euler semimetallic nodes independent of the number
of bands, as long as the band dispersion does not intro-
duce band pockets overlapping with the nodal energies within
the disorder width. Namely, we corroborate these results of
similar gap-closing QPTs in three-band models with χ = 2
[52,61], hosting four stable nodes between the bottom
bands, as well as in four-band Euler models. For the latter
this concerns Hamiltonians H (χ1,χ2 )(k) having two Euler-
characterized nodal two-band subspaces separated by a gap
[61], rendering similarly stable Euler semimetals with invari-
ants denoted by χ1,2.

IV. EDGE STATES PROTECTED BY BRAIDING

To complete the study, we also investigate the effects on
edge states accompanying the bulk. Similarly to Chern insu-
lators [26] with chiral edge modes, Euler semimetal Hamil-
tonians can support anomalous conductivity (see Fig. 11,
Appendix D). However, the edge states are present in
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FIG. 3. Disorder-averaged LDOS around the edge (transition to
gray areas) of kagome Euler semimetal with χ = 1, at the clean-
phase energy of protected nodes, for 200 disorder realizations. The
evolution of edge states with disorder is plotted for the model kagome
phase (t, t ′) = (1, −0.2), with mass term opening the upper gap pro-
viding a protection from unbraiding. Contrary to the finding in Weyl
semimetals [19], where dissolution of edge states happens already
at subcritical disorders, we observe the stability of edge states from
undisordered Euler semimetal (a) up to the upper-gap-closing critical
disorder (Wc = 1.05 ± 0.05), via an unbraiding regime (b), prior to
a QPT to a metal (c), which at much higher disorder is followed up
by Anderson localization (d). We observe that the edge state due to
the π -Zak phase persists throughout the entire unbraiding regime,
before the bulk states become delocalized on percolation clustering
(see also Appendix C).

multiple gaps [43], at the energies that do not necessarily cross
the Fermi level (μ ≡ EF , as we strictly consider systems at
zero temperature, T = 0) and generically arise, as mentioned,
by different mechanisms, such as a nontrivial Zak phase
[42,43,46]. The dependence of the average σxy on doping
and disorder is shown in Appendix D, Fig. 11. Contrary to
the Chern insulators, the edge modes in Euler phases are not
quantized by the associated topological invariant [68], but, in
the degenerate flatband limit, they can be thought of as a pair
of helical edge states, where each branch is associated with a
bulk mirror Chern number [61,69]. To track their evolution,
we perform a local density of states (LDOS) calculation, indi-
cating the fractional contributions of atomic orbitals |i〉 to the
eigenstates at selected energies

ρl (E ) =
∑

n

|〈κ, i|n〉|2δ(E − En), (3)

where κ denotes an orbital at the site i of interest, and |n〉
represents an eigenstate of the Hamiltonian with energy En.

In Fig. 3, the LDOS plots corresponding to increasing
disorder in the introduced stable Euler semimetal model were
shown. Importantly, we find the braiding-assisted stability of
edge states up to the full criticality, contrary to the finding in
Weyl semimetals [19].

FIG. 4. Evolution of the averaged local Chern numbers
(LCNs) and their magnitudes 〈|C|〉 with the strength of mag-
netic disorder [λ = max(λi )] for different four-band Euler phases:
(a) (χ1, χ2) = (1, 1), (b) (χ1, χ2) = (2, 2). The error bars correspond
to the standard deviation in LCN. The landscape of Chern plaquettes
with nonvanishing locally averaged Chern markers C(r) surrounded
by trivial phase regions with C(r) ≈ 0. The markers were evalu-
ated over 100 × 100 unit cells of the systems partitioned into 5 × 5
puddles, at disorders corresponding to the peaks of 〈|C|〉. We note
that the peak in the LCN average of the (χ1, χ2) = (2, 2) phase is
suppressed due to the presence of an extensive trivial region (cyan).

V. ISLANDS WITH CHERN TOPOLOGY

In addition to the analysis of electronic properties and
QPTs, we may similarly investigate the topological character
of disordered Euler phases with Chern markers [70–72] (see
Appendix C). The Chern marker study is motivated by the
Bloch bundle complexification relations between Euler and
Chern characteristic classes [28,61], which can be further
explored with disorder. We show how the markers indicating
Chern topology locally in real space change on increasing
disorder strength in different phases; see Fig. 4. As markers
evaluate the imaginary part of the trace obtained from the
real operators and eigenstates (see Appendix C), enforced by
real hoppings and on-site energies, these need to vanish in
all Euler semimetals unless T symmetry is explicitly broken.
However, as we show in this section, a magnetic disorder
that breaks time-reversal and C2T symmetries in an Euler
semimetal can in principle yield puddles of Chern phases. We
find that the disorder inducing such Chern insulator islands
is not arbitrary, and should take an effective form of a mass
term effectively gapping out the nodes, i.e., providing a gap in
the DOS for given disorder realization. Before addressing this
problem further, we elaborate on the use of a Chern marker to
reflect the presence of Chernful islands surrounded by trivial
regions in magnetically disordered Euler semimetals. First,
we importantly note that the Chern marker is directly related
to the bulk anomalous Hall conductivity (AHC) [73], which,
as an anomalous transport property for an insulating state
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supporting gapped DOS, is a direct probe for a plaquette
of a Chern insulator. Here, the emergence of the Chern is-
lands with quantized AHC can be intuitively understood as
a phase separation of an Euler semimetal into trivial in-
sulator and Chern insulator regions. Namely, the magnetic
disorder considered above favors the development of local
orbital magnetization aligned along the effective magnetic
field imposed by the correlated disorder within an island.
We note that a similar phase separation mechanism can be
intuitively supported even by classical magnetic systems; ap-
plying an effective magnetic field by imposing a magnetic
disorder in a paramagnet can locally orient the magnetic mo-
ments along the direction of the imposed magnetic field. In
addition to this observation, we stress that the local orbital
magnetization, which constitutes the entirety of the magne-
tization here given that the models considered in this work
are spinless (and therefore there is no spin magnetization), is
in one-to-one correspondence with the local AHC, as shown
in Ref. [74]. Crucially, in an insulator, with no Fermi sur-
face (as reflected by the gapped DOS at the Fermi level),
AHC can only be associated with a quantized Chern number,
which concludes the explanation of the mechanism and of
the importance of the Chern markers demonstrated in Fig. 4.
Here, specifically, the generation of Chern plaquettes on ex-
plicit time-reversal symmetry breaking induced by disorder is
achieved by adding real-space dependent local perturbations,
e.g., of the form �20 = σ2 ⊗ σ0, to the four-band Bloch Euler
model H (χ1,χ2 )(k) (see Appendix A), that is,

H[{λi}] =
∑
i, j

∑
α,β

tαβ (i − j)c†
i,αc j,β ,

tαβ (i − j) =
∑

k

eik·(i− j)[H (χ1,χ2 )(k)
]
αβ

+ λiδi, j [�20]αβ. (4)

Here H (χ1,χ2 )(k) is free of disorder, α, β are orbital indices
at sites labeled with lattice vectors i, j, and λi ∈ [−W,W ]
denotes the local magnetic disorder strength that varies ran-
domly from one site to another.

In such a case, the magnetic impurities controlled by λi

induce the opening of an energy gap in each two-band Euler
subspace with χn—i.e., hosting 2χn stable nodes in the limit
of clean crystal [30]—leading to two gapped Chern subspaces
with C±

n = ±χn, as was studied in the case of clean models
in Ref. [61]. Finally, we note that AHC also arises in Euler
phases subject to the more arbitrary T -breaking disorders, as
we verify with KPM. However, AHC is not quantized under
gapless conditions where Chern topology is not well-defined.

VI. DISCUSSION

Compared with graphene, or Weyl semimetals of higher
dimensionality, the results indicate a distinct quantitative crit-
ical behavior of nontrivial Euler phases upon adding disorder.
The scaling of the DOS, as well as the LDOS calculations
in kagome phases, show that Euler semimetals become nat-
urally metallic at criticality, similar to the findings in Weyl
semimetals [19]. The scaling analysis suggests that the effects
of disorder on two-dimensional Euler phases do not depend
significantly on the finite-size, above the system sizes studied
in this work.

As we show in four-band Euler models, the critical phases
with local Chern numbers (LCNs) in real space can be ob-
tained via QPTs induced by disorder, as long as both C2T
and T symmetries are locally broken in real-space puddles in
the system, e.g., with magnetic doping. That is, our findings
show that islands with LCNs due to single-band topology
can result from multiband invariants on removing associated
nodal structures with symmetry-breaking disorder. We note
that if T symmetry is broken by construction in the clean
C2T -symmetric Hamiltonian of choice, even upon adding a
nonmagnetic quenched disorder respecting C2T symmetry
on average, LCNs can be induced, as Ref. [75] suggests.
This result can be heuristically understood as lifting the
C2T -imposed degeneracy of two initial T -breaking Chernful
bands. In general, these kinds of transitions can be ascribed
to the fragile topology, such as captured by the Euler class,
as long as T is broken, while the parent invariant-protecting
C2T is being preserved on average [60]. We reiterate that the
notion of a disorder-induced unbraiding transition trivializing
the Euler topology of semimetals cannot be captured by con-
ventional symmetry indicators and that fragile topology in this
context means that a gap closing with a trivial band can trivial-
ize the topology (contrary to the strong topology necessitating
a gap closing with a band with opposite invariant, e.g., Chern
number) [30]. For example, the mass term opening the upper
gap can explicitly break C6-symmetry of the kagome lattice
while preserving the Euler class, hence leaving the multigap
topology captured by this characteristic class of real vector
bundles unaffected.

VII. SUMMARY AND OUTLOOK

We demonstrate that Euler semimetals generically show
a larger robustness to disorder, manifested by the enhanced
stability of edge modes, than semimetals with trivial nodes.
We corroborate these findings by studying the ADOS, LDOS,
and conductance scaling with increasing disorder. We find
that disorder-induced QPTs of Euler semimetals to metallic
phases are universally characterized by the same localiza-
tion length exponent, provided no pockets hinder probing the
nodal structure. We argue that the underlying mechanism of
QPT can be captured by the multigap unbraiding mechanism
on closing a neighboring gap, explaining the extended critical
regime and stability of edge states. Finally, using topological
markers, we also show that nontrivial Chern numbers can
emerge in disordered Euler phases upon breaking Hamiltonian
symmetries locally, which could possibly originate from the
presence of magnetic impurities in the system. While realizing
Euler semimetals in electronic materials is an ongoing pursuit
spurred on by recent progress in terms of metamaterial realiza-
tions [43], cold atoms and trapped ion insulators [76], as well
as a wealth of predictions [28–30,42–49,51–54], our study
provides evidence for topological protection controlled by
experimentally realizable braiding. We identify novel effects
of disorder in this context, underpinning an important aspect
of this new direction.

Note added: In the process of writing, we became aware of
Ref. [75], studying the critical metallic phase in disordered
C2T -symmetric insulators with fragile topology captured
by the nontrivial second Stiefel-Whitney class. Our results,
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FIG. 5. (a) Kagome lattice adaptation of two-dimensional three-
band Euler semimetals/insulators. (b) Square lattice realization of
Euler Hamiltonians, as adapted for the four-band models. Colors
represent distinct orbitals associated with different lattice sites. Par-
ticular hoppings were marked with bold lines.

obtained for different systems and from a different perspec-
tive, namely semimetals with Euler topology protected by the
same symmetry, are consistent.
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APPENDIX A: EULER HAMILTONIANS

As we elaborate on in detail in the main text, in this work
we study the effects of disorder in two-dimensional (d = 2)
three-band and four-band Hamiltonians of nontrivial Euler
class discussed in the Introduction. The randomly generated
quenched disorder is implemented in real space by tuning
individual on-site energies after changing the basis of the
model Hamiltonians via Fourier transforms

tαβ (i − j) =
∑
k∈BZ

ei(kxx+kyy)Hαβ (k), (A1)

where the vector r = (x, y) = i − j determines the displace-
ment corresponding to the hopping between unit cells i and
j, with α, β = 1, 2, 3, (4) or equivalently A, B,C, (D) de-
noting the basis orbitals. The on-site energies are given by
εi = tαα (0) contrary to the intracell/intrasite hoppings tαβ (0),
where α 
= β.

1. Three-band models

The three-band models of Euler semimetals and insulators,
most recently studied experimentally, consist of a kagome
lattice [42,43] hosting topological band nodes of χ = 1 in
the two-band subspace. The kagome lattice, see Fig. 5, con-
sists of three distinct lattice sites at Wyckoff positions 3c
of hexagonal layer group L80, hosting orbitals with tunable

on-site energies [43]. The topological Euler phases can be
obtained by adding properly parametrized nearest-neighbor
t , next-nearest-neighbor t ′, and importantly third-neighbor t ′′
(N3) hopping amplitudes to the Hamiltonian, respecting ro-
tational C6 symmetry of the lattice. The corresponding Euler
Hamiltonians can be written as

H (k) =
⎛
⎝HAA(k) HAB(k) HAC (k)

HAB(k) HBB(k) HBC (k)
HAC (k) HBC (k) HCC (k)

⎞
⎠, (A2)

HAA(k) = εA − 2t ′′ cos (k1), (A3)

HAB(k) = −2t cos (k1/2 + k2/2) − 2t ′ cos (k1/2 − k2/2),

(A4)

HAC (k) = −2t cos (k2/2) − 2t ′ cos (k1 + k2/2), (A5)

HBB(k) = εB − 2t ′′ cos (k2), (A6)

HBC (k) = −2t cos (k1/2) − 2t ′ cos (k1/2 + k2), (A7)

HCC (k) = εC − 2t ′′ cos (k1 + k2), (A8)

with k1, k2 denoting the k-vector components along the
reciprocal-lattice vectors b1, b2, i.e., k = k1

2π
b1 + k2

2π
b2. As

mentioned in the main text, the two-band Euler subspace can
be isolated from the neighboring band by the addition of
a diagonal mass term diag(−m,−m, 0) respecting C2T , but
breaking C6 symmetry, e.g., on setting m = 3. Unlike in Euler
insulators, the band structure of Euler semimetals hosts band
nodes at Fermi level EF , which is attainable by setting t ′′ = 0
[43]. Some of these nodes (e.g., with frame charges ±i; see the
main text) are analogous to the linear Dirac cones in graphene,
which is a zero-gap semiconductor (i.e., a semimetal) as well.
Three-band models with a higher Euler class, such as χ = 2
[52], are extensively discussed in Ref. [61].

2. Four-band models

Beyond the three-band Hamiltonians we investigate disor-
der, including magnetic terms, in minimal four-band models
with double Euler class associated with the presence of
two topologically nontrivial two-band subspaces [30]. The
corresponding Hamiltonians can be generated following a
general procedure, with Euler invariants induced in two-band
subspaces via Plücker embedding [30]. However, minimal
models preserving the Euler topology can be constructed
while setting appropriate cutoffs on the number of hoppings.
For a double Euler invariant, in the Bloch basis, these can be
effectively expressed as [61]

H (1,1)(k) = sin k1�01 + sin k2�03

− [m − t1(cos k1 + cos k2)]�22 + δ�13, (A9)

H (2,2)(k) = sin k1�01 + sin k2�03 − [m − t1(cos k1 + cos k2)

− t2 cos (k1 + k2)]�22 + δ�13, (A10)

where �i j = σi ⊗ σ j are 4 × 4 Dirac matrices, and
(m, t1, t2, δ) is a set of tunable parameters. As introduced
in Ref. [61], representative models for (χ1, χ2) = (1, 1)
and (χ1, χ2) = (2, 2) can be generated by (1,−3/2, 0, 1/2)
and (1/2,−1/2,−3/2, 1/2) parametrizations, respectively.
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APPENDIX B: EULER INVARIANT AND UNBRAIDING
UNDER DISORDER

In this Appendix, we elucidate how the Euler invariant can
be defined under disorder when k is no longer a good quantum
number associated with the single-particle eigenstates, and
therefore the definition introduced in the main text cannot
be directly used. Furthermore, we provide a formulation and
a quantitative discussion of the disorder-induced unbraiding
introduced in the main text.

1. Euler invariant in disordered systems

Here, we elaborate on how the Euler topology under disor-
der can be defined. Similarly to the Chern topology, a natural
strategy is to try defining indicators acting similarly to the
Chern marker or Bott index in the Chernful systems. On
performing analogous steps, to defining the Chern markers,
as derived in the Ref. [71], one ends up with

χ (r) = 2π

A

∑
a∈cell

〈ra|T̂ ŷQ̂x̂ − T̂ x̂Q̂ŷ|ra〉

= 2π

A
Trcell{T̂ x̂P̂ŷ − T̂ ŷP̂x̂} (B1)

for an Euler marker in a cell positioned at r in terms of the
orbitals |ra〉, and projectors onto occupied P̂ = ∑occ

j |Ej〉〈Ej |
and unoccupied Q̂ = 1 − P̂ energy states, defined identically
as for the Chern markers (see Sec. III, Numerical Meth-
ods, Appendix C). However, here distinctively, an additional
“transition”/“transfer” operator T̂ needs to be introduced in
the formulation,

T̂ = A

(2π )2

∫
BZ

d2k |ψn+1,k〉〈ψn,k|. (B2)

Here, A denotes the real-space unit cell area, while n, n + 1
refer to the Euler band indices. We note that an issue for a
general real-space formulation is that such a transition opera-
tor would need to introduce a refined resolution between the
Euler eigenstates of the disordered system. More specifically,
as the disorder hybridizes multiple Bloch states at different
k-points (see also the next subsection), the identities of the
Bloch bands |ψn,k〉, |ψn+1,k〉 become lost.

Nonetheless, these are known in the clean limit, therefore T̂
can be heuristically defined before the disorder is added, and
it can be recast in the real-space basis, which can be used as
a reference also in the disordered system. Namely, on Fourier
transforming the Bloch states and expressing these in terms
of the Wannier orbitals in the clean limit, we can express the
operator as

T̂ =
∑
a,b

cab|ra〉〈rb|, (B3)

where cab encodes the products of the coefficients ca, j, c∗
b, j′

obtained on replacing/identifying |ψn,k〉, |ψn+1,k〉 as eigen-
states |Ej〉 = ∑

a ca, j |ra〉 expressed in the real-space orbital
basis, which is naturally convenient for the disordered sys-
tems. Having formulated T̂ in terms of the real-space orbital
coefficients, one can use χ (r) as a proxy for the Euler
topology in the disordered system, although similarly to the
Chern markers, it is not guaranteed to yield quantized values.
Nonetheless, by construction, such a marker restores the quan-
tization in the clean limit, where it coincides with the Euler

FIG. 6. Pinpointing the topological phase transitions of the Euler
invariant χ in the Euler semimetals under the uniform disorder of
strength W . (a) The scaling of an averaged Euler marker 〈χ (r)〉 with
its standard deviation plotted on top, against the disorder strength W .
Here, 〈χ (r)〉 was averaged over the bulk realizing the kagome Euler
Hamiltonian studied in the main text, with the system size L × L =
100 × 100 unit cells. (b) The average Euler invariant χ̄ defined under
the disorder-averaging. Notably, the quantization of χ̄ is lost above
the disorder value corresponding to the gap-closing in the effective
band structure, as the Euler class χ [over the entire BZ] is quantized
only if the gap above the Euler bands is preserved [28]. The error
bars correspond to the numerical error in the computation of χ̄ [28],
combined with the uncertainty in the effective mass on achieving the
numerical self-consistency within the Born approximation. Both in-
dicators of the Euler topology in a disordered system approximately
coincide, indicating the critical disorder (Wc) regime retrieved from
the scaling analysis in the main text. Intuitively, the overlap of two
real-space indicators can be understood as reflecting an expected
coincidence of the ensemble average with a spatial average over a
large single system realizing the Euler topology.

invariant defined in the main text. In particular, we expect
that averaging over the real-space cells within a total area
Atot converges to the Euler invariant of a disordered system,
〈χ (r)〉 ≡ 1

Atot

∫
d2r χ (r) → χ . In Fig. 6, we demonstrate the

scaling of the marker with disorder in the Euler semimetal
realized on the kagome lattice, as introduced in the main
text. Nonetheless, we note that by making a reference to the
clean limit, the marker defined here is a heuristic proxy for
Euler topology in disordered system. To rigorously define
the Euler invariant under disorder, we introduce a quantized
definition under averaging over disorder realizations. Namely,
we define the symmetry-averaged χ̄ Euler invariant from an
ensemble/replica average of the disordered system which
defines effective band-structure parameters, which can be
obtained within the Born approximation picture. In partic-
ular, we recognize that within the Born approximation, the
on-site disorder effectively renormalizes the mass parameter
entering the diagonal term. For uniform Anderson disorder of
strength W , we find that by the action of disorder, the mass
parameter m is renormalized by self-energy m̄ = m − Re �11,
where �i j denotes the elements of the self-energy matrix.
The self-energy matrix is explicitly given by an integral self-
consistency equation, which defines the self-consistent Born
approximation (SCBA). Namely, for uniform disorder, we
have

� = W 2A

3

∫
BZ

d2k
(2π )2

1

μ + i0+ − H (k) − �
. (B4)

For the model Hamiltonian on a kagome lattice, as introduced
in the main text, we set μ = −3.775, further obtaining the
self-energy � matrix and correspondingly the effective-mass
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FIG. 7. The evolution of the effective band structure with the effective mass m̄ renormalized on the evolution of self-energy �, as a function
of disorder strength W under the disorder-averaging within the SCBA. The renormalized mass induces the gap closure (a)–(b), and subsequent
unbraiding (c)–(d), defined with effective band-structure parameters obtained from SCBA. In this regime, as the effective mass m̄ induced by
the disorder changes, the nodes in the effective band structure evolve in multigap braiding trajectories within two gaps, changing the relative
signs of the nodal quaternion charges. Correspondingly, the unbraiding results in the trivialization of the disorder-averaged Euler invariant χ̄

that can be directly deduced from the corresponding effective eigenvectors. In the absence of the nontrivial Euler class, the nodes in the lower
gap are no longer protected from annihilation (e) and can be gapped out at the higher effective masses, as shown in (f).

term as a function of disorder W . On numerically satisfying
the self-consistency condition, we find that effectively Re � ∝
−W 2 × diag(−1,−1, 0) in the weakly disordered limit. We
present the dependence of an effective band structure on the
effective-mass term deduced from the self-energy in Fig. 7.
Correspondingly, the average Euler class χ̄ can be evaluated
from the two-band subspace of the effective bands, using the
definition of χ from the main text, at any point of the evolution
of the original Hamiltonian with the renormalized mass m̄,
which depends on the disorder strength W (see Fig. 6). In
particular, at the critical disorder Wc, the average Euler class χ̄

suffers a discontinuous change in value from χ̄ = 1 to χ̄ = 0,
as a result of the explicitly demonstrated unbraiding.

2. Unbraiding under disorder

In the clean limit, the eigenstates in band n are
|ψn,k〉 = eik·r|un,k〉, as follows from Bloch’s theorem. Any
given disorder realization can be decomposed in terms of the
Fourier modes V (r) = ∑

q Vqeiq·r, which can be treated as a
perturbation of the Hamiltonian in the clean limit H . With
the disorder values inducing corresponding Euler semimetal-
metal quantum phase transitions studied in the main text being
weak, contrary to the strong disorder values required to cause
the Anderson transitions, we assume that for capturing the
unbraiding, we can treat disorder perturbatively to first order.
Thus, as the perturbation is not time-dependent, but the band
degeneracies are generically present, one can include disorder
within the time-independent degenerate perturbation theory,
yielding a set of secular equations in a form of the determinant
to solve for the energy eigenvalues E = E1, E2, . . . , Ej, . . .∣∣∣∣∣
∣∣∣∣∣
∑

q

〈um,k′ |︸ ︷︷ ︸
i

Vqei(q−k′+k)·r + e−ik′ ·rHeik·r |un,k〉︸ ︷︷ ︸
j

−Eδi j

∣∣∣∣∣
∣∣∣∣∣ = 0,

(B5)

with δi j the Kronecker delta for eigenstate labels i, j. We

define |ψ̃n,k〉 ≡ |Ej〉, such that the overlap |〈Ej |ψn,k〉| found

in terms of the orbital coefficients ca is maximized. In
particular, if the overlap values are identical for multiple
states, one should select a maximally smooth reconstruc-
tion of |ψ̃n,k〉 viewed as vector-valued functions |ψ̃n,k〉 =
( ca(k)︸ ︷︷ ︸

ca, j

, . . . , cN (k)︸ ︷︷ ︸
cN, j

)T over k in BZ. Here, N is the total num-

ber of orbitals in the finite-size system.
Correspondingly, the energies of the perturbed eigenstates

were changed by disorder as Ẽn(k) = Ej . In the clean limit,
Vq → 0, the so-defined Ẽn(k) perturbative eigenstate energies
naturally restore the original band structure.

Finally, the unbraiding can be deduced from tracking the
perturbed energies Ẽn(k) of the perturbed states with indices
n and k, on representing these in a one-to-one correspondence
to a band structure of the clean limit En(k). Such an operation,
tracking the descendance of the clean eigenstates on adding
disorder, can be performed despite k not being a good quan-
tum number anymore.

It should be emphasized that while n and k are present as
labels in perturbed eigenstates |ψ̃n,k〉, these labels simply act
as a state index tracking the evolution of a given eigenstate,
whereas k is no longer a good quantum number, as the dis-
order mode coefficients Vq are switched on as perturbations.
The overlap criterion allows us to reconstruct the necessary
correspondence, i.e., |ψn,k〉 → |ψ̃n,k〉, from maximally over-
lapping, real-space basis coefficients ca, j . Importantly, these
coefficients do not obey the translational symmetry in general,
after the disorder is added.

More transparently, beyond the paradigm of the energy
spectrum of an individual disorder realization, the unbraiding
follows from the disorder-ensemble averaged picture within
the Born approximation. Namely, by deducing the effective-
mass parameter m̄ from the self-energy � as a function of
the disorder strength (W ), the effective band structure can be
plotted (see Fig. 7). Here, the multigap unbraiding is explicitly
demonstrated within the effective band structure. It should be
noted that although every single disorder realization breaks
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FIG. 8. LDOS around the edge (transition to gray areas) of
kagome Euler semimetal with χ = 1, at the clean-phase energy
of protected nodes, for a single disorder realization. The evolution
of edge states with disorder is plotted for the kagome phase with
(t, t ′) = (1, −0.2) and the mass term opening the upper gap, which
provides a protection from unbraiding. We observe the stability of
edge states from clean Euler semimetal (a) up to the upper-gap-
closing critical disorder (Wc = 1.05 ± 0.05), contrary to the finding
in Weyl semimetals [19], where dissolution of edge states happens
already at subcritical disorders. Namely, we find that the edge state
due to the π -Zak phase persists throughout the entire unbraiding
regime (b), prior to a QPT to a metal, where the bulk states become
delocalized and metallic on percolation clustering, which is clearly
visible in the individual disorder realizations (c). At much higher
disorder, this is followed up by Anderson localization (d). We note
that the profile of an Anderson-localized wave function (as captured
by the LDOS in a single disorder realization) directly reflects the
transition to an Anderson insulator, which occurs at strong disorder.
The findings can be compared with the disorder-averaged study of
the edge state stability included in the main text.

the translational symmetry, the disorder-averaging within
SCBA effectively restores the quasimomentum k as a quan-
tum number conserved under the scattering of quasiparticles
from the disorder potential, along with the renormalization
introduced with the self-energy. In particular, the momen-
tum conservation is effectively restored as the impurity
averaged electron propagator (Green’s function) becomes
diagonal in momentum space after the impurity/disorder
averaging [78].

APPENDIX C: NUMERICAL METHODS

1. Kernel polynomial method

For each model, we evaluate the corresponding DOS of
finite-sized Euler phases averaged over 200 disorder real-
izations using the kernel polynomial method (KPM) [59]
implemented in the KWANT code [77] with 2048 Cheby-
shev moments μn and a Jackson kernel [79]. The uniform
disorder is imposed by random potential V (r) with sub-
lattice averages given by on-site energies of the phase

without any disorder εi = 〈V (r)〉, provided by the uniform

probability distribution in the interval [εi − W, εi + W ]. Ad-
ditionally, we study Gaussian disorder with correlations
given by

〈V (r)V (r′)〉 = W

ξ 2
c

exp
(

− |r − r′|2
2ξ 2

c

)
, (C1)

where the standard deviation of the distribution is proportional
to the correlation length of disorder ξc. We set ξc = 4a, where
a is a lattice constant of the studied model, in analogy to the
previous work [20]. We note that as long as ξc � L, where L is
the lengthscale characterizing the system size, the correlation
length has no impact on the qualitative effects of disorder.
Additionally, we evaluate the conductivity tensors averaged
over 200 disorder realizations using Kubo-Bastin response
theory [80] implemented via the KPM [81], which allows us
to study longitudinal conductivity (Fig. 10) of the bulk as well
as anomalous conductivity (Fig. 11), which can be related
to edge states. Finally, we also perform LDOS calculations
for Euler semimetals, as described in the main text, to study
the dissolution of edge states. We perform averaging over
the edge for 200 disorder realizations on setting the systems
size to L × L = 100 × 100 unit cells. The dissolution of edge
states in the critical metallic phase can be contrasted with
the subcritical dissolution of edge states in Weyl semimetals,
i.e., Fermi arcs, as discussed and explicitly shown in the
corresponding figures in Ref. [19]. Additionally, for further
comparison, we include LDOS data obtained for a single
disorder realization (Fig. 8).

2. Scaling analysis

In this section, we explain how the scaling analysis at crit-
ical points of the Euler semimetal models is performed. First,
we introduce reduced disorder strength δ = (W − Wc)/Wc

where the critical disorder Wc is found with the KPM ADOS
calculations. The first scaling exponent of interest relates the
localization length ξ = |δ|−ν to the disorder strength, where
ν is strictly positive, while ξ should diverge at the quantum
critical point. The second, dynamical scaling exponent, z,
characterizes correlation energy E0 ∼ δνz [20], which van-
ishes at criticality correspondingly. To deduce both critical
exponents, we express the number of electronic states at en-
ergy E ,

N (E , L) = (L/ξ )d G(E/δνz, L/δ−ν ), (C2)

where G is a universal scaling function, and L denotes the
size of the system, counting the number of unit cells in each
dimension. The density of states ρ(E ) = L−d dN/dE yields
definitionally

ρ(E , L) = δν(d−z)F (E/δνz, L/δ−ν ), (C3)

where F is another universal, though explicitly unknown,
scaling function. From these relations, we conclude that for
the DOS at nodal points corresponding to the Fermi level
of the semimetals, ρ(0) ∼ δν(d−z), while at small energies
comparable with correlation energies, ρ(E ) ∼ |E | d

z −1, where
both can be deduced from KPM spectral results for average
DOS [19]. Additionally, we check the values of the dynamical
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FIG. 9. (a) Average DOS of kagome Euler semimetals (and the Haldane model, including its trivial phase—graphene with nearest-neighbor
hopping t = 1, next-nearest-neighbor hopping t ′ = 0, hence vanishing Chern number) subject to (a) uniform disorder, (b) Gaussian disorder.
As can be compared, we note that both distributions yield quantitatively almost identical DOS results, different only at high energies (>5) due
to the boundedness of uniform disorder. At high disorder strengths W (>5), we observe strong localization with a flattened energy spectrum due
to Anderson localized states, i.e., the critical metallic phases obtained from Euler semimetals undergo quantum phase transitions to Anderson
insulators. The plots were obtained for systems consisting of L × L = 150 × 150 unit cells.

scaling exponent from σxx(μ) ∼ μ
1
z conductivity scaling as

a function of chemical potential, analogously to the scaling
found in the study of Weyl semimetals [82,83].

3. Chern markers and local Chern numbers

A topological invariant characterizing Chern insulators
[26,84], namely the Chern number (C), is well-defined as
an integral over momentum space for electronic systems
with translational symmetry. However, as disorder removes
periodicity of the system, the integral corresponding to the
invariant is no longer well-defined. Therefore, for studying
properties of disordered materials, real-space indicators, inde-

pendent of the k-space formulation, are needed. Additionally,
as disorder removes the homogeneity of the sample, a local
character of such topological markers needs to be ensured.
The local Chern markers satisfying these conditions can be
defined [71,72] and can be recast into a simple commutator
form [70]

C(r) = −2π

A
Im Trcell{[P̂x̂P̂, P̂ŷP̂]}, (C4)

where the trace is evaluated over all orbitals in a given unit
cell of area A, P̂ is a projector onto occupied states, and x̂, ŷ
are position operators. Computationally, we evaluate average
Chern markers 〈C〉, as well as their magnitudes 〈|C|〉 and
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FIG. 10. Average conductivity of kagome Euler semimetals (and the Haldane model, including its trivial phase—graphene with nearest-
neighbor hopping t = 1, next-nearest-neighbor hopping t ′ = 0, hence vanishing Chern number) subject to (a) uniform disorder, (b) Gaussian
disorder. The plots were obtained for systems consisting of 150 × 150 unit cells. From the scaling of conductivity around chemical potentials
corresponding to nodes or gap closings, the dynamical scaling exponents (z) can be confirmed.

standard deviations, by sampling multiple unit cells with
random vectors, averaging over a few (20–25) disorder re-
alizations. We adapt an implementation of projectors with
occupations encoded via the KPM density-of-states calcula-
tion, as introduced in the previous studies [85]. The Chern
markers allow us to deduce the presence of Chern topology
or a lack thereof when either nonmagnetic or time-reversal
symmetry breaking magnetic disorder is added to the Eu-
ler phases. To obtain the local Chern numbers (LCNs), the
markers are averaged over real-space patches/plaquettes con-
sisting of 5 × 5 unit cells. As mentioned in the main text, we
stress that a spectral gap separating occupied and unoccupied
state manifolds should be present in the sampled disorder
realizations, in order to ensure that the Chern marker and

Chern topology are not ill-defined in the studied disordered
system. Even though the gap can be arbitrarily small, it should
nonetheless be present, as can be verified with density-of-
states (DOS) calculations.

APPENDIX D: ADDITIONAL NUMERICAL RESULTS

We present here more generic numerical results, as men-
tioned in the main text. Additional KPM data for the Haldane
model [26] of a Chern insulator and standard graphene (which
we denote as the limit of the Haldane model with vanishing
second-neighbor hopping t ′ = 0) were included for a fur-
ther comparison with the kagome Euler semimetals [43]. We
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FIG. 11. Anomalous conductivity in disordered Euler semimetal models on a kagome lattice. (a) Uniform disorder. (b) Gaussian disorder.
We observe the conductivity to decay analogously for both types of on-site disorder. The negative values reflect the antisymmetry of the
conductivity tensor σxy = −σyx , while the plots were obtained for systems consisting of 150 × 150 unit cells. The anomalous conductivity
corresponding to the presence of edge states found in Euler Hamiltonians is generically not quantized.

symbolically denote uniform and Gaussian disorders as
W ≡ V0 and W ≡ σ , respectively.

Crucially, in kagome models, such as the one with (t, t ′) =
(0, 1) and (t, t ′) = (1, 0), and considering a filling up to the
nodes of opposite, nonstable, quaternion charges (q = ±i)

between the upper two bands, we find z = 0.9 ± 0.1 and
ν = 1.0 ± 0.1, where the error is mainly due to the different
fitting for multiple system sizes (L = 75, 100, 150) and hence
should be attributed to finite-size effects (Fig. 13). Generically
we find that the ADOS of these unstable Euler semimetals
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FIG. 12. Scaling of conductance in kagome Euler semimetals (and the graphene/Haldane model). (a) On adding uniform disorder. (b) On
adding Gaussian disorder. The conductance Gi j = σi jL(d−2) is size-independent and equal to conductivity for two-dimensional systems. We
observe that the results for Gaussian and uniform on-site disorders are qualitatively consistent, while both phases with nodes at energy not
overlapping with the dispersion of any band pockets, i.e., (t, t ′) = (1, 0) and (t, t ′) = (0, 1), exhibit an intermediary conductance behavior
corresponding to the development of a metallic phase.

changes less rapidly around nodal energies than in graphene,
i.e., a larger critical disorder is required for a QPT to oc-
cur (Fig. 9). We also notice that on adding stronger, i.e.,
higher than critical, disorder, the conductivities in such Euler
semimetals always decay slower than in graphene (Figs. 10
and 12), but as this occurs for phases with nodes of oppo-
site topological charge, which can be annihilated to induce a
gap, the effect might be attributed to the different number of
nodes and dispersion effects, rather than to the band topology
itself. As the nodes in these phases are not protected by a
patch Euler class or a gap, with the Euler band subspaces
carrying χ = 1 around the � point being fully occupied, this

result overlaps with the scaling found in graphene, where
z = 1 [62].

1. Average density of states evaluated with KPM

We attach further ADOS calculation results for other
parametrizations of the kagome model [43] (Fig. 9). We ob-
serve transitions to metallic states, as the ADOS at nodal
energies becomes nonvanishing. At much higher disorder, we
observe Anderson localization, accompanied by the flatten-
ing of DOS (dashed lines). For phases with (t, t ′) = (1, 0)
and (t, t ′) = (0, 1), the presence of flat band complicates the
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FIG. 13. (a) Scaling fitting to deduce the dynamical scaling exponent z in an unstable semimetal (see the main text). The dashed red line
represents the fit to different system sizes (L = 75, 100, 150), yielding z = 0.9 ± 0.1 for the oppositely charged nodes. (b) Fitting for finding
the localization length exponent ν at the gap-closing transition of the protected χ = 1 model system of size L × L = 100 × 100. The dashed
line represents the power-law fit, while the blue line represents the scaling of ρ(0), obtaining ν = 1.4 ± 0.1, as for the other Euler semimetal
models protected by a neighboring gap.

study of criticality at the quadratic node with χ = 1, there-
fore a model with (t, t ′) = (1,−0.2), introducing additional
dispersion and making the node accessible, is studied in the
main text. For comparison, we note that the qualitative ADOS
evolution on adding disorder is similar to graphene, for the
energies at which the nodes that can be annihilated (±i) reside.

2. Average conductivities evaluated with KPM

Here, the longitudinal (Fig. 10) and anomalous (Fig. 11)
conductivity KPM data for the kagome models [43] subject
to disorder are included. Additionally, we show the scal-
ing of conductance with disorder in the kagome semimetals
(Fig. 12). On adding disorder, the conductivities are found
to decay at chemical potentials corresponding to the metallic
phases. However, at the chemical potential corresponding to
the nodes, μ = −1 for (t, t ′) = (1, 0) and (t, t ′) = (0, 1), we
observe an extended regime up to W = 1.0 ± 0.1, for uniform

disorder, which we argue to correspond to the unbraided and
delocalized metallic phases, as the QPTs occur (Fig. 12).
We observe that such behavior is not present in the case of
graphene.

3. Scaling analysis at QPTs

In this section, we show the plots (Fig. 13) from which the
scaling exponents, indicated in the scaling analysis section,
can be obtained. First, the dynamical exponent z is deduced
at the critical disorder (Wc) from log ρ(E ) extracted from
ADOS versus log E around the energies where the nodes
reside, or where the gap-closing occurs. Next, using the z
deduced, log ρ(0), with E = 0 corresponding to the nodes
or gap closing is plotted against log δ, the reduced disorder
δ = (W − Wc)/Wc above the critical value. From fitting the
lines to the log-log plots, prefactors of the scaling power laws
are found, and the fit is reexamined in the power-law plots.
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