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Quantized perfect transmission in graphene nanoribbons with random hollow adsorbates
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Impurities exist inevitably in two-dimensional materials as they spontaneously adsorb onto the surface during
fabrication, usually exerting detrimental effects on electronic transport. Here, we focus on a special type of
impurities that preferentially adsorb onto the hollow regions of graphene nanoribbons (GNRs), and study how
they affect the quantum transport in GNRs. Contrary to previous knowledge that random adatoms should localize
electrons, the so-called Anderson localization, noteworthy quantized conductance peaks (QCPs) are observed at
specific electron energies. These QCPs are remarkably robust against variations in system size, GNR edge, and
adatom properties, and they can reappear at identical energies following an arithmetic sequence of device width.
Further investigation of the wave function reveals a unique transport mode at each QCP energy which transmits
through disordered GNRs reflectionlessly, while all the others become fully Anderson localized, indicating the
survival of quantum ballistic transport in the localized regime. Our findings highlight the potential utility of
hollow adatoms as a powerful tool to manipulate the conductivity of GNRs, and deepen the understanding of the
interplay between impurities and graphene.
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I. INTRODUCTION

As impurities exist inevitably in two-dimensional materi-
als, the subject on how they affect the electronic transport
properties of graphene has been attracting extensive and ongo-
ing interest [1–11]. In the presence of long-ranged impurities,
graphene maintains high mobility due to Klein tunneling
[12–17], but it experiences Anderson localization with short-
ranged random impurities when the intervalley scattering is
strong [18–22]. It has been further demonstrated that the
electronic properties of graphene can be significantly al-
tered by simply manipulating the distribution and type of
adatoms when adhering to graphene’s surface [23–30]. In
general, adatoms adhere to graphene at three different loca-
tions [21,31–36]: top sites (atop carbon atoms), bridge sites
(between two adjacent carbon atoms), and hollow sites (at
the center of hexagons). Adatoms at the top sites have been
demonstrated to induce band gaps [37–40], and those at the
bridge sites are known to induce magnetic moments [41–43].
Adatoms occupying hollow sites are usually associated with
heavy adatoms [44–51] [see the yellow balls in Fig. 1(a)],
which have been shown to induce more intriguing and versa-
tile quantum phases in graphene, such as the spin Hall effect
[50–53], topological insulators [32,54,55], and even supercon-
ductivity [56–59]. However, the impact of hollow adatoms on
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graphene’s properties, particularly the quantum transport, has
rarely been explored to date.

In this paper, we study theoretically the electron transport
through a two-terminal graphene nanoribbon (GNR) with ran-
domly distributed hollow adatoms, as depicted in Fig. 1(a).
Although the overall electron transmission is dramatically re-
duced, a number of quantized conductance peaks (QCPs) with
the value 2e2/h emerge at specific electron energies. These
QCPs remain unchanged by varying nanoribbon lengths and
edges, adatom properties, and more importantly they persist in
the Anderson localization regime at high adatom concentra-
tions. Furthermore, identical QCPs are observed for various
nanoribbon widths, which follow the arithmetic progression
rule. By analyzing the wave function of carbon atoms in each
hexagon, the QCPs can be understood rather simply from the
renormalized Schrödinger equation. That is, when the sum of
the wave function of the six carbon atoms in each hexagon is
exactly zero at these QCP energies, the influence of adatoms
negates, thus making the transmission ballistic. These results
unravel the coexistence of two extreme quantum transport
phenomena, quantized ballistic transport and Anderson local-
ization, on the same platform, and may facilitate designing
graphene devices based on impurities instead of their detri-
mental effects.

The rest of the paper is organized as follows. Section II
introduces the model Hamiltonian of graphene with randomly
distributed adatoms at the hollow sites, and the Green’s func-
tion to calculate the conductance. Sections III–V display the
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FIG. 1. Structure and electron transport property of disordered armchair GNRs. (a) Schematic of a disordered GNR device coupled to
left and right semi-infinite GNRs. Here, the black and red balls denote carbon atoms, and the yellow ones are adatoms situated randomly at
the hollow regions. The device size is described by the number of slices, M, and the number of carbon atoms in each slice, N , as indicated
by the rectangle. (b) Energy-dependent conductance G of the pristine GNR, with the inset showing the magnified view in the rectangle.
Energy-dependent averaged conductance 〈G〉 of disordered GNRs for (c) several adatom concentrations na, (d) different on-site energy disorder
strengths W , and (f) different bond disorder strengths D. (e) Standard deviation δG referring to (d). (g) 〈G〉 vs length M at the energies marked
by different symbols in (c). The parameters are N = 29, M = 104, na = 50%, εα = 0, and γα = t , unless specified in the figure.

robustness of QCPs, the width-dependent QCPs, and their
physical origin, respectively. Finally, the results are summa-
rized in Sec. VI.

II. MODEL AND METHOD

The electron transport through disordered GNRs, with
randomly distributed adatoms at the hollow sites, can be de-
scribed by the tight-binding Hamiltonian:

H = −t
∑

〈i, j〉
c†

i c j +
∑

α

εαd†
αdα +

∑

〈α, j〉
γα (d†

αc j + c†
j dα ). (1)

Here, c†
i (ci) is the creation (annihilation) operator of an

electron at site i of the graphene lattice, 〈i, j〉 denotes all the
nearest-neighbor sites with the hopping integral t chosen as
the energy unit, and the on-site energy of graphene is taken
as the energy reference point. εα is the on-site energy of an
adatom at site α with d†

α (dα) the creation (annihilation) opera-
tor. The last term denotes the coupling between adatom α and
all the nearest-neighbor carbon atoms with γα the isotropic
hopping integral which only depends on adatoms.

From the Landauer-Büttiker formula [60–65], the
conductance of the two-terminal GNR is obtained as
G = (2e2/h)Tr[�LGr�RGa], with Gr (E ) = [Ga(E )]† =
[EI − Hc − �r

L − �r
R]−1 the Green’s function, and

�L/R = i(�r
L/R − �a

L/R) the linewidth function. Here, E is the

electron energy, Hc the Hamiltonian of the central scattering
region (CSR), and �

r(a)
L/R the retarded (advanced) self-energy

due to the coupling to the left/right semi-infinite GNR. As the
adatoms are characterized by three parameters of εα , γα , and
adatom concentration na, we consider all possible situations
by varying one parameter and fixing the other two, where na

is defined as the ratio of the number of adatoms to that of
hexagons in the CSR. (i) In the case of a different number
of adatoms, the adatom concentration is varied, whereas
the other two parameters are fixed as εα = 0 and γα = t ,
with t the hopping integral of graphene. (ii) In the case of
different types of adatoms, we consider the most disordered
situation and εα distributes uniformly in [−W/2,W/2], while
the other parameters are set to na = 50% and γα = t . (iii)
In the case of different adatom sizes and vertical distances
from the graphene plane [66–68], γα distributes uniformly
within [t − D/2, t + D/2], while the other parameters are set
to na = 50% and εα = 0. Here, W and D are, respectively,
the on-site energy and bond disorder strengths. Since the
graphene synthesized in experiments is usually very large
[69–71], the length of the CSR is taken as M = 104, which
refers to approximately 2.13-µm-long GNRs, and the width
is set to N = 29. Such long disordered GNRs allow for better
exploration of the localization phenomenon and QCPs. The
conductance is averaged over 2 × 107/M disordered samples,

064201-2



QUANTIZED PERFECT TRANSMISSION IN GRAPHENE … PHYSICAL REVIEW B 110, 064201 (2024)

and the bond current is obtained from a single GNR sample.
All these parameters will be used throughout the paper, unless
stated otherwise.

III. ROBUSTNESS OF QCPs

We first study the electron transport through armchair
GNRs by varying the adatom concentration from na = 0% to
90%, as shown in Figs. 1(b) and 1(c). As compared with the
pristine GNR [Fig. 1(b)], the introduction of adatoms results
in a dramatic reduction of the electron transmission along
disordered GNRs [Fig. 1(c)], and there exist zero conduc-
tance plateaus at a high adatom concentration of na = 50%
and 90%, a sign of Anderson localization induced by the
scattering from randomly distributed adatoms [19,72–75]. In
addition, the averaged conductance 〈G〉 is asymmetric with
respect to the line E = 0, because the triangle structure arises
simultaneously when the adatoms situate at hollow sites and
subsequently the electron-hole symmetry is broken [76,77].
Interestingly, several QCPs of conductance quantum emerge
at discrete energies distributed within the whole transmission
spectrum and locate around the plateau transition points [see
the inset of Fig. 1(b)]. This phenomenon is different from
perfectly conducting channels observed in disordered GNRs
by considering long-ranged impurities [13], which occur ex-
clusively around the Dirac points and the resulting impurity
potential varies slowly on the atomic scale. These QCPs ex-
hibit electron-hole asymmetry as well, where at the electron
side the QCPs arise for small na and at the hole side they
only manifest for large na. All these phenomena still hold for
disordered GNRs with a zigzag edge (see the Supplemental
Material [78]), and we will focus on armchair GNRs in the
following.

We then investigate how the on-site energy of adatoms
and their coupling to the neighboring carbon atoms affect the
QCPs. Figures 1(d) and 1(f) show the averaged conductance
〈G〉 vs E by considering the on-site energy and bond disorder,
respectively. We can see that the profile of most QCPs remains
the same by changing W or D [Figs. 1(d) and 1(f)]. By con-
trast, the two QCPs at E ∼ −0.618t and −0.338t seem to be
sensitive to the adatoms, where 〈G〉 decreases with increasing
W and increases with D. The latter anomalous behavior orig-
inates from the fact that, with increasing D, the adatoms will
effectively decouple from the GNR and the adatom concentra-
tion is declined, leading to the increment of the transmission
ability, because of the finite-size effect. Indeed, all these QCPs
remain unchanged for sufficiently long GNRs, regardless of
the values of W and D, implying the robustness against the
adatoms.

Figure 1(e) plots the energy-dependent standard deviation
δG ≡

√
〈G2〉 − 〈G〉2, in accordance with Fig. 1(d). There al-

ways exist dips of δG = 0 at the QCP positions and two
deviation peaks of δG ∼ 0.66e2/h for each QCP. Indeed, the
characteristic of δG = 0 can hold well at the QCP positions,
regardless of the GNR length M and the disorder strengths
W and D. This indicates that the QCPs of conductance quan-
tum can always be observed in any single disordered GNR
sample, as further confirmed in Figs. 2(a) and 2(b). When
the electron energy is far away from the QCP positions, the
standard deviation satisfies δG = 0 [see the electron side in

FIG. 2. Electron transport along a single disordered armchair
GNR. (a) Energy-dependent conductance G of a single disordered
GNR with length being M = 104 and 105, and (b) magnified view in
the green rectangle of (a). Here, the on-site energy disorder strength
is W = t and the other parameters are the same as in Fig. 1(d).

Fig. 1(e)], indicating the localization behavior in any disor-
dered GNR with length M = 104. Figure 1(g) displays 〈G〉 vs
M for typical electron energies marked by different symbols
in Fig. 1(c). It is clear that, at the QCP positions, 〈G〉 usually
decreases with increasing M and then saturates at conductance
quantum in the large length limit [see the red dashed and
blue dashed-dotted-dotted lines in Fig. 1(g)], implying the
quantum ballistic transport behavior of the QCPs. When E
deviates from the QCP positions, 〈G〉 gradually decreases with
increasing M and finally becomes zero, which corresponds to
the Anderson localization for non-QCP energies.

As the experiments are usually performed on a very large
graphene system with a specific impurity distribution, we also
investigate the electron transport along a single disordered,
larger GNR sample. Figure 2(a) shows the energy-dependent
conductance G of a single disordered GNR with M = 104 and
105, while Fig. 2(b) displays the magnified view in the green
rectangle of Fig. 2(a). One can see from Fig. 2(a) that the
conductance is finite and oscillates considerably around each
QCP position due to the quantum coherence. Although the
overall conductance is declined by increasing M, the QCPs
of conductance quantum remain at a narrow but continuous
energy region for such a long GNR of M = 105, as illustrated
in Fig. 2(b).

IV. WIDTH-DEPENDENT QCPs

We then study the electron transport through disordered
GNRs by considering the nanoribbon width, as shown in
Fig. 3(a), where 〈G〉 vs E is displayed for typical values of
N . One can see that the number of QCPs increases with N ,
owing to the increment of transport modes. Further studies
indicate that the number of all QCPs found in the whole
energy spectrum is �N/2� for disordered GNRs of width N ,
with �· · · � the floor function, as can be seen from Table II.
Some QCPs for N = 39 overlap all those for N = 19, while
the remaining QCPs overlap all those for N = 20 by properly
shifting their positions. Interestingly, the two QCPs locate at
the same energies for N = 9, 19, and 39 [see the stars in
Fig. 3(a)]. This phenomenon can also be detected in other
disordered GNRs with various widths, as shown in Fig. 3(b),
where the evolution of all the QCPs in the energy region
[−t, t] is displayed by ranging the width from N = 3 to 40.
For example, identical QCPs are observed at E ∼ −0.618t
for N = 4, 9, 14, . . ., at E ∼ 0 for N = 5, 8, 11, . . ., and at
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FIG. 3. Electron transport along disordered armchair GNRs with
different widths. (a) Energy-dependent 〈G〉 for different widths N .
(b) Evolution of the QCPs for different N . Here, na = 50% and the
other parameters are the same as in Fig. 1(c).

E ∼ 0.382t for N = 9, 19, 29, . . . [see the red dashed, green
dashed-dotted, and black solid lines in Fig. 3(b)]. This evolu-
tion phenomenon can be formulated in an arithmetic sequence
of Nj = j�N − 1, with j an integer and �N the width differ-
ence between two successive disordered GNRs of identical
QCPs.

V. PHYSICAL ORIGIN OF QCPs

To understand the width-dependent QCPs, Figs. 4(a) and
4(b) show the distributions of bond currents for two disordered
GNR samples at the two QCP positions marked by the stars
in Fig. 3(a), which can be calculated from the lesser Green’s
function [79–82]. Here, the arrow size is proportional to the
magnitude of bond currents. One can see that the currents only
flow along the bonds between neighboring carbon atoms, and
thus the scattering from the adatoms disappears, leading to
the emergence of the QCPs. Furthermore, one can identify
other important features from Fig. 4, which hold for all the
investigated disordered GNRs of various adatom distributions.
(i) The spatial mirror symmetry is maintained with respect to
the (N + 1)/2 row for odd N . (ii) The fifth row for N = 9 and
the tenth row for N = 19, where the bond currents are zero,
can be used to divide each disordered GNR into two isolated
segments with identical distributions of bond currents. As a

TABLE I. Sum of the wave function of the six carbon atoms in
every hexagon at different momenta kx , as marked by the magenta
diamonds in Fig. 5(b).

E ∼ −0.618t E ∼ 0.382t

kx = −0.4π kx = −0.352π kx = 0.2π kx = 0.004π

I 0 0.255 − 0.256i 0 0.000 − 0.003i
II 0 −0.158 + 0.158i 0 0.000 + 0.005i
III 0 −0.158 + 0.158i 0 0.000 − 0.005i
IV 0 0.255 − 0.256i 0 0.000 + 0.003i

FIG. 4. Spatial distributions of bond currents of two individual
disordered GNR samples for the QCPs at (a) E ∼ −0.618t with
N = 9 and (b) E ∼ 0.382t with N = 19, as marked by the stars in
Fig. 3(a). The two panels refer to the middle segment of disordered
GNRs with M = 2 × 104 + 20, and the arrow size is proportional to
the magnitude of bond currents.

result, identical QCPs can be observed at E ∼ −0.618t for
Nj = 4 and 9, and at E ∼ 0.382t for Nj = 9 and 19. We
conclude that, by applying the zero-current row to divide
the disordered GNR into the smallest segment, the width at
which the quantized perfect transmission happens with iden-
tical QCPs can be determined.

To further elucidate the physical origin of the QCPs, we
calculate the wave function of specific electronic states at
which the QCPs take place. Figures 5(a) and 5(b) plot, respec-
tively, the unit cell and the dispersion relation of the pristine
GNR with N = 9. Here, the carbon atoms and hexagons
are labeled by arabic and roman numerals, respectively. The
blue dashed-dotted and dashed lines correspond to the QCP
positions [see the stars in Fig. 3(a)], and these two lines in-
dependently intersect the dispersion relation, as shown by the
magenta diamonds and the inset in Fig. 5(b). Table I displays
the sum of the wave function of the six carbon atoms in every

FIG. 5. (a) Unit cell and (b) dispersion relation of armchair GNR
with N = 9. The carbon atoms and hexagons in (a) are described by
the arabic and roman numerals, respectively. The magenta diamonds
in (b) refer to specific momenta at which energies the QCPs take
place, as marked by the stars in Fig. 3(a).
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TABLE II. Momenta kx and the corresponding QCP energies of various GNRs with width ranging from N = 3 to 20, at which the sum of
the wave function of the six carbon atoms in every hexagon is zero.

N E (t ) kx (π ) N E (t ) kx (π ) N E (t ) kx (π ) N E (t ) kx (π )

3 1 2
4 ( 1

2 ) 11 −0.732 −6
12 ( −1

2 ) 15 −0.8478 −10
16 ( −5

8 ) 18 −0.9727 −16
19

4 −0.618 −2
5 11 0 0

12 (0) 15 −0.4142 −4
16 ( −1

4 ) 18 −0.7589 −10
19

4 1.618 4
5 11 1 6

12 ( 1
2 ) 15 0.2347 2

16 ( 1
8 ) 18 −0.3547 −4

19

5 0 0
6 (0) 11 2 12

12 (1) 15 1 8
16 ( 1

2 ) 18 0.1966 2
19

5 2 6
6 (1) 11 2.732 18

12 ( 3
2 ) 15 1.765 14

16 ( 7
8 ) 18 0.8348 8

19

6 −0.8019 −4
7 12 −0.9419 −10

13 15 2.4142 20
16 ( 5

4 ) 18 1.491 14
19

6 0.5551 2
7 12 −0.497 −4

13 15 2.8478 26
16 ( 13

8 ) 18 2.094 20
19

6 2.247 8
7 12 0.2908 2

13 16 −0.966 −14
17 18 2.578 26

19

7 −0.4142 −2
8 ( −1

4 ) 12 1.242 8
13 16 −0.7005 −8

17 18 2.891 32
19

7 1 4
8 ( 1

2 ) 12 2.1361 14
13 16 −0.2053 −2

17 19 −0.9021 −14
20 ( −7

10 )

7 2.4142 10
8 ( 5

4 ) 12 2.7709 20
13 16 0.4527 4

17 19 −0.618 −8
20 ( −2

5 )

8 −0.879 −6
9 ( −2

3 ) 13 −0.8019 −8
14 ( −4

7 ) 16 1.184 10
17 19 −0.1756 −2

20 ( −1
10 )

8 0 0
9 (0) 13 −0.247 −2

14 ( −1
7 ) 16 1.891 16

17 19 0.3819 4
20 ( 1

5 )

8 1.347 6
9 ( 2

3 ) 13 0.555 4
14 ( 2

7 ) 16 2.478 22
17 19 1 10

20 ( 1
2 )

8 2.532 12
9 ( 4

3 ) 13 1.445 10
14 ( 5

7 ) 16 2.864 28
17 19 1.618 16

20 ( 4
5 )

9 −0.618 −4
10 ( −2

5 ) 13 2.247 16
14 ( 8

7 ) 17 −0.8794 −12
18 ( −2

3 ) 19 2.176 22
20 ( 11

10 )

9 0.382 2
10 ( 1

5 ) 13 2.801 22
14 ( 11

7 ) 17 −0.5321 −6
18 ( −1

3 ) 19 2.618 28
20 ( 7

5 )

9 1.618 8
10 ( 4

5 ) 14 −0.956 −12
15 ( −4

5 ) 17 0 0
18 (0) 19 2.902 34

20 ( 17
10 )

9 2.618 14
10 ( 7

5 ) 14 −0.618 −6
15 ( −2

5 ) 17 0.6527 6
18 ( 1

3 ) 20 −0.9777 −18
21 ( −6

7 )

10 −0.919 −8
11 14 0 0

15 (0) 17 1.347 12
18 ( 2

3 ) 20 −0.8019 −12
21 ( −4

7 )

10 −0.3097 −2
11 14 0.791 6

15 ( 2
5 ) 17 2 18

18 (1) 20 −0.4661 −6
21 ( −2

7 )

10 0.7153 4
11 14 1.618 12

15 ( 4
5 ) 17 2.532 24

18 ( 4
3 ) 20 0 0

21 (0)

10 1.831 10
11 14 2.338 18

15 ( 6
5 ) 17 2.8794 30

18 ( 5
3 ) 20 0.555 6

21 ( 2
7 )

10 2.681 16
11 14 2.827 24

15 ( 8
5 ) 20 1.1495 12

21 ( 4
7 )

20 1.731 18
21 ( 6

7 )

20 2.247 24
21 ( 8

7 )

20 2.652 30
21 ( 10

7 )

20 2.911 36
21 ( 12

7 )

hexagon at different momenta kx, where the wave function of
all the carbon atoms is shown in Table S1 of the Supplemental
Material [78]. We can see from Table I that, at the QCP
positions, there always exists one specific momentum kx, at
which the sum of the wave function is exactly zero. We further
calculate all these momenta kx of various GNRs of different
widths, as shown in Table II. Interestingly, one can infer from
Table II that these momenta of GNRs equidistantly distribute
within [−π, 2π ] and can be expressed as

kx = 6n − N + 2 + 3[1 − (−1)N ]/2

N + 1
π, (2)

where n = 0, 1, . . . , �N/2� − 1. We then write down the
Schrödinger equation on the carbon atoms,

Eψi = −t
∑

〈 j〉i

ψ j +
∑

〈α〉i

γαϕα, (3)

where ψi is the wave function of carbon atoms at position
ri , j is the site index for all the neighboring carbon atoms
around site i, and α is the one for all the neighboring adatoms
to i, with ϕα the wave function of adatoms. Similarly, for the

adatoms, we have (E − εα )ϕα = γα

∑
〈 j′〉α ψ j′ . Substituting

ϕα into Eq. (3), we derive

Eψi = −t
∑

〈 j〉i

ψ j +
∑

〈α〉i

γ 2
α

E − εα

∑

〈 j′〉α
ψ j′ . (4)

It can be deduced from Eq. (4) that if the sum of wave function
ψ j′ of the six carbon atoms around the adatom α equals
zero, the second term on the right-hand side vanishes. This
elucidates why the adatoms have no impact on the electron
transport for this special transport mode, where the electrons
propagate ballistically through disordered GNRs, leading to a
single quantized conductance of 2e2/h, while for other trans-
port modes, the presence of random adatoms significantly
alters their behavior, causing the electrons to become Ander-
son localized. Consequently, a QCP of conductance quantum
emerges. This phenomenon can find its analogy in disordered
quantum Hall systems where only the dissipationless Hall
edge states contribute to a quantized conductance [83–86], but
the physical origin is different.

Finally, let us discuss how the QCPs could be realized in
experiments. At first, pristine GNRs are prepared by, e.g.,
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mechanical exfoliation or chemical vapor deposition, and are
placed on an insulating layer. After that, heavy atoms, which
preferentially adsorb at hollow sites of graphene, are ejected
from a high-purity bulk sample with an e-beam evaporator,
and they are then deposited onto the surface of pristine GNRs
at low temperatures of ∼10 K [87,88]. Finally, the charge
transport measurements are carried out at low temperatures.

VI. CONCLUSIONS

In summary, we investigate the electron transport through
GNRs with random hollow adatoms. We uncover unexpected
QCPs at specific energies within the transmission spectrum,
alongside the overall suppression of conductance. These
QCPs are found to be very robust against system size, GNR
edge, and adatom properties, and most importantly, they can
survive in the presence of Anderson localization. A system-

atic analysis on distributions of bond currents and the wave
function reveals the ballistic transport feature of these exotic
QCPs. Our findings contribute significantly to the understand-
ing of the interplay between graphene and impurities, offering
valuable insights for the design of conductance switches in
graphene-based materials utilizing hollow adatoms.
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