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Thermal expansion and phase stability of BF3 (B = Sc, Y, La, Al, Ga, In) from first principles
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ScF3 has attracted much attention because of its simple crystal structure and negative thermal expansion
(NTE) over a wide temperature range. No other binary trifluoride has the same crystal structure and exhibits
NTE in as wide a temperature range as ScF3. There has hitherto been no sufficient explanation for this fact.
Herein, to discuss the phase stability and the NTE behavior of ScF3, the six binary trifluorides BF3 (B =
Sc, Y, La, Al, Ga, In) are thoroughly compared by using ab init io molecular-dynamics calculations with the
on-the-fly machine-learning technique, first-principles lattice-dynamics calculations, and electronic-structure
analyses based on group-representation theory and the band-unfolding method. The present study reveals
that (i) the a−a−a− octahedral rotational distortion (ORD) in ScF3 increases the frequency of the crucial
phonons for realizing NTE, leading to a weakening of the NTE behavior under hydrostatic pressure; (ii) the
group-representation theory predicts the emergence of ORDs triggered by the second-order Jahn-Teller effect
in cubic ScF3, YF3, AlF3, GaF3, and InF3; (iii) cubic ScF3 and YF3 do not possess ORD without pressure
due to their slight orbital overlap between the cations and anions; (iv) ScF3 has a delicate balance between the
repulsive force term and the energy stabilization term, induced by the octahedral rotational phonon modes; and
(v) metastable cubic YF3 and LaF3 exhibit NTE behaviors. Our findings would provide an understanding of a
material-design principle for realizing NTE.

DOI: 10.1103/PhysRevB.110.064104

I. INTRODUCTION

Negative thermal expansion (NTE) is a counterintuitive
physical property in which volume contracts with in in-
crease in temperature. Representative NTE materials quartz,
ZrW2O8, and ScF3 were discovered in 1907 [1,2], 1968
[3], and 2010 [4], respectively, and a large amount of NTE
materials have been reported, such as ReO3-type [4–6],
ZrW2O8-type [3,7–9], ZrV2O7-type [10,11], Sc2W3O12-
type [12–16], NASICON-type [17–19], NbPO5-type [20–22],
Cu2P2O7-type [23–25], and Cu2O-type structures [26], as
well as delafossites [27,28], cyanides [29–32], perovskites
[33–40], and intermetallic [41] families. Although some pre-
vious studies have reported a close correlation between crystal
structure and NTE [42–46], the correlation between the el-
ement, the formulation of design principles for new NTE
materials, and their exploration are still challenging issues
[47–53]. As an adequate case study for uncovering the cor-
relation between the element, crystal structure, and NTE, we
focus on the simple NTE material ScF3 and the relevant binary
trifluorides B(III)F3 (B = Sc, Y, La, Al, Ga, In).

ScF3 has a ReO3-type structure [Pm3̄m phase, Fig. 1(a)]
and is known to exhibit NTE in a wide temperature range
(10–1100 K) [4]. On the other hand, the ground-state
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structures of AlF3, GaF3, and InF3 are the distorted ReO3-type
structures [R3̄c phases, Fig. 1(b)] with the a−a−a− octahe-
dral rotational distortions (ORDs) [54–56], and those of YF3

and LaF3 are completely different from ReO3-type structure
[57,58] (see Figs. S1(a) and S1(b) in Ref. [59]). The nature
of NTE in ScF3 is attributed to its crystal structure, which
creates the low-frequency transverse phonon modes around
the edge of the first Brillouin zone [61–63]. It has also been
reported that local symmetry breaking in nanoparticles of
ScF3 weakens the NTE behavior [64,65], implying that the
preservation of high space-group symmetry Pm3̄m is respon-
sible for the NTE behavior of ScF3. Intriguingly, ScF3 is the
only binary trifluoride BF3 that can stably adopt the Pm3̄m
phase even at low temperature. To the best of our knowledge,
there is no detailed explanation for the reason why only ScF3

can possess the high-symmetry Pm3̄m phase and the NTE
behavior.

What determines the emergence of ORD leading to the dis-
torted R3̄c phase? This question has been addressed in terms
of the second-order Jahn-Teller (SOJT) theory; the emergence
of ORD can be explained by covalent bond formation between
Bloch states, indicating that a symmetry analysis of the elec-
tronic structure is a powerful tool [66]. However, as will be
discussed later, the group theory concludes that ScF3 exhibits
ORD leading to low crystal symmetry, whereas the experi-
mentally reported structure has no distortion [4], indicating
the necessity of further quantitative study.
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In this study, to consider the correlation between the crystal
structure and thermal expansion of ScF3, we discuss the vari-
ations of mode-Grüneisen parameters and thermal expansion
behaviors in the high-symmetry Pm3̄m and low-symmetry
R3̄c phases for ScF3 from first-principles lattice-dynamics and
molecular-dynamics (MD) calculations. We then analyze the
suppression of ORDs in ScF3, including hypothetical cubic
YF3 and LaF3, in detail through the group-representation the-
ory, the band unfolding method, and crystal orbital overlap
population (COOP) by comparing six Pm3̄m phases of BF3 (B
= Sc, Y, La, Al, Ga, In). Lastly, we predict the NTE behaviors
in the metastable cubic YF3 and LaF3.

II. THEORETICAL BACKGROUND

A. Grüneisen parameter and negative thermal expansion

In general, the Grüneisen parameter [67] is one of the most
important quantities to consider in NTE. Within the scheme
of the quasiharmonic approximation (QHA), the volumet-
ric thermal expansion coefficient αV of a solid is expressed
as [51,67–69]

αV = γCV

BT V
, (1)

where BT , CV , V , and γ are the bulk modulus at a constant
temperature, the heat capacity per atom at a constant volume,
the volume per atom in a lattice (average atomic volume),
and the Grüneisen parameter, respectively. Since BT , CV , and
V must be positive among the variables on the right-hand
side in Eq. (1), the sign of αV depends on the sign of γ . In
other words, γ should be negative when NTE is indicated.
γ is expressed as a weighted average of the mode-Grüneisen
parameter γq,ν [67] with mode-heat capacity CV,q,ν :

γ =
∑

q,ν γq,νCV,q,ν∑
q,ν CV q,ν

, (2)

CV,q,ν = kB

(
h̄ωq,ν

kBT

)2 exp (h̄ωq,ν/kBT )

[exp (h̄ωq,ν/kBT ) − 1]2
, (3)

where γq,ν , CV,q,ν , and ωq,ν are the mode-Grüneisen param-
eter, the mode-heat capacity at constant volume, and the
frequency of the νth phonon mode in a wave vector q, respec-
tively. As discussed above, since CV,q,ν is always positive, a
portion of γq,ν must be strongly negative for γ to be negative.
γq,ν is defined by the volume derivative of the frequency ωq,ν

of the relevant phonon mode and is expressed as

γq,ν = − V

ωq,ν

(
∂ωq,ν

∂V

)
T

. (4)

Here, γq,ν represents a portion of the anharmonicity of phonon
modes, and a larger absolute value of γq,ν indicates stronger
anharmonicity [53]. Equation (2) indicates that phonon modes
with negative γq,ν are crucial for NTE; by calculating γq,ν , it is
possible to identify which phonon modes contribute the most
to NTE. Also, by looking at the changes in these values due
to the distortions, we can investigate the effect of symmetry
breaking on NTE.

B. Second-order Jahn-Teller effect
and irreducible representation

We describe the theoretical background of the SOJT effect
below [66,70–74]. The Hamiltonian H , which represents the
energy of an electron system with an atomic displacement
along a normal coordinate Q of an arbitrary phonon, is ex-
pressed as

H = H0 +H (1)Q + 1
2H

(2)Q2 + · · · , (5)

where H0 is an unperturbed Hamiltonian, and the first-order
and second-order terms are given as [66,73,74]

H (1) =
(

∂H
∂Q

)
Q=0

, H (2) =
(

∂2H
∂Q2

)
Q=0

. (6)

By using the perturbation theory, the total energy in the per-
turbed state is expressed as [66,73,74]

E = E0 + 〈0|H (1) |0〉 Q

+ 1

2

{
〈0|H (2) |0〉 − 2

∑
n

| 〈0|H (1) |n〉 |2
En − E0

}
Q2 + · · · ,

(7)

where |0〉 and |n〉 represent the ground state and the nth
excited state, respectively. The eigenvalues of |0〉 and |n〉 are
E0 and En, respectively. 〈0|H (1) |0〉 is the first-order term,
which takes a nonzero value only when the ground state
|0〉 is orbitally degenerate [73,74], describing the first-order
Jahn-Teller effect. Regarding BF3 (B = Sc, Y, La, Al, Ga,
In), there are no degenerate states because they are band
insulators. Hence, we ignore the first-order term. The first
term of the second-order coefficients, 1

2 〈0|H (2) |0〉, repre-
sents the short-range repulsive force induced by an atomic
displacement Q. Since this term is always positive, the high-
symmetry structure at Q = 0 is essentially preferred. On
the other hand, the second term of the second-order co-
efficients, −∑

n{| 〈0|H (1) |n〉 |2/(En − E0)}Q2, indicates the
degree of one-electron energy stabilization due to the atomic
displacement Q. This term is always negative unless it be-
comes zero by a symmetry restriction. Basically, when the
second term −∑

n{| 〈0|H (1) |n〉 |2/(En − E0)}Q2 exceeds the
first term 1

2 〈0|H (2) |0〉 Q2, the structural distortion along Q is
generated, implying the emergence of the imaginary phonon
mode, which tends to be realized in the cases of (i) nonzero
〈0|H (1) |n〉 and (ii) small energy gap En − E0.

Here, to qualitatively analyze whether the second-order
term in Eq. (7) becomes negative or not, the analysis based on
group-representation theory for the term 〈0|H (1) |n〉 is effec-
tive [66,73]. At first, we extract the irreducible representations
(irreps) of |0〉 and |n〉 in the high-symmetry group G, that
is, �0 and �n from the first-principles electronic-structure
calculations, while the irrep of H (1) is identical to that of an
arbitrary atomic displacement Q, which is expressed as �P.
And then, the direct product �0 ⊗ �P ⊗ �n is decomposed
into irreps of G through the wonderful orthogonality theorem
[75]. If �0 ⊗ �P ⊗ �n contains the totally symmetric rep-
resentation of G, 〈0|H (1) |n〉 must be nonzero. On the other
hand, if �0 ⊗ �P ⊗ �n does not contain the totally symmetric
representation, 〈0|H (1) |n〉 must be zero. Because the energy
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difference En − E0 is smallest between the valence-band max-
imum (VBM) and the conduction-band minimum (CBM), it is
reasonable to adopt the irreps of VBM and CBM as those of
|0〉 and |n〉, respectively.

III. COMPUTATIONAL DETAILS

The first-principles calculations were performed using the
projector-augmented-wave (PAW) method [76], the Perdew-
Burke-Ernzerhof functional tuned for solids (PBEsol) within
the generalized gradient approximation [77], and the Heyd-
Scuseria-Ernzerhof (HSE06) hybrid functional with a Fock-
exchange mixing parameter of 0.25 and a screening parameter
of 0.208 Å−1 [78–80] as implemented in VASP [81,82]. The
plane-wave cutoff energy was set to 550 eV for all the cal-
culations, and we used PAW data sets with radial cutoffs of
0.794, 1.40, 1.59, 1.40, 1.82, 1.68, and 1.54 Å for F, Al, Sc,
Ga, Y, In, and La, respectively. The following were described
as valence electrons: 2s2 and 2p5 for F; 3s2 and 3p1 for Al;
4s2 and 3d1 for Sc; 4s2 and 4p1 for Ga; 4s2, 4p6, 5s1, and 4d2

for Y; 5s2 and 5p1 for In; and 5s2, 6s2, 5p6, and 5d1 for La.
The PBEsol functional was used for the structural relaxation,
MD calculations, and lattice-dynamics calculations, while
the HSE06 hybrid functional was used for the electronic-
structure calculations. All the initial crystal structures in this
study were extracted from Materials Project [83]. We em-
ployed 10 × 10 × 10, 8 × 8 × 8, 6 × 6 × 9, and 6 × 6 × 5
Monkhorst-Pack k-point meshes for the ReO3-type Pm3̄m
phase, the distorted ReO3-type R3̄c phase, the eightfold-
coordinated Pnma phase, and the ninefold-coordinated P3̄c1
phase, respectively, to optimize their structures and to evaluate
their total energies. The lattice constants and atomic internal
coordinates were optimized until the residual stress and force
converged down to 0.04 GPa and 7 meV/Å, respectively.

The ab init io MD calculations with the on-the-fly machine-
learning technique in the isothermal-isobaric (N pT ) ensemble
in the range 100–700 K were carried out as implemented
in VASP [84–86] with the 4 × 4 × 4, 3 × 3 × 3, and 2 × 2 ×
2 supercells for the Pm3̄m phase, the R3̄c phase, and the
Pnma and P3̄c1 phases, respectively, which were extended
from the relevant primitive cells. We employed a single k-
point sampling for all the MD calculations. The temperature
and pressure in the N pT ensemble were controlled by the
Langevin method [87,88] and the Parrinello-Rahman method
[89,90], respectively. The friction coefficients for the atoms
and lattices were set to 1.0 and 10.0 ps−1, respectively. The
time increment of the velocity Verlet method was set to 2 fs,
and the total number of steps was set to 20 000 (40 ps). The
initial 2000 steps (4 ps) were used for a relaxation process,
and the subsequent 18 000 steps (36 ps) were used for the
analysis. We adopted the equilibrium volume as the average
value of instantaneous volumes in all steps.

The phonon band structures were derived from the calcu-
lated force constants using PHONOPY [91–93]. We chose the
supercell consisting of 2 × 2 × 2 primitive cells for the Pm3̄m
and Pnma phases, that of 2 × 2 × 2 conventional cells for
the R3̄c phase, and that of 3 × 3 × 2 primitive cells for the
P3̄c1 phase in order to contain all the special reciprocal points.
The mode-Grüneisen parameters γq,ν within QHA [94] were
derived from the phonon frequencies ωq,ν of the isotropically

(a) (b)Pm3m
ScF3 AlF3 , GaF3, InF3 

R3c

c
a

b

c

ab

FIG. 1. Crystal structures for ScF3, AlF3, GaF3, and InF3.
(a) The Pm3̄m phase, which is the same as the ABX3 cubic perovskite
without the A-site atom, and (b) the R3̄c phase that has the a−a−a−

octahedral rotational distortions.

expanded and contracted lattice constants, which were multi-
plied by 1.0066 and 0.9934 with respect to the relaxed values.
The atomic modulation that breaks the crystal symmetry was
formed using PHONOPY [95–98]. The chemical bonding anal-
ysis through COOP was performed using LOBSTER [99–101].
The Madelung energies with the formal charges were cal-
culated using Ewald methods as implemented in PYMATGEN

[102]. The band-unfolding analyses from the R3̄c to Pm3̄m
space group and the extraction of the projected electronic band
structure with the density of states (DOS) were performed by
using VASPKIT [103]. The symmetry analyses of phonons were
performed by using AMPLIMODES [104,105] and ISODISTORT

[106,107], while the symmetry analyses of electronic struc-
tures were done by using IRREP [108].

IV. RESULTS AND DISCUSSION

A. Effect of octahedral rotational distortion
on thermal expansion of ScF3

The previous experimental study [64,65] showed that the
NTE behavior of nanoscale ScF3 is weak due to the symmetry
breaking associated with the a−a−a− ORD. To elucidate the
effect of ORD in ScF3 on its NTE behavior, we revisit and
compare the γq,ν of the distorted R3̄c phase of ScF3, which is
experimentally identified under pressure higher than 0.7 GPa
at 300 K [4,109]. We can see that the NTE behavior in cubic
ScF3 originates from the phonons at R and M points due
to their largely negative γq,ν [Fig. 2(a)], which is identical
to the previous reports [61,62]. Consistent with the experi-
mental result, we computationally obtained the dynamically
stable R3̄c phase of ScF3 under 1.5 GPa (see Fig. S2(g) in
Ref. [59]). The calculated γq,ν of ScF3 with and without the
distortions indicates that the ORDs weaken the negativity
of γq,ν in the Pm3̄m phase [Fig. 2(a)]. Note that the band
path of R(1/2, 1/2, 1/2) to M(1/2, 1/2, 0) in Pm3̄m is iden-
tical to the band path of �(0, 0, 0) to F (1/2, 1/2, 0) in R3̄c
[Fig. 2(b)]. From the distributions of the averaged γq,ν of the
Pm3̄m and R3̄c phases, we can confirm that the negativity of
the averaged γq,ν is significantly weakened by the ORDs in
the entire first Brillouin zone [Fig. 2(c)].

Let us see the degree of weakening of negativity for γq,ν

at R and M in the Pm3̄m phase of ScF3 by the ORDs in
detail. Here, from the group-theoretical analysis, the irrep R+

4
of Pm3̄m is found to be converted into the irreps �+

1 and
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FIG. 2. (a)–(c) Comparison of mode-Grüneisen parameters γq,ν in the Pm3̄m and R3̄c phases of ScF3. The R3̄c phase was obtained under
hydrostatic pressure (see text for the details). (a) The dispersions of γq,ν of the Pm3̄m and R3̄c phases. (b) The visualized first Brillouin zone
of Pm3̄m and R3̄c. (c) The distributions of averaged γq,ν in the first Brillouin zone of Pm3̄m and R3̄c phases. The special reciprocal points �,
R, and M of Pm3̄m are located at �(0, 0, 0), R(1/2, 1/2, 1/2), and M(1/2, 1/2, 0), respectively. The R and M points of Pm3̄m are transformed
into �(0, 0, 0) and F (1/2, 1/2, 0) of R3̄c, respectively. (d) Equilibrium lattice volumes of the Pm3̄m phases without pressure and R3̄c phases
under 1.5 GPa for ScF3 extracted from the ab init io molecular-dynamics calculations performed with the on-the-fly machine-learning force
field. The error bars as the standard deviations for temperature and volumes are also indicated.

�+
3 of R3̄c, while the irrep M+

3 of Pm3̄m is converted into
the irrep F+

2 of R3̄c. As enumerated in Table I, we obtained
γq,ν of the �+

1 and �+
3 (F+

2 ) phonons in the distorted R3̄c
phases that existed as the R+

4 (M+
3 ) phonons in the Pm3̄m

phase. As can be seen in Table I and Figs. 2(a) and 2(c), the
negativity of γq,ν in the R3̄c phase of ScF3 is significantly
weakened, which is comparable to those in B′F3 (B′ = Al, Ga,
In) (see Table S1 in [59]). From Eq. (4), one can see that a low
ωq,ν gives rise to a largely negative γq,ν when (∂ωq,ν/∂V )T

TABLE I. Irreducible representations, frequencies in units of
THz, mode-Grüneisen parameters γq,ν , and volume derivatives of
frequencies in units of THz/Å3 of ScF3 for the Pm3̄m phase without
pressure and the R3̄c phase under 1.5 GPa.

Space group Irrep γq,ν ωq,ν (∂ωq,ν/∂V )T

Pm3̄m R+
4 −430 0.389 2.62

M+
3 −335 0.439 2.31

�+
1 −9.03 × 10−3 6.07 4.93 × 10−4

R3̄c �+
3 −4.67 3.16 0.133

F+
2 −3.78 3.48 0.118

is positive. Thus, the weakening of the negativity for γq,ν is
attributed to both the increase of ωq,ν and the decrease of
(∂ωq,ν/∂V )T for the R+

4 and M+
3 phonons due to the ORDs

(see the values of ωq,ν and (∂ωq,ν/∂V )T in Table I), which
explain the experimental reports of weakened NTE behavior
of ScF3 nanoparticles [64,65].

To further consider the thermal-expansion behaviors of the
Pm3̄m and R3̄c phases for ScF3, we also calculated the equi-
librium lattice volumes from the ab init io MD calculations
with the on-the-fly machine-learning technique [Fig. 2(d)].
We have found that the PTE behaviors are observed in the R3̄c
phase of ScF3 under 1.5 GPa [Fig. 2(d)]. These results are
consistent with the weakened negativity of mode-Grüneisen
parameters in the R3̄c phase [Table I]. Note that, in Sec. I in
Ref. [59], we discuss the reproducibility of thermal-expansion
behaviors from the MD calculations for the ground-state
structures of six BF3 [Fig. S1(c)] by comparing them with the
experimental values [4,54,110,111].

The effect of the weakening of the negativity for γq,ν due
to the ORDs would be generalized to the PTE behavior of
B′F3 (B′ = Al, Ga, In) and other compounds. In AlF3, the
previous experimental reports [54] have shown that the Pm3̄m
(R3̄c) phase is realized in temperatures higher (lower) than
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FIG. 3. Calculated phonon band structures for (a) ScF3, (b) YF3, (c) LaF3, (d) AlF3, (e) GaF3, and (f) InF3 of the Pm3̄m phases. The green
circles indicate the relative degree of projected mode amplitudes of the relevant cations.

700 K, and the volumetric thermal-expansion coefficients of
the Pm3̄m phase are lower than those of the R3̄c phase. More-
over, in double-ReO3-type CaTiF6, it has been experimentally
reported that the undistorted cubic Fm3̄m (distorted R3̄) phase
is realized in temperatures higher (lower) than 110 K, ex-
hibiting NTE (PTE) behavior [54]. In addition, TaO2F, which
resembles ReO3, has been reported not to exhibit NTE behav-
ior because of its local structural distortion [112].

B. Suppression of octahedral rotational distortions in ScF3

To shed light on the dynamical properties of ORDs, phonon
bands are calculated [Fig. 3] for the Pm3̄m phase of the six
BF3, which is, however, totally hypothetical for YF3 and

LaF3. Here, the size of the green circles in the phonon bands
[Fig. 3] indicates the relative degree of projected vibration
mode amplitudes of cations. We have found that BF3 of the
Pm3̄m phase becomes dynamically stable when the B-site
cation is composed of early-transition metal [Figs. 3(a)–3(c)],
whereas it becomes dynamically unstable if the B-site cation
is composed of post-transition metal [Figs. 3(d)–3(f)]. The
imaginary phonon modes at R and M in B′F3 (B′ = Al, Ga,
In) transform as irreps R+

4 and M+
3 , respectively, which are

responsible for the NTE behavior in ScF3. Figure 3 shows
that the phonon modes transforming as R+

4 and M+
3 do not

contain the vibration of cations, reconfirming that
those phonon modes are composed of the vibration of
fluorine.
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FIG. 4. Relative Madelung energies of six metal trifluorides as a
function of the mode amplitudes transforming as irreducible repre-
sentations (a) R+

4 (a, a, a) and (b) M+
3 (a, a, a).

To consider the origin of ORDs, we calculated relative
Madelung energies of the distorted R3̄c and Im3̄ phases,
which are isotropy subgroups of Pm3̄m corresponding to ir-
reps R+

4 (a, a, a) and M+
3 (a, a, a), respectively [Fig. 4], by

using the formal charges. The previous computational study of
antiperovskites [113] has shown that the ORDs transforming
like irreps R+

4 and M+
3 reduce the Madelung energies, leading

to a lowering in the total energies. However, in the case of
BF3, the ORDs increase their Madelung energies. These re-
sults clarify that the nonclassical effect is essential to consider
the dynamical stability of BF3, which cannot be considered
in the Madelung energy. The nonclassical effect should be
investigated to determine whether the VBM and CBM are
hybridized or not under the ORD.

To uncover whether the hybridization of VBM and CBM
is symmetrically permitted or not under the ORD, we analyze
the irreps of VBM and CBM with the atomic displacement
transforming as irrep R+

4 in the Pm3̄m phase in the same way
as in the previous studies [66,74]. The calculated band gaps,
the irreps of VBM and CBM, the bond lengths of B and F,
and the relative total energy of cubic BF3 are enumerated
in Table II (see Fig. S3 for the calculated electronic band
structures with the full band paths for the six Pm3̄m phases
in Ref. [59]). By using these irreps, we calculate the direct
product �0 ⊗ �P ⊗ �n and obtain the decomposed irreps of
the Pm3̄m phases for ScF3 as

R+
4 ⊗ R+

4 ⊗ �+
5 = �+

1 + �+
2 + 2�+

3 + 3�+
4 + 4�+

5 , (8)

TABLE II. Irreducible representations of VBM and CBM, band
gaps εg calculated within the HSE06 functional, bond lengths lB−F

between B and F, and energies above hull 
E (relative total energies
with respect to the ground-state phases) for six BF3 of the Pm3̄m
phases calculated within the PBEsol functional.

Compound VBM CBM εg (eV) lB−F (Å) 
E (eV/atom)

ScF3 R+
4 �+

5 8.39 2.00 0
YF3 R+

4 �+
1 9.28 2.16 6.30 × 10−2

LaF3 �+
4 �+

1 8.65 2.31 1.43 × 10−2

AlF3 R+
4 �+

1 9.98 1.80 3.18 × 10−3

GaF3 R+
4 �+

1 6.55 1.90 2.69 × 10−2

InF3 R+
4 �+

1 5.81 2.09 2.02 × 10−2

while in the cases of B′F3 (B′ = Al, Ga, In) and YF3, the direct
product is expressed as

R+
4 ⊗ R+

4 ⊗ �+
1 = �+

1 + �+
2 + �+

3 + �+
4 + �+

5 . (9)

These results indicate that the ORD transforming as irrep
R+

4 would be generated in these five compounds because the
totally symmetric representation �+

1 is included in Eqs. (8)
and (9). On the other hand, the direct product of the Pm3̄m
phase for LaF3 is expressed as

�−
4 ⊗ R+

4 ⊗ �+
1 = R−

1 + R−
3 + R−

4 + R−
5 . (10)

As for the Pm3̄m phase of LaF3, the emergence of ORD is not
expected because Eq. (10) does not contain �+

1 . These anal-
yses based on group-representation theory for B′F3 (B′ = Al,
Ga, In) and LaF3 are consistent with their phonon bands, while
those for ScF3 and YF3 are not fully addressed to their phonon
bands, indicating the necessity of a quantitative discussion
(see Sec. IV for further analyses on the electronic states other
than VBM and CBM by using the group-representation theory
in Ref. [59]).

To investigate the degree of the hybridization of VBM
and CBM due to the ORDs in BF3, we directly compare
the electronic structures between the Pm3̄m and R3̄c phases,
as illustrated in Fig. 5. Here, the size of the red circles in
Fig. 5 indicates the degree of the relevant projected DOS of
cations s or d states. Note that we applied the band-unfolding
method [114,115] to the electronic structures of the distorted
R3̄c phases. Moreover, we unified the degree of ORDs in BF3

for comparison in Fig. 5; the bond angle of B–F–B is unified
to 172.6◦. This degree of distortion amplitude yields a small
total-energy change as +2 meV/f.u. with respect to the Pm3̄m
phase in ScF3 so that the distorted structures can be treated
as perturbed systems. We denote here that energies below
1 meV/f.u. are treated as numerical errors.

From Fig. 5, we can observe the variations in the elec-
tronic structures around VBM. In AlF3, GaF3, and InF3,
we can see the comparatively large band splits of threefold-
degenerate states at VBM, whereas the slight band splits
are shown in ScF3, YF3, and LaF3. Note that the threefold-
degenerate R+

4 electronic state splits into nondegenerate �+
1

and twofold-degenerate �+
3 , while the threefold-degenerate

�−
4 state in cubic LaF3 splits into nondegenerate �−

2 and
twofold-degenerate �−

3 in the R3̄c phase by the ORD. Addi-
tionally, due to the ORDs, the cation B′-s states (B′ = Al, Ga,
In) are hybridized into the valence bands in B′F3, whereas the
d states (s states) of ScF3 (YF3 and LaF3) are less hybridized.
These electronic-structure analyses indicate the emergence
of ORD in AlF3, GaF3, and InF3 [Figs. 3(d)–3(f)], and the
suppression of ORD in the Pm3̄m phases of ScF3, YF3, and
LaF3 [Figs. 3(a)–3(c)].

Herein, we consider the suppression of ORD in ScF3

in terms of bond length, band gap, and orbital overlap by
comparing ScF3, AlF3, and InF3 because of the qualitative
prediction of the group representation theory. As
discussed in Sec. II, the energy-stabilization term
−∑

n{| 〈0|H (1) |n〉 |2/(En − E0)}Q2 should have a largely
negative value under the conditions of (i) large | 〈0|H (1) |n〉 |2

and/or (ii) small En − E0. When we compare AlF3 and
ScF3, the bond length of AlF3 is shorter than ScF3, while
the band gap of AlF3 is larger than that of ScF3. The shorter
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FIG. 5. Calculated electronic band structures with and without the octahedral rotational distortions for (a) ScF3, (b) YF3, (c) LaF3, (d)
AlF3, (e) GaF3, and (f) InF3 by using the HSE06 hybrid functional in the vicinity of VBM. All of the band structures of the R3̄c phases are
unfolded into the first Brillouin zone of Pm3̄m. The black dots in the R3̄c phase band structures represent the band edge with the spectral weight
over 50%. The B–F–B bond angles of the Pm3̄m and R3̄c phases are, respectively, 180◦ and 172.6◦. The relevant R3̄c structures (B–F–B =
172.6◦) were generated by equidistantly separating the relaxed Pm3̄m and the R3̄c phases. The red circles represent the degree of the relevant
projected DOS.

bond length of AlF3 gives rise to a comparatively larger
crystal orbital overlap, which should lead to a large value of
| 〈0|H (1) |n〉 |2. As enumerated in Table III, we calculated the
integrated COOPs (iCOOPs) of the distorted R3̄c phases of
the six BF3. Here, for the calculation of iCOOPs, we unified
the bond angle of B–F–B in the same way as in Fig. 5. One
can see that the iCOOP of AlF3 is three times larger than
that of ScF3, implying the larger value of | 〈0|H (1) |n〉 |2 in
AlF3. On the other hand, as for the comparison between InF3

and ScF3, the bond length of InF3 is comparable with that
of ScF3, while the band gap of InF3 is smaller than ScF3

TABLE III. Integrated COOPs (iCOOPs) up to VBM between
the B–F bonds for the R3̄c phases of six BF3, the band-gap changes

εg due to the ORD with the bond angle of B–F–B as 172.6°.

Compound iCOOPs (eV) 
εg (eV)

ScF3 0.040 0.023
YF3 0.062 0.019
LaF3 0.038 0.008
AlF3 0.120 0.134
GaF3 0.121 0.316
InF3 0.104 0.277

[Table III]. Although the bond lengths of InF3 and ScF3 are
comparative, the iCOOP of InF3 is about 2.5 times larger than
that of ScF3 because the orbital size of 5s states is far larger
than that of 3d states.

In short, in ScF3, the repulsive force term 1
2 〈0|H (2) |0〉 Q2

is slightly larger than the energy stabilization term
−∑

n{| 〈0|H (1) |n〉 |2/(En − E0)}Q2 without pressure. From
the relative total energy of the distorted R3̄c phase as a func-
tion of the R+

4 atomic displacement in ScF3, we can confirm
that the coefficient of the quadratic term is almost zero (see
Fig. S4 and Sec. V in Ref. [59]), leading to the very low
frequency of the R+

4 phonon [Fig. 3(a)] and the strongly
anharmonic relative total energy due to the R+

4 phonon. As
discussed in Eq. (8), the emergence of ORD was qualita-
tively predicted by the group-representation theory for ScF3,
which, in fact, does not contradict the experimental result:
we consider that the energy-stabilization term, namely the
SOJT effect in ScF3, is extremely scarce without pressure
because of its large band gap and its long bond length. Indeed,
we have confirmed the tiny hybridization of Sc-3d and F-2p
states, which triggers the little band split [Fig. 5(a)] and slight
band-gap opening [Table III] induced by the ORD in ScF3. We
also consider that the delicate balance between the two terms
in ScF3 should explain the experimentally reported quantum
phase transition of ScF3 [116].
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FIG. 6. Calculated phonon band structures and mode-Grüneisen
parameters γq,ν for the metastable Pm3̄m phases of (a) YF3 and (b)
LaF3 without hydrostatic pressure.

C. Negative thermal expansion in metastable
cubic YF3 and LaF3

We have shown that the COOPs between the early-
transition metals (Sc, Y, La) and fluorine are scarce, leading
to the suppression of ORD, whereas those between the post-
transition metals (Al, Ga, In) and fluorine are large [Table III]
leading to the emergence of ORD. This perspective gives us an
expectation that the metastable Pm3̄m phases of YF3 and LaF3

would possess NTE behavior. Intriguingly, the metastable
Pm3̄m phases of YF3 and LaF3 have negative Grüneisen pa-
rameters at R and M points [Fig. 6], which are analogous to
ScF3. Notably, the relative total energy of cubic YF3 with
respect to the ground-state phase is comparable to that of
cubic GaF3 [Table II]. We also present the ab init io MD calcu-
lation results for the cubic YF3 and LaF3 [Fig. 7], indicating
their NTE behaviors. The prominent NTE behaviors can be
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FIG. 7. Equilibrium volumes of the cubic YF3 and LaF3 derived
from the ab init io MD calculations performed with the on-the-fly
machine-learning force field. The error bars as the standard devia-
tions for temperature and volumes are also indicated.

observed as the cation size increases. This phenomenon can
be understood from the perspective of average atomic volume,
which is defined as the lattice volume divided by the number
of atoms in the lattice: the larger average atomic volume yields
the stronger NTE behaviors [27] because the most crucial
R+

4 and M+
3 low-energy transverse phonons make the anions

vibrate forward to vast void space (void A-site in ABX3 cubic
perovskite structure) [53]. Note that the calculated equilib-
rium average atomic volumes at 300 K for the cubic ScF3,
YF3, and LaF3 are 15.82, 20.04, and 24.36 Å3, respectively.
Here, we also denote that the Grüneisen parameters at R and
M in the cubic YF3 and LaF3 are less negative compared to
those in ScF3. This quantitative inconsistency between the
mode-Grüneisen parameters [Fig. 6] and the ab init io MD
calculations [Fig. 7] should stem from the anharmonicity pa-
rameters and temperature-Grüneisen parameters [117], which
are not included in QHA [118].

V. CONCLUSIONS

The group-representation theory qualitatively predicted the
emergence of ORDs in the Pm3̄m phases of ScF3, YF3, AlF3,
GaF3, and InF3, not in the Pm3̄m phase of LaF3. We have
found that the suppression of ORD in the Pm3̄m phases
of ScF3 and YF3 stems from the scarce energy-stabilization
terms because of their large band gaps and long bond lengths.
We have also found that the delicate balance between the
repulsive force term and the energy-stabilization term gives
rise to the low frequency of the R+

4 phonon, which is cru-
cial for the NTE behavior. From this perspective, we have
computationally predicted that the metastable cubic YF3 and
LaF3 exhibit NTE behaviors. Combining all the discussions,
we can obtain a simple conclusion that the following two
conditions are essential to realizing the NTE behavior: (i) the
preservation of high crystal symmetry, and (ii) large average
atomic volumes in pristine materials. The first condition can
be perceived from the mode-Grüneisen parameters and ther-
mal expansion behaviors in the Pm3̄m and R3̄c phases in ScF3

[Fig. 2]. The second condition can be understood from the
thermal expansion behaviors in the Pm3̄m phases of ScF3,
YF3, and LaF3 [Fig. 7], indicating the larger NTE behavior as
the cation size increases. The SOJT effect is a pivotal indicator
for considering the preservation of high crystal symmetry. We
believe that our study would provide an understanding of a
material design principle for realizing NTE.
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