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The development of interatomic potentials that can accurately capture a wide range of phys ical phenomena
and diverse environments is of significant interest, but it presents a formidable challenge. This challenge arises
from the numerous structural forms, multiple phases, complex intramolecular and intermolecular interactions,
and varying external conditions. In this paper, we present a method to construct environment-adaptive interatomic
potentials by adapting to the local atomic environment of each atom within a system. The collection of atomic
environments of interest is partitioned into several clusters of atomic environments. Each cluster represents a
distinctive local environment and is used to define a corresponding local potential. We introduce a many-body
many-potential expansion to smoothly blend these local potentials to ensure global continuity of the potential
energy surface. This is achieved by computing the probability functions that determine the likelihood of an atom
belonging to each cluster. We apply the environment-adaptive machine learning potentials to predict observable
properties for Ta element and InP compound, and compare them with density functional theory calculations.
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I. INTRODUCTION

Molecular dynamics (MD) simulations require an accurate
calculation of energies and forces to analyze the physical
movements of atoms. While electronic structure calculations
provide accurate energies and forces, they are restricted to
analyzing small length scales and short time scales due to
their high computational complexity. Interatomic potentials
represent the potential energy surface (PES) of an atomic
system as a function of atomic positions and thus leave out
the detailed electronic structures. They can enable MD simu-
lations of large systems with millions or even billions of atoms
over microseconds.

Over the years, empirical interatomic potentials (EIPs)
such as the Finnis-Sinclair potential [1], embedded atom
method (EAM) [2], modified EAM (MEAM) [3], Stillinger-
Weber (SW) [4], Tersoff [5], Brenner [6], EDIP [7], COMB
[8], and ReaxFF [9] have been developed to treat a wide
variety of atomic systems with different degrees of com-
plexity. EAM potential has its root from the Finnis-Sinclair
potential [1] in which the embedding function is a square
root function. The MEAM potential [3] was developed as a
generalization of the EAM potential by including angular-
dependent interactions in the electron density term. The SW
potential takes the form of a three-body potential in which the
total energy is expressed as a linear combination of two- and
three-body terms. The Tersoff potential is fundamentally dif-
ferent from the SW potential in that the strength of individual
pair interactions is affected by the presence of surrounding
atoms. The Brenner potential is based directly on the Tersoff

potential but has additional terms and parameters which allow
it to better describe various chemical environments. EDIP is
designed to more accurately represent interatomic interactions
by considering the effects of the local atomic environment
on these interactions. Because EAM, MEAM, Tersoff, Bren-
ner, EDIP, ReaxFF, and COMB potentials dynamically adjust
the strength of the bond based on the local environment of
each atom, they can describe several different bonding states
and complex behaviors of atoms in various states, including
defects, phase transitions, surfaces, and interfaces within ma-
terials. One of the key features of ReaxFF and COMB is their
ability to handle charge equilibration in a manner that includes
long-range electrostatic interactions and reflects changes
in the electronic environment of atoms during chemical
reactions.

The past decade has seen a tremendous interest in ma-
chine learning interatomic potentials (MLIPs) due to their
promising quantum accuracy at significantly lower computa-
tional complexity than electronic structure calculations. The
descriptors play a central role in the construction of accurate
and efficient MLIPs. In recent years, a wide variety of de-
scriptors has been developed to represent atomic structures.
There are two main approaches to mapping a configuration
of atoms onto descriptors [10]: atom density approach and
internal coordinate approach. Examples of internal coordi-
nate descriptors include permutation-invariant polynomials
(PIPs) [11–13], atom-centered symmetry functions (ACSFs)
[14–16], and proper orthogonal descriptors (PODs) [17–19].
These internal coordinate descriptors are intrinsically invari-
ant with respect to translation and rotation because they are
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functions of angles and distances. They are made to be permu-
tationally invariant by summing symmetry functions over all
possible atomic pairs and triplets within local atomic environ-
ments. However, achieving permutation invariance by such a
way leads to the exponential scaling in terms of the number of
neighbors. The computational cost can be kept under control
by restricting the range of interactions, the number of descrip-
tors, and the body orders.

The atom density approach describes a local atomic envi-
ronment around a central atom as an atom density function
which is obtained by summing over localized functions cen-
tered on the relative positions of all atoms in the local
environment. Such a density is naturally invariant to trans-
lation and permutation. The atomic neighborhood density is
then expanded as a linear combination of appropriate basis
functions, where the expansion coefficients are given by the
inner products of the neighborhood density with the basis
functions. Rotationally invariant descriptors are computed as
appropriate sums of products of the density coefficients. In the
atom density approach, the choices of the basis set (e.g., radial
basis functions, spherical harmonics, angular monomials, hy-
perspherical harmonics) lead to different sets of descriptors.
The power spectrum and bispectrum descriptors [20] are con-
structed from spherical harmonics, while the spectral neighbor
analysis potential (SNAP) descriptors [21] are based on hyper-
spherical harmonics. The moment tensor potential (MTP) [22]
projects the atomic density onto a tensor product of angular
vectors to construct the moment tensors whose contraction
results in invariant descriptors. The atomic cluster expansion
(ACE) [23,24] extends the power and bispectrum construction
to obtain a complete set of invariant descriptors with arbi-
trary number of body orders. The E3 equivariant graph neural
network potentials [25] use spherical harmonics. The atom
density representation of POD descriptors employs angular
monomials and radial basis functions constructed from the
proper orthogonal decomposition [26].

The main advantage of atom density descriptors is that
their computational complexity scales linearly with the
number of neighbors irrespective of the body orders. The
computational complexity of internal coordinate descriptors
scales exponentially with the body order in terms of the num-
ber of neighbors. However, the cost of internal coordinate
descriptors scales linearly with the number of basis functions,
whereas that of atom density descriptors scales exponentially
with the body order in terms of the number of basis functions.
In general, atom density descriptors are more efficient than
internal coordinate descriptors when there are many neigh-
bors and the body order is higher than 3. Despite the rather
fundamental difference in their construction, some internal
coordinate descriptors and atom density descriptors can be
shown to span the same descriptor space. This is the case for
the POD descriptors in which the atom density representation
is shown to be equivalent to the internal coordinate representa-
tion [26]. The POD formalism allows other internal coordinate
descriptors like PIPs and ACSFs, as well as empirical poten-
tials like EAM, MEAM, and SW, to be implemented using the
atom density approach.

Despite considerable progress that has been made in recent
years, there remain open problems to be addressed with regard
to the accuracy, efficiency, and transferability of interatomic

potentials. The development of interatomic potentials that can
effectively capture a wide range of atomic environments is a
complex challenge due to several reasons. Materials can exist
in numerous structural forms (e.g., crystalline, amorphous,
defects, interfaces) and phases (solid, liquid, gas, plasma).
Atoms interact through various forces such as electrostatic,
van der Waals, ionic bonding, covalent bonding, and metallic
bonding, which manifest differently depending on the chemi-
cal elements and their electronic structures. Furthermore, the
effective interaction among atoms can change with external
conditions like temperature, pressure, and chemical environ-
ment. Consequently, creating an interatomic potential that
performs well across diverse conditions is difficult because
optimizing the potential for one set of conditions can lead to
poorer performance in others. Each of these factors contribute
to the complexity of developing interatomic potentials that
are effective and efficient to capture a diverse range of local
atomic environments.

In this paper, we introduce a method for the systematic
construction of accurate and transferable interatomic poten-
tials by adapting to the local atomic environment of each
atom within a system. Local atomic environment of an atom
comprises the positions and chemical species of the atom and
its neighbors within a cutoff radius. These atom positions and
chemical species can be mapped onto a vector of M invariant
descriptors b y using either the internal coordinate approach
or the atom density approach. For a dataset of N atoms, we
obtain a descriptor matrix of size N by M. Each row of the
descriptor matrix encapsulates the local atomic environment
of the corresponding atom. Since M is typically large, a
dimensionality reduction technique is used to compress the
descriptor matrix into a lower-dimensional matrix of size N by
J , where J is considerably less than M. A clustering method
is then employed to partition the compressed data into K sep-
arate clusters. In other words, the original dataset of N atoms
is divided into K subsets and the atoms in any subset have
similar atomic environments. The clustering scheme allows
us to divide the diverse dataset into smaller subsets, each
characterized by data points sharing the common attributes.
This approach captures the diversity inherent in the dataset by
identifying distinct atomic environments within the dataset.
By training MLIPs on these subsets separately, we can obtain
MLIPs that are tailored to specific atomic environments. Each
MLIP may accurately predict configurations in the subset
on which it is trained. However, it may not be accurate for
predicting configurations in the other subsets.

The above approach raises the question: How do we
combine these separately localized MLIPs to construct a
global potential energy surface? To this end, we propose a
many-body many-potential (MBMP) expansion designed to
seamlessly blend the individual MLIPs and ensure that the
potential energy surface remains continuous across cluster
boundaries. This continuity is achieved by calculating proba-
bility functions that assess the likelihood of an atom belonging
to specific clusters identified within the dataset. These prob-
ability functions are critical in guiding how contributions
from different MLIPs are weighted and combined, providing
a systematic way to maintain the integrity and accuracy of
the model across different atomic environments. This integra-
tion is crucial for achieving a comprehensive model that can
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FIG. 1. Proper Orthogonal Descriptors can be formulated with either the internal coordinate or atom density representations with a
transformation that shows their equivalency.

accurately capture diverse environments in the original
dataset. This model can also capture atomic environments
that are a mixture of several distinct environments when the
probability functions are close to each other, thereby poten-
tially making the model more transferable than the individual
MLIPs.

Although the formulation of the environment-adaptive ma-
chine learning (EAML) potentials is descriptor agnostic and
can be developed for any set of descriptors, in this work
we employ the proper orthogonal descriptors [17,26]. To this
end, we extend the proper orthogonal descriptors to deal with
multi-element systems. This enables us to construct EAML
potentials that are finely tuned to the complexities of various
material compositions under diverse conditions. We apply
the EAML potentials to predict observable properties for Ta
element and InP compound, and compare them with density
functional theory calculations.

The paper is organized as follows. In Sec. II, we extend
proper orthogonal descriptors to multi-element systems. In
Sec. III, we describe our approach for constructing EAML
potentials. In Sec. IV, we present results to demonstrate the
EAML potentials for Tantalum and Indium Phosphide. Fi-
nally, we provide some concluding remarks in Sec. V.

II. MULTI-ELEMENT PROPER ORTHOGONAL
DESCRIPTORS

This section outlines a systematic approach for con-
structing internal coordinate and atom density descriptors to
represent the local atomic environments of multi-element sys-
tems. Building on our previous work [17–19], we develop
invariant descriptors for multi-element systems by leverag-
ing orthogonal proper decomposition to generate radial basis
functions and employing the trinomial expansion of angular
monomials to achieve rotational symmetry. The resulting de-
scriptors combine elements of both internal coordinates and
atom density fields, as illustrated in Fig. 1.

A. Many-body potential energy surface

We consider a multi-element system of Na atoms with
Ne unique elements. We denote by ri and Zi position vector
and type of an atom i in the system, respectively. Thus, we
have Zi ∈ {1, . . . , Ne}, R = (r1, r2, . . . , rNa ) ∈ R3Na , and Z =
(Z1, Z2, . . . , ZNa ) ∈ NNa . The potential energy surface (PES)

of the system of Na atoms can be expressed as a many-body
expansion of the form

ET(R, Z) =
∑

i

V (1)(ri, Zi ) +
∑
i, j

V (2)(ri, r j, Zi, Zj )

+
∑
i, j,k

V (3)(ri, r j, rk, Zi, Zj, Zk )

+
∑

i, j,k,l

V (4)(ri, r j, rk, rl , Zi, Zj, Zk, Zl ) + · · ·

.

(1)

The superscript on each potential denotes its body order. Each
potential must also depend on a set of parameters used to
parametrize it for a specific application. To simplify the nota-
tion, we have chosen not to explicitly denote these parameters
in the potentials. A separation of the PES into atomic contri-
butions yields

ET(R, Z) =
Na∑

i=1

Ei(R, Z), (2)

where Ei is obtained from Eq. (1) by removing the sum over
index i. To make the PES invariant with respect to translation
and rotation, the potentials should depend only on internal
coordinates as follows:

Ei = V (1)(Zi ) +
∑

j

V (2)(ri j, Zi, Zj )

+
∑

j,k

V (3)(ri j, rik,wi jk, Zi, Zj, Zk )

+
∑
j,k,l

V (4)(ri j, rik, ril ,wi jk,wi jl ,wikl , Zi, Zj, Zk, Zl )

+ · · · , (3)

where ri j = r j − ri, ri j = |ri j |, wi jk = cos θi jk = r̂i j · r̂ik , r̂ =
r/|r|. The internal coordinates include both distances
ri j, rik, ril and angles wi jk,wi jl ,wikl . The number of internal
coordinates for V (q) is equal to (q − 1)q/2. Typically, the
one-body terms V (1)(Zi ) are set to the isolated energies of
atom i.
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B. Two-body proper orthogonal descriptors

We briefly describe the construction of two-body PODs
and refer to [17,26] for further details. We assume that the
direct interaction between two atoms vanishes smoothly when
their distance is greater than the cutoff distance rcut. Further-
more, we assume that two atoms cannot get closer than the
inner cutoff distance rin. Letting r ∈ (rin, rcut ), we introduce
the following parametrized radial functions:

φ(r, rin, rcut, α, β ) = sin(απx)

α(r − rin )
, ϕ(r, γ ) = 1

rγ
, (4)

where the scaled distance function x is given by

x(r, rin, rcut, β ) = e−β(r−rin )/(rcut−rin ) − 1

e−β − 1
. (5)

The function φ in Eq. (4) is related to the zeroth spherical
Bessel function, while the function ϕ is inspired by the n-m
Lennard-Jones potential. Although the parameter γ can be
a real number, we choose a set of consecutive positive inte-
gers {1, 2, . . . , Pγ } to compute instances of the parametrized
function ϕ by making use of the relation ϕ(r, γ + 1) =
ϕ(r, γ )/r. Similarly, we choose a set of consecutive integers
{1, 2, . . . , Pα} for α to generate instances of the parametrized
function φ by making use of the formula sin((α + 1)πx) =
sin(πx)Uα (cos(πx)), where Uα are Chebyshev polynomials of
the second kind. We take Pβ values for the parameter β such
that βk = (k − 1)βmax/(Pβ − 1) for k = 1, 2, . . . , Pβ , where
βmax = 4.0.

We introduce the following function as a convex combina-
tion of the two functions in Eq. (4):

ψ (r,μ) = κφ(r, rin, rcut, α, β ) + (1 − κ )ϕ(r, γ ), (6)

where μ1 = rin, μ2 = rcut, μ3 = α,μ4 = β,μ5 = γ , and
μ6 = κ . The two-body parametrized potential is defined as
follows:

V (2)(ri j,μ) = fc(ri j,μ)ψ (ri j,μ), (7)

where the cut-off function fc(ri j,μ) is

fc(r,μ) = exp

⎛
⎜⎝1 − 1√(

1 − (r−rin )3

(rcut−rin )3

)2 + ε

⎞
⎟⎠ (8)

with ε = 10−6. This cut-off function ensures the smooth van-
ishing of the two-body potential and its derivative for ri j �
rcut.

Given S = Pγ + PαPβ parameter tuples μs, 1 � s � S, we
introduce the following set of snapshots:

�s(ri j ) = V (2)(ri j,μs), s = 1, . . . , S. (9)

We next employ the proper orthogonal decomposition [17]
to generate an orthogonal basis set which is known to be
optimal for representation of the snapshot family {�s}S

s=1. In
particular, the orthogonal radial basis functions are computed
as follows:

Rn(ri j ) =
S∑

s=1

Qsn �s(ri j ), n = 1, . . . , Nr, (10)

TABLE I. Angular monomials for Pa = 4.

 Am(r̂i j )

0 1
1 x̂i j , ŷi j , ẑi j

2 x̂2
i j , ŷ2

i j , ẑ2
i j , x̂i j ŷi j , x̂i j ẑi j , ŷi j ẑi j

3 x̂3
i j , ŷ3

i j , ẑ3
i j , x̂2

i j ŷi j , x̂2
i j ẑi j , ŷ2

i j x̂i j , ŷ2
i j ẑi j ,

ẑ2
i j x̂i j , ẑ2

i j ŷi j , x̂i j ŷi j ẑi j

4 x̂4
i j , ŷ4

i j , ẑ4
i j , x̂3

i j ŷi j , x̂3
i j ẑi j , ŷ3

i j x̂i j , ŷ3
i j ẑi j , ẑ3

i j x̂i j

ẑ3
i j ŷi j , x̂2

i j ŷ
2
i j , x̂2

i j ẑ
2
i j , ŷ2

i j ẑ
2
i j , x̂2

i j ŷi j ẑi j x̂i j ŷ2
i j ẑi j

x̂i j ŷi j ẑ2
i j

where the number of radial basis functions Nr is typically in
the range between 5 and 10. Note that Qsn, 1 � s � S, 1 �
n � Nr, are a matrix whose columns are eigenvectors of the
following eigenvalue problem:

Ca = λa, (11)

where the covariance matrix C is given by

Csp =
∫ rcut

rin

�s(r)�p(r)dr, 1 � s, p � S. (12)

The covariance matrix is computed by using the trapezoidal
rule on a grid of 2000 subintervals on the interval [rin, rcut].
The eigenvector matrix Qsn is pre-computed and stored.

Finally, the two-body proper orthogonal descriptors at each
atom i are computed by summing the orthogonal basis func-
tions over the neighbors of atom i and numerating on the atom
types as follows:

D(2)
ipqn =

{∑Ni
{ j=1|Z j=q} Rn(ri j ), if Zi = p

0, if Zi �= p
(13)

for 1 � i � Na, 1 � n � Nr, 1 � q, p � Ne. The number of
two-body descriptors per atom is thus NrN2

e .
For the purpose of complexity analysis, we assume that

each atom has the same number of neighbors Ni. The to-
tal number of neighbors is thus NaNi for all atoms. The
cost of evaluating the radial basis functions in Eq. (10) is
O(NaNiNrS), while the cost of evaluating the two-body de-
scriptors in Eq. (13) is O(NaNiNr ). The total cost is thus
independent of the number of elements Ne.

C. Three-body proper orthogonal descriptors

For any given integer  ∈ [0, Pa], where Pa is the high-
est angular degree, we introduce a basis set of angular
monomials,

Am(r̂i j ) = (x̂i j )
lx (ŷi j )

ly (ẑi j )
lz , (14)

where the exponents lx, ly, lz are nonnegative integers such
that lx + ly + lz = . Note that the index m satisfies 0 �
m � ( + 1)( + 2)/2 − 1 for any given , and that the total
number of angular monomials is (Pa + 1)(Pa + 2)(Pa + 3)/6.
Table I shows the basis set of angular monomials for Pa = 4.
By applying the trinomial expansion to the power of the angle
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TABLE II. Multinomial coefficients for Pa = 4.

 Cm

0 1
1 1, 1, 1
2 1, 1, 1, 2, 2, 2
3 1, 1, 1, 3, 3, 3, 3, 3, 3, 6
4 1, 1, 1, 4, 4, 4, 4, 4, 4, 6, 6, 6, 12, 12, 12

component wi jk , we obtain

(wi jk ) = (x̂i j x̂ik + ŷi j ŷik + ẑi j ẑik )

=
L()∑
m=0

CmAm(r̂i j )Am(r̂ik ), (15)

where L() = ( + 1)( + 2)/2 − 1 and Cm = !
lx!ly!lz! cor-

respond to the multinomial coefficients of the trinomial
expansion. Table II shows the multinomial coefficients for
 = 0, 1, 2, 3, 4.

Next, we define the atom basis functions at atom i as the
sum over all neighbors of atom i of the products of radial basis
functions and angular monomials:

Biqnm =
Ni∑

j=1|Zj=q

Rn(ri j )Am(r̂i j ), 1 � q � Ne. (16)

The cost of evaluating the atom basis functions is
O(NaNiNr (Pa + 1)(Pa + 2)(Pa + 3)/6), which is independent
of the number of elements. These atom basis functions are
used to define the atom density descriptors as follows:

D(3)
ipqq′n =

{∑L()
m=0 CmBiqnmBiq′nm, if Zi = p

0, if Zi �= p
, (17)

for 1 � i � Na, 1 � n � Nr, 0 �  � Pa, 1 � q, p � Ne, 1 �
q′ � q. The number of three-body descriptors per atom is
thus Nr (Pa + 1)N2

e (Ne + 1)/2. The cost of evaluating Eq. (17)
is O(NaNrNe(Ne + 1)(Pa + 1)(Pa + 2)(Pa + 3)/12), which is
usually less than that of evaluating the atom basis functions.
Therefore, the total cost of computing the atom density de-
scriptors is O(NaNiNr (Pa + 1)(Pa + 2)(Pa + 3)/6).

Substituting Eq. (16) into Eq. (17) yields the internal coor-
dinate form of the three-body descriptors

D(3)
ipqq′n =

Ni∑
j|Z j=q

Ni∑
k|Zk=q′

Rn(ri j )Rn(rik )(wi jk ) (18)

for Zi = p. The cost of evaluating the internal coordinate
descriptors is O(NaN2

i NrPa). Although the atom density de-
scriptors in Eq. (17) and the internal coordinate descriptors in
Eq. (18) are mathematically equivalent, their computational
complexities are not the same. The complexity of the atom
density descriptors is linear in the number of neighbors and
cubic in the angular degree, whereas that of the internal co-
ordinate descriptors is quadratic in the number of neighbors
and linear in the angular degree. Therefore, if the number of
neighbors is large and the angular degree is small, it is faster to
evaluate the the atom density descriptors. On the other hand,
if the number of neighbors is small and the angular degree is

TABLE III. Four-body angular functions fs.

 fs

0 f1 = 1
1 f2 = wi jk

2 f3 = w2
i jk, f4 = wi jkwi jl

3 f5 = w3
i jk, f6 = w2

i jkwi jl , f7 = wi jkwi jlwikl

4 f8 = w4
i jk, f9 = w3

i jkwi jl , f10 = w2
i jkw

2
i jl ,

f11 = w2
i jkwi jlwikl

high, it is more efficient to compute the internal coordinate
descriptors.

D. Four-body proper orthogonal descriptors

We begin by introducing the following four-body angular
functions:

fs(wi jk,wi jl ,wikl ) = (wi jk )a(wi jl )
b(wikl )

c, (19)

where a, b, c are integers such that a + b + c =  and a �
b � c � 0. The four-body angular functions fs are listed in
Table III. The four-body internal coordinate descriptors at
each atom i are defined as

D(4)
ipqq′q′′ns =

Ni∑
{ j|Z j=q}

Ni∑
{k|Zk=q′}

Ni∑
{l|Zl =q′′}

Uns (20)

for Zi = p, where Uns are given by

Uns = Rn(ri j )Rn(rik )Rn(ril ) fs(wi jk,wi jl ,wikl ) (21)

for 1 � i � Na, 1 � n � Nr, 1 � s � Ka, 1 � p, q �
Ne, 1 � q′ � q, 1 � q′′ � q′. Here Ka is the number of
four-body angular basis functions, which depends on Pa.
The number of four-body descriptors per atom is thus
NrKaN2

e (Ne + 1)(Ne + 2)/6. The cost of evaluating the
four-body internal coordinate descriptors is O(NaN3

i NrKa),
which is independent of the number of elements.

We note from the trinomial expansion that

(ξ1 + ξ2 + ξ3)a(η1 + η2 + η3)b(ζ1 + ζ2 + ζ3)c

=
L(a)∑
α=0

L(b)∑
β=0

L(c)∑
γ=0

CaαCbβCcγ Aaα (ξ)Abβ (η)Acγ (ζ),

where Aaα are the angular monomials defined in Eq. (14).
By considering ξ1 = x̂i j x̂ik, ξ2 = ŷi j ŷik, ξ3 = ẑi j ẑik , η1 =
x̂i j x̂il , η2 = ŷi j ŷil , η3 = ẑi j ẑil , ζ1 = x̂ik x̂il , ζ2 = ŷik ŷil , ζ3 =
ẑik ẑil , we obtain

Aaα (ξ)Abβ (η)Acγ (ζ) = Aa′α′ (r̂i j )Ab′β ′ (r̂ik )Ac′γ ′ (r̂il ),

where a′ = a + b, b′ = a + c, c′ = b + c, and the index α′
depends on α and β, β ′ on α and γ , γ ′ on β and γ . It
thus follows that the four-body angular functions can be
expressed as

fs =
L(a)∑
α=0

L(b)∑
β=0

L(c)∑
γ=0

Cαβγ

abc Aa′α′ (r̂i j )Ab′β ′ (r̂ik )Ac′γ ′ (r̂il ),
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where Cαβγ

abc = CaαCbβCcγ . Hence, the internal coordinate
form in Eq. (20) is equivalent to the atom density form

D(4)
ipqq′q′′ns =

L(a)∑
α=0

L(b)∑
β=0

L(c)∑
γ=0

Cαβγ

abc Biqna′α′Biq′nb′β ′Biq′′nc′γ ′ . (22)

The four-body atom density descriptors are expressed in terms
of the sums of the products of the atom basis functions. In
general, they are more efficient to evaluate than their internal
coordinate counterparts because they scale linearly with the
number of neighbors. The complexity analysis of the four-
body atom density descriptors is detailed in Ref. [26].

It is possible to exploit the symmetry and hierarchy of
the four-body descriptors to reduce the computational cost.
In particular, the four-body descriptors associated with f1 = 1
are the products of three two-body descriptors. For b = c = 0
(e.g., f2, f3, f5, f8 in Table III) the four-body descriptors are
the products of two-body descriptors and three-body descrip-
tors. Those four-body descriptors can be computed very fast
without using the atom density form in Eq. (22). The remain-
ing four-body descriptors are calculated by using Eq. (22).
They share many common terms, which can be exploited to
further reduce the cost. For instance, since f6 = wi jk f4 and
f9 = w2

i jk f4, the descriptors associated with f6 and f9 have
many common terms with those associated with f4.

III. ENVIRONMENT-ADAPTIVE MACHINE
LEARNING POTENTIALS

This section describes a method for constructing EAML
potentials from a given set of invariant descriptors. The
method leverages the principal component analysis and
k-means algorithm to partition the dataset into atom clusters.
The method relies on a many-body many-potential expansion
that combines several different potentials to define a single po-
tential energy surface. This is done by calculating probability
functions that assess the likelihood of an atom belonging to
specific clusters. These probability functions determine how
contributions from different potentials are weighted and com-
bined and provide a systematic way to maintain the continuity
of the potential energy surface.

A. Linear regression models

Linear regression is the most simple and efficient method
for building MLIP models [21,22,27,28]. Let Dim, 1 � m �
M, be a set of M local descriptors at atom i. The atomic energy
at an atom i is expressed as a linear combination of the local
descriptors

Ei(R, Z) =
M∑

m=1

cmDim(R, Z), (23)

where cm are the coefficients to be determined by fitting
against QM database. The PES is given by

ET(R, Z) =
Na∑

i=1

Ei(R, Z) =
M∑

m=1

cmGm(R, Z), (24)

where Gm = ∑Na
i=1 Dim are the global descriptors. The coeffi-

cients cm are sought as the solution of a least squares problem

min
c

α‖Gc − e‖2 + β‖Hc − f‖2 + γ ‖c‖2, (25)

where the matrix G is formed from the global descriptors,
while H is formed from the derivatives of the global descrip-
tors for all configurations in the training database. The vector
e is comprised of DFT energies, while f is comprised of DFT
forces. Note that α is the energy weight parameter, β is the
force weight parameter, and γ is a regularization parameter.
They are hyperparameters of the linear regression model.

In order to accurately model atomic forces in MD simula-
tions, the training dataset must be diverse and rich enough to
cover structural forms (e.g., crystalline, amorphous, defects,
interfaces), multiple phases (solid, liquid, gas, plasma), and
a wide range of temperature, pressure, and chemical environ-
ments. Training a linear model on the entire training set may
not produce an accurate and efficient potential if the dataset
contains very diverse environments. We partition the training
dataset into K separate subsets, whose DFT energies and
forces are denoted by (ek, f k ), 1 � k � K . On each subset,
we introduce an associated PES,

Ek
T(R, Z) =

Na∑
i=1

M∑
m=1

ck
mDim(R, Z), (26)

where the coefficient vectors ck are sought as solutions of the
least squares problems

min
ck

αk‖Gkck − ek‖2 + βk‖Hkck − f k‖2 + γ k‖ck‖2. (27)

Here the superscript k is used to indicate the quantities as-
sociated with the kth subset. This training strategy yields
an ensemble of K separate potentials. Each potential may
accurately predict configurations in the subset on which it
is trained. However, it may not be accurate for predicting
configurations in the other subsets.

A hypothetical issue here is to guarantee the continuity of
PES when predicting forces with an ensemble of potentials.
It is not obvious how to combine these separate potentials, as
they are trained on different datasets. A simple strategy is to
select the best potential among these potentials to predict the
physical properties of a given configuration at hand, if the cri-
terion of selecting the best potential can be defined. While this
strategy may work for property prediction, it does not work for
MD simulations. This is because using different potentials in
an MD simulation will result in discontinuity in the PES and
thus forces. The remainder of this section describes a method
that allows us to combine these separate potentials to construct
a global, differentiable, and continuous PES.

B. Dataset partition

We describe a clustering method to partition the dataset
into subsets of similar attributes. Local atomic environment
of an atom i comprises the positions and chemical species of
the atom and its neighbors within a cutoff radius. These atom
positions and chemical species can be mapped onto a vector
of M invariant descriptors, Dim, 1 � m � M, by using either
the internal coordinate approach or the atom density approach.
For a dataset of N atoms, we obtain a descriptor matrix D of
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FIG. 2. Dataset of atom configurations is partitioned into atom clusters by using principal component analysis and the k-means algorithm.

size N by M. Each row of the descriptor matrix encapsulates
the local atomic environment of the corresponding atom. The
similarity between two local atomic environments can be mea-
sured by the dot product of the two corresponding descriptor
vectors. Therefore, partitioning the dataset of N atoms into K
clusters can be done by dividing the rows of the descriptor
matrix into K similarity subsets. One can use a clustering
method such as k-means clustering algorithm to partition N
vectors in M dimensions into K separate clusters. However,
clustering in very high dimensions can be very expensive,
since M is typically large.

To reduce computational cost, we consider a dimensional-
ity reduction method to compress the descriptor matrix into a
lower-dimensional matrix of size N by J , where J is consider-
ably less than M. In this paper, principal component analysis
is used to obtain the low-dimensional descriptor matrix as
follows:

B = D W . (28)

Here W ∈ RM×J consists of the first J eigenvectors of the
eigenvalue decomposition DTD = W�W T , and the eigen-
values are ordered from the largest to the smallest.

For multi-element systems, the clustering method is ap-
plied to the local descriptor matrix for each element as
follows. The matrix D is split into De, 1 � e � Ne, where
De is formed by gathering the rows of D for all atoms of
the element e. For each element e, we compute

Be = De W e, (29)

where W e consists of the J eigenvectors of the eigenvalue
decomposition (De)TDe = W e�(W e)T .

Next, we apply k-means clustering method to partition the
rows of the matrix Be into K separate clusters. We denote
the centroids of the clusters by Ce

k, 1 � k � K, 1 � e � Ne.
The clustering scheme allows us to divide the diverse dataset
into smaller subsets, each characterized by similar data points
which share the common attributes. This approach captures
the diversity inherent in the dataset by identifying distinct
atomic environments within the dataset. Figure 2 illustrates
the process of partitioning the dataset into several atom
clusters.

While local descriptors are used to partition N atoms of
the dataset into K subsets of atoms for each element, global
descriptors can be used for partitioning the configurations of
the dataset into K subsets of configurations. For the dataset of
Nconfig configurations, we sum the relevant rows of the local

descriptor matrix D to obtain the global descriptor matrix G
of size Nconfig by M. We then apply the above procedure to G to
obtain the desired configuration subsets. By training potentials
on these subsets separately, we can construct MLIPs that are
tailored to specific atomic environments.

C. Many-body many-potential expansion

We begin by introducing the atomic energies associated
with the partitioned subsets,

Eik (R, Z) =
M∑

m=1

cmkDim(R, Z), 1 � k � K, (30)

where the coefficients cmk are fitted against the QM data. For
simplicity of exposition, the same local descriptors are used
to define the atomic energies, although we allow for different
local descriptors to be used for each subset. To construct a
single potential energy surface, we introduce a many-body
many-potential expansion,

Ei(R, Z) =
K∑

k=1

Pik (R, Z)Eik (R, Z), (31)

where

K∑
k=1

Pik (R, Z) = 1, Pik (R, Z) � 0. (32)

Thus, the atomic energy at atom i is a weighted sum of the
individual contributions from the K subsets. Note that Pik

denotes the probability of atom i belonging to the kth subset.
Like the local descriptors, the probabilities depend on the
local atomic environment of the central atom i.

By inserting Eq. (30) into the many-potential expansion
Eq. (31) and summing over index i, we obtain the PES as

ET(R, Z) =
Na∑
i=1

K∑
k=1

M∑
m=1

cmkPik (R, Z)Dim(R, Z). (33)

The quantities Qikm(R, Z) = Pik (R, Z)Dim(R, Z) shall be
called environment-adaptive descriptors. Hence, we can write
the PES as follows:

ET(R, Z) =
Na∑

i=1

KM∑
l=1

clQil (R, Z), (34)
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where l is a linear indexing of k and m. The coefficients cl

are sought as solution of a least squares problem that mini-
mizes a loss function defined as the weighted mean squared
errors between the predicted energies/forces and the QM
energies/forces for all configurations in the training dataset.

For the single cluster case K = 1, the EA model in Eq. (33)
reduces to the standard linear model

ET(R, Z) =
Na∑
i=1

M∑
m=1

cmDim(R, Z). (35)

Hence, the EA model in Eq. (34) has K times more descriptors
and coefficients than the standard linear model in Eq. (35).
Because the size of the EA model increases with K , it can
describe diverse environments in the dataset better than the
standard linear model. Nonetheless, it is necessary to assess
the EA model while varying K and compare it against the
standard linear model.

D. The probability functions

It remains to calculate the probabilities Pik . They are de-
fined in terms of the local descriptors as follows. First, we
compute the low-dimensional descriptors,

Bi j (R, Z) =
M∑

m=1

W Zi
m jDim(R, Z), 1 � j � J, (36)

where W e
m j, 1 � e � Ne, are the PCA matrices. Next, we cal-

culate the inverse of the square of the distance from the kth
centroid as

Sik (R, Z) = 1∑J
j=1

(
Bi j (R, Z) − CZi

k j

)2 . (37)

Recall that Ce
k j are the centroids obtained from partitioning the

dataset. Finally, the probabilities are calculated as

Pik (R, Z) = Sik (R, Z)∑K
l=1 Sil (R, Z)

, 1 � k � K. (38)

Hence, the probabilities are high when the distances between
the low-dimensional descriptor vector and the centroids are
small. The additional cost of evaluating the probabilities is
only O(JM + JK ) per atom. This cost can be neglected, as

TABLE IV. Number of radial basis functions Nr , number of an-
gular basis functions Ka, and number of descriptors Nd for two-body,
three-body, and four-body POD descriptors.

Ta
two-body three-body four-body

All
Case Nr Nd Nr Ka Nd Nr Ka Nd M

1 4 4 2 2 4 0 0 0 8
2 5 5 3 3 9 0 0 0 14
3 6 6 4 4 16 0 0 0 22
4 7 7 5 5 25 0 0 0 32
5 8 8 6 5 30 3 2 6 44
6 9 9 7 5 35 4 4 16 60
7 10 10 8 6 48 5 4 20 78
8 11 11 9 6 54 5 7 35 100

TABLE V. Training errors in energies and forces for EAML
potentials are listed in Table IV. Units for the MAEs in energies and
forces are meV/atom and meV/Å, respectively.

K = 1 K = 2 K = 3 K = 4

Case εE εF εE εF εE εF εE εF

1 74.6 132.65 35.02 161.45 25.47 178.24 20.01 179.69
2 55.37 237.93 22.98 228.11 14.43 208.26 6.72 130.22
3 37.63 209.94 8.60 128.45 5.98 99.94 4.94 101.05
4 10.47 106.69 4.43 95.77 2.51 70.99 2.00 67.16
5 8.02 96.94 3.14 74.04 1.75 62.49 1.49 59.05
6 4.00 88.38 1.58 62.49 1.19 52.46 1.02 50.82
7 2.37 76.73 1.20 55.82 0.80 49.94 0.60 45.51
8 1.77 64.11 0.83 48.91 0.56 43.10 0.49 39.56

it is considerably less than the cost of computing the local
descriptors.

E. Force calculation

Forces on atoms are calculated by differentiating the PES
in Eq. (33) with respect to atom positions. To this end, we
first compute the partial derivatives of the probabilities with
respect to the local descriptors as

∂Pik

∂Dim
= ∂Pik

∂Sil

∂Sil

∂Bi j

∂Bi j

∂Dim
. (39)

Here the Einstein summation convention is used to indicate
the implicit summation over repeated indices except for the in-
dex i. The cost of evaluating the terms in Eq. (39) is O(K2MJ )
per atom. Next, we note that

∂Pik (R, Z)

∂R
= ∂Pik

∂Dim

∂Dim

∂R
. (40)

Differentiating the PES in Eq. (33) with respect to atom posi-
tions yields

∂ET(R, Z)

∂R
= cnkDin

∂Pik

∂R
+ cmlPil

∂Dim

∂R
. (41)

TABLE VI. Energy and force errors for EAML potentials with
M = 60 for different configuration groups. The units for the MAEs
in energies and forces are meV/atom and meV/Å, respectively.

K = 1 K = 2 K = 3 K = 4

Group εE εF εE εF εE εF εE εF

Disp. A15 1.94 125.28 0.42 80.82 1.66 76.02 1.35 71.27
Disp. BCC 11.71 140.57 5.81 110.24 5.47 92.13 5.13 89.89
Disp. FCC 1.79 106.22 3.36 77.38 2.95 51.53 2.84 51.88
Elas. BCC 0.91 0.04 0.55 0.01 0.38 0.01 0.38 0.00
Elas. FCC 0.72 0.16 0.47 0.13 0.38 0.13 0.34 0.12
GSF 110 3.78 41.35 2.03 15.84 1.53 17.09 1.26 15.8
GSF 112 5.43 59.10 3.27 51.41 2.30 42.01 2.12 41.55
Liquid 11.28 371.38 2.40 262.04 2.12 223.8 2.81 216.9
Surface 13.66 62.00 5.66 40.02 4.67 28.97 3.60 28.06
Bulk A15 4.87 0 2.19 0 1.32 0 1.16 0
Bulk BCC 11.96 0 3.47 0 2.32 0 1.49 0
Bulk FCC 13.59 0 2.74 0 1.69 0 1.31 0
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TABLE VII. Energy errors for the standard linear potentials and
EAML potential with M = 14 when they are trained on different
training groups and validated on Bulk A15 and Bulk FCC groups.
The unit for the MAEs in energies is meV/atom.

Test Groups

Training data Clusters Bulk A15 Bulk FCC

Bulk A15 1 2.54 1070.7
Bulk FCC 1 218.57 11.41
Bulk A15 & Bulk FCC 1 37.63 41.57
Bulk A15 & Bulk FCC 2 2.06 3.88

By inserting Eq. (40) into Eq. (41), we obtain

∂ET(R, Z)

∂R
=

(
cnkDin

∂Pik

∂Dim
+ cmlPil

)
∂Dim

∂R
. (42)

The additional cost of evaluating the terms in the parenthesis
is only O(3MK ) per atom.

In summary, the additional cost of evaluating the forces on
atoms is O(K2MJ ) per atom for any K > 1. Since this cost
is independent of the number of neighbors and linear in the
number of local descriptors, it can be much smaller than the
cost of computing the local descriptors and their derivatives
with respect to atom positions. We can thus expect that the EA
potentials are almost as fast as the standard linear potential.
Therefore, the proposed method enhances the EA potentials
without increasing computational cost.

IV. RESULTS AND DISCUSSIONS

The EA potentials will be demonstrated and compared
with the standard linear potential for Tantalum element and
Indium Phosphide compound. For all potentials, the hyperpa-
rameters are fixed to α = 100, β = 1, γ = 10−12. In order to
assess their performance, all potentials are trained on the same
training datasets and validated on the same test datasets. We
evaluate the potentials using the mean absolute errors (MAEs)

of the predicted energies and forces,

εE = 1

Nconfig

Nconfig∑
n=1

∣∣En − EDFT
n

∣∣

εF = 1

Nforce

Nforce∑
n=1

∣∣Fn − F DFT
n

∣∣, (43)

where Nconfig is the number of configurations in a dataset, and
Nforce is the total number of force components for all the con-
figurations in the same dataset. Both the source code and the
data are available upon request to facilitate the reproduction
of our work.

A. Results for Tantalum

The Ta dataset contains a wide range of configurations
to adequately sample the important regions of the potential
energy surface [21]. The dataset includes 12 different groups
such as surfaces, bulk structures, defects, elastics for BCC,
FCC, and A15 crystal structures, and high temperature liquid.
The database was used to create a SNAP potential [21] which
successfully describes a wide range of properties such as en-
ergetic properties of solid tantalum phases, the size and shape
of the Peierls barrier for screw dislocation motion in BCC
tantalum, as well as both the structure of molten tantalum
and its melting point. We train eight EAML models on the Ta
data set for different values of M and K . Table IV shows the
number of descriptors for the eight EAML potentials. Note
that all potentials have a one-body descriptor to account for
isolated energies. The inner and outer cut-off distances are set
to rin = 1.0 Å and rcut = 5.0 Å, respectively. Furthermore, we
use J = 2 in all cases.

Table V displays training errors in energies and forces pre-
dicted by EAML potentials for different values of the number
of the descriptors listed in Table IV and for K = 1, 2, 3, 4. We
see that both the energy and force errors decrease as the num-
ber of descriptors increases. As M increases from 8 to 100,
the energy errors drop by a factor of 20, while the force errors

FIG. 3. Energy parity (left) and atomic force parity (right) plots for Ta for Case 5 with K = 4. For force parity, atoms that do not belong to
one specific environment with max

k
Pk < 0.7 (red dots) have similar errors as atoms that belong to one specific environment with max

k
Pk � 0.7

(blue dots).
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FIG. 4. Energy per atom versus volume per atom for A15, BCC, and FCC crystal structures for EAML potentials using M = 14 descriptors
in comparison with DFT data.

drop by a factor of 4. As K increases from 1 to 4, the energy
errors decrease by a factor of 4, while the force errors decrease
by a factor of 1.5. The energy errors reach 1.77 meV/atom,
0.83 meV/atom, 0.56 meV/atom, and 0.48 meV/atom for
K = 1, 2, 3, and 4, respectively. These energy errors are below
the typical numerical errors of DFT calculations. The force
errors reach 64.11 meV/Å, 48.91 meV/Å, 43.10 meV/Å,
and 39.56 meV/Å. These force errors are acceptable for most
applications. The errors decrease quite rapidly as K increases
from 1 to 2. However, as K increases from 2 to 4, the rate of
error decrease slows down considerably for this dataset and
we observe a smaller improvement. Hence, we may only gain
marginal improvements by increasing K beyond 4.

Table VI provides the training errors in energy and forces
for each of the 12 groups for M = 60. The force errors for
Bulk A15, Bulk BCC, and Bulk FCC are zero, because their
structures are at equilibrium states and thus have zero atomic
forces. The Surface group tends to have higher energy errors
than other groups, while the Liquid group has the highest force
errors. The liquid structures depend strongly on the repulsive
interactions that occur when two atoms approach each other.
Consequently, it is more difficult to predict atomic forces
of the liquid phase since the liquid configurations are very
different from those of the equilibrium solid crystals. It is
also more difficult to predict energies of surface configura-
tions because the surfaces of BBC crystals tend to be rather
open with surface atoms exhibiting rather low coordination
numbers.

Next, we investigate the influence of training datasets on
model performance. To this end, we train four potentials on
different training datasets with M = 14. The first three poten-
tials are standard linear models, while the fourth potential is
an EAML potential with K = 2 clusters. Table VII displays
the MAEs in energies for the four potentials. The first poten-
tial, trained exclusively on the Bulk A15 group, demonstrates
a small error of 2.54 meV/atom for this group but a very
large error of 1070.7 meV/atom for the Bulk FCC group.
Conversely, the second potential, trained on the Bulk FCC
group, shows a small error of 11.41 meV/atom for its training
group and a significant error of 218.57 meV/atom for the
Bulk A15 group. While each potential performs well on the
dataset it was trained on, its predictions for the other group
are highly inaccurate. The third potential, trained on both
the Bulk A15 and Bulk FCC groups, exhibits more balanced
errors of 37.63 meV/atom and 41.57 meV/atom for the Bulk
A15 and Bulk FCC groups, respectively. The fourth potential,
trained on both groups with K = 2 clusters, achieves superior
accuracy with errors of 2.06 meV/atom and 3.88 meV/atom
for the Bulk A15 and Bulk FCC groups, respectively. These
results underscore the importance of diverse training datasets
and demonstrate the substantial improvement of the EAML
model over the standard linear model.

Figure 3 shows the energy and atomic force parity plots
for Ta for M = 44 with K = 4 environments from Table IV.
We note that atoms with maxk Pk < 0.7 that do not belong
exclusively to one environment have similar force errors as

FIG. 5. Close-up view near the minimum energy for the energy per atom versus volume per atom curves.
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FIG. 6. Training errors versus the computational cost of MD simulations for the Ta system of 16000 atoms. MD simulations are performed
using LAMMPS [29] on a CPU core of Intel i7-1068NG7 2.3 GHz for EAML potentials with different numbers of descriptors and numbers of
clusters.

the other atoms. This shows the ability of the EAML model
to capture atomic environments that are a mixture of several
distinct environments, thereby making itself more transfer-
able than the standard linear model. The transferability of
the EAML model can be attributed to several factors. First,
the EAML model has more capacity than the standard linear
potential because it has K times more trainable coefficients.
Second, owing to the probability functions that vary with the
neighborhood of the central atom, the EAML model adapts
itself according to the local atomic environments to capture
atomic interactions more accurately than the linear model.
Third, the products of the probability functions and the de-
scriptors contain higher body interactions than the descriptors
themselves, rendering the EAML model higher body order
than the linear model.

Figure 4 plots the energy per atom as a function of volume
per atom for A15, BCC, and FCC crystal structures. The FCC
phase has a minimum energy about 0.2eV/atom above the
BCC and A15 phases. We see that the energies are predicted
accurately for the whole volume range with using only M =
14 descriptors. Figure 5 plots the close-up view of the energy

TABLE VIII. Number of radial basis functions Nr , number of
angular basis functions Ka, and number of descriptors Nd for two-
body, three-body, and four-body POD descriptors. Note that Nd =
NrN2

e for two-body PODs, Nd = NrKaN2
e (Ne + 1)/2 for three-body

PODs, and Nd = NrKaN2
e (Ne + 1)(Ne + 2)/6 for four-body PODs.

InP two-body three-body four-body All

Case Nr Nd Nr Ka Nd Nr Ka Nd M

1 4 16 2 2 24 0 0 0 40
2 5 20 3 3 54 0 0 0 74
3 6 24 4 4 96 0 0 0 120
4 7 28 5 5 150 0 0 0 178
5 8 32 6 5 180 3 2 48 260
6 9 36 7 5 210 4 4 128 374

curve near the minimum energy. The predicted energy curves
for K = 4 are almost indistinguishable from the DFT energy
curves for BCC, FCC, and A15 phases.

Figure 6 illustrates the trade-off between computational
cost and training error for K = 1, 2, 3, 4. The computational
cost is measured in terms of millisecond per time step
per atom for MD simulations. These MD simulations are
performed using LAMMPS [29] on a CPU core of Intel
i7-1068NG7 2.3 GHz with 20 × 20 × 20 bulk supercell con-
taining 16000 Tantalum atoms. The EAML potentials with
K > 1 are almost as fast as the standard linear potential for
the same number of descriptors, having the computational
cost almost independent of K . This is consistent with the
computational complexity analysis discussed in Subsection
III E. Furthermore, the EAML potential with M = 32, K = 4
is more accurate and 3 times faster than the standard linear
potential with M = 100. The results show the superior perfor-
mance of the EAML potentials.

B. Results for Indium Phosphide

The InP dataset contains a wide range of configurations
to adequately sample the important regions of the potential

TABLE IX. Test errors in energies and forces for EAML poten-
tials listed in Table VIII. The units for the MAEs in energies and
forces are meV/atom and meV/Å, respectively.

K = 1 K = 2 K = 3 K = 4

Case εE εF εE εF εE εF εE εF

1 11.63 61.00 6.44 48.13 4.67 36.76 4.11 33.30
2 4.97 38.71 3.49 30.27 2.52 24.00 2.01 22.05
3 3.30 33.80 1.55 21.28 1.11 17.30 0.91 15.34
4 2.67 27.26 1.20 17.81 0.68 14.56 0.46 12.74
5 1.71 20.91 0.70 14.28 0.52 12.03 0.38 10.98
6 0.97 16.70 0.43 11.10 0.28 8.91 0.20 7.79
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TABLE X. Energy and force errors for EAML potentials with
M = 178 for different configuration groups. The units for the MAEs
in energies and forces are meV/atom and meV/Å, respectively.
Point defects are created from an equilibrium configuration by in-
serting atoms (interstitial), removing atoms (vacancy), or exchanging
atoms of different types (antisite). Subscripts correspond to va-
cancy (v), interstitial (i), and antisite (a). Superscripts correspond to
large configurations of 216 atoms (L) and small configurations of
64 atoms (S).

K = 1 K = 2 K = 3 K = 4

Group εE εF εE εF εE εF εE εF

Bulk 5.79 0.00 2.26 0.00 1.50 0.00 0.91 0.00
EOS 2.60 0.70 0.96 0.83 0.80 0.89 0.49 0.42
Shear 0.26 25.56 0.50 8.45 0.17 5.23 0.11 3.64
Strain 2.53 0.02 1.24 0.02 0.90 0.03 0.91 0.05
InL

a 3.05 10.77 1.05 7.49 0.55 6.30 0.23 6.48
PL

a 4.09 29.6 1.30 18.22 1.03 14.32 0.72 12.10
InL

a PL
a 6.68 23.23 3.00 16.83 1.71 13.96 1.14 13.52

InL
i 4.68 19.82 1.82 13.80 1.13 11.36 0.73 10.35

PL
i 3.34 15.68 1.28 9.96 0.87 8.55 0.61 7.69

PL
v 3.65 7.95 0.73 5.17 0.22 5.62 0.09 5.09

InL
v PL

v 4.20 27.21 1.85 21.76 1.18 18.91 0.69 17.38
InS

a 3.66 15.54 0.67 10.29 0.36 7.82 0.22 7.31
PS

a 4.16 42.85 1.77 33.30 0.70 26.03 0.41 23.33
InS

a PS
a 6.46 58.35 3.76 35.68 1.36 25.29 0.82 24.00

InS
i 3.05 51.51 1.18 33.05 0.65 25.96 0.39 21.89

PS
i 2.95 40.13 1.39 24.51 0.69 20.46 0.45 16.90

InS
v 11.23 40.15 6.92 27.99 4.54 20.10 2.90 14.65

PS
v 0.92 26.00 0.49 18.94 0.36 16.15 0.24 14.88

InS
vPS

v 4.33 57.06 2.69 38.85 1.16 32.05 0.74 27.61

energy surface. It was generated by Cusentino et al. [30] using
the Vienna Ab Initio Simulation Package to demonstrate the
explicit multi-element SNAP potential. The InP dataset also

contains high-energy defects which are intended to study ra-
diation damage effects where collision cascades of sufficiently
high energy leave behind high formation energy point defects.
Furthermore, the dataset includes configurations for uniform
expansion and compression (Equation of State), random cell
shape modifications (Shear group), and uniaxially strained
(Strain group) unit cells for zincblende crystal structure. In
total, the dataset has 1894 configurations with atom counts
per configuration ranging from 8 to 216. The training set is
80% of the InP dataset, while the entire InP dataset is used
as the test set. The inner and outer cut-off distances are set to
rin = 0.8 Å and rcut = 5 Å, respectively.

Table VIII displays the number of descriptors for six differ-
ent cases. Table IX provides test errors in energies and forces
for cases listed in Table VIII and for K = 1, 2, 3, 4. Both the
energy and force errors decrease as M and K increases. As
M increases from 40 to 370, the energy errors drop more
than a factor 10, while the force errors drop by a factor of
4. As K increases from 1 to 4, the energy errors decrease
by a factor of 4 and the force errors decrease by a factor of
2. The MAEs in energies reach 0.97 meV/atom for K = 1,
0.42 meV/atom for K = 2, 0.31 meV/atom for K = 3, and
0.23 meV/atom for K = 4. These energy errors are gener-
ally below the limits of DFT errors. The MAEs in forces
reach 16.70, 11.16, 9.05, 7.79 meV/Å for K = 1, 2, 3, 4,
respectively. These force errors are acceptable for most
applications.

Table X provides the test errors in energy and forces for
each of the 19 groups in the dataset for M = 178. Point defects
are created when atoms become vacant at lattice sites (vacancy
defect), occupy locations in the crystal structure at which there
is usually no atom (interstitial defect), or exchange positions
with other atoms of different types (antisite defect). The defect
groups have higher errors than the other groups. The InS

v group
has the highest mean absolute error in energies, while the
InS

vPS
v group has the highest mean absolute error in forces.

We see that increasing K reduces the energy and force errors
across all groups.

FIG. 7. Energy per atom versus volume per atom for RS and ZB crystal structures for EAML potentials using M = 40 descriptors in
comparison with DFT data.
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FIG. 8. Test errors versus the computational cost of MD simulations for the InP system of 8000 atoms. MD simulations are performed
using LAMMPS [29] on a CPU core of Intel i7-1068NG7 2.3 GHz for EAML potentials with different numbers of descriptors and numbers of
clusters.

One of the crucial requirements for interatomic potentials
is that they predict the formation and cohesive energies accu-
rately. In addition to defect formation energies, we also study
cohesive energies for different low-energy crystal structures.
Figure 7 plots the energy per atom as a function of volume
per atom for the rocksalt (RS) and zincblende (ZB) crystal
structures. We see that the predicted cohesive energies are
very close to the DFT cohesive energies for both the rocksalt
(RS) and zincblende (ZB) crystal structures. Furthermore,
the EAML potentials correctly predict ZB as the most stable
structure and reproduce the experimental cohesive energy of
-3.48 eV/atom at a volume of 24.4 Å3/atom [31]. The pre-
dicted cohesive energies for the RS structure match exactly
the DFT value of -3.30eV/atom at a volume of 19.7 Å3/atom.
While not plotted in Fig. 7, the predicted cohesive energies for
the wurtzite ground state structure agree well with the DFT
value of -3.45eV/atom at a volume of 25.1 Å3/atom.

Figure 8 illustrates the trade-off between computational
cost and accuracy for MD simulations of 8000 InP atoms per-
formed on a single CPU core of Intel i7-1068NG7 2.3 GHz.
The computational cost is measured in terms of second per
time step per atom. We clearly see that the potentials for
K > 1 are almost as fast as the potential for K = 1 for the
same number of descriptors. We also see that increasing K
reduces the test errors. The energy errors for K = 4 are about
4 times smaller than those for K = 1, while the force errors
for K = 4 are about 2 times smaller than those for K = 1. As
a result, the EAML potential with M = 120, K = 4 is more
accurate and 3 times faster than the standard linear potential
with M = 374.

V. CONCLUSIONS

We have introduced multi-element Proper Orthogonal
Descriptors (PODs) for constructing machine-learned inter-
atomic potentials. The POD descriptors incorporate elements
of both internal coordinate descriptors and atom density

descriptors. Our approach can be extended to arbitrary body
orders and can be used to compute atom-centered symme-
try functions and empirical potentials with a cost that scales
only linearly with the number of neighbors. The method
brings about the possibility of constructing many-body em-
pirical potentials, while maintaining the computational cost
that scales linearly with the number of neighbors. For in-
stance, the SW and EAM potentials can be extended to include
four-body terms, while atom-centered symmetry functions
can be formed from the four-body POD descriptors. We have
presented an environment-decomposition method to construct
accurate and transferable interatomic potentials by adapting
to the local atomic environment of each atom within a sys-
tem. For a dataset of N atoms, atom positions and chemical
species are mapped to a descriptor matrix by using the POD
method. Principal component analysis (PCA) is used to re-
duce the dimension of the descriptor space. The k − means
clustering scheme is applied to the reduced matrix to partition
the dataset into subsets of similar environments. Each cluster
represents a distinctive local environment and is used to define
a corresponding local potential. We introduce a many-body
many-potential expansion to smoothly blend these local po-
tentials to ensure global continuity of the potential energy
surface. This continuity is achieved by calculating probability
functions that assess the likelihood of an atom belonging to
specific clusters identified within the dataset. We have applied
the EAML potentials to Ta and InP datasets. The results
show that EAML models provide significantly more accurate
predictions than the standard linear model for the same num-
ber of descriptors M. There are several reasons behind the
better accuracy of EAML potentials. First, EAML potentials
have more capacity than the standard linear potential because
they have a larger number of fitting coefficients (i.e., KM
versus M). Second, owing to the probability functions that
vary with the neighborhood of the central atom, EAML po-
tentials adapt their descriptors according to the local atomic
environments to capture atomic interactions more accurately
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than the linear potential. Third, the products of the probability
functions and the descriptors contain higher body interactions
than the descriptors themselves. As a result, EAML potentials
can capture higher-order interactions than the linear poten-
tial. Since EAML potentials have computational complexity
similar to that of the linear potential, they are more accu-
rate and efficient. While PCA is used for its simplicity and
straightforward implementation, nonlinear dimensionality re-
duction techniques may offer some advantage. Autoencoders,
Variational Autoencoders, t-Distributed Stochastic Neighbor
Embedding (t-SNE), and Isomap offer the ability to uncover
and preserve intricate structures in high-dimensional data that
PCA might overlook. These methods are particularly useful
in scenarios where the relationships among data points in-
volve complex patterns. While k − means clustering is used
for its simplicity and straightforward implementation, there
are several other clustering techniques that can be used to
deal with very large and diverse datasets. Techniques such
as hierarchical clustering, Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), and Gaussian Mix-
ture Models (GMMs) offer alternative methods that can yield
better clusters than k − means clustering. In this paper, we
consider linear regression to construct EAML models. Lin-
ear models are easy to understand and interpret because the
relationship between the output and trainable parameters is

linear. They are computationally inexpensive to train and re-
quire relatively low computational resources. Indeed, it takes
only a few seconds to a few minutes to train EAML poten-
tials on a personal computer. However, linear regression may
be insufficient to capture complex atomic interactions with-
out transformation of input features. Significant performance
improvement can be achieved by using more sophisticated
regression methods such as nonlinear regression, kernel re-
gression, and neural networks. While these nonlinear models
require much longer training times than linear models, they
often yield more accurate predictions for the same computa-
tional cost [18].
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