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Broken time reversal symmetry vestigial state for a two-component superconductor
in two spatial dimensions
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We consider the vestigial phase with broken time reversal symmetry above the superconducting transition
temperature of a two-component superconductor in two spatial dimensions. We show that, in contrast to three
dimensions, a vestigial phase is in general allowed within Ginzburg-Landau theory. The vestigial phase occupies
an increasing temperature region if the parameters in the Ginzburg-Landau theory give a larger energy difference
between the broken time reversal symmetry phase and the other ordered phase.
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I. INTRODUCTION

Consider a superconductor with the order parameter
(�1,�2) belonging to a two-dimensional (2D) representa-
tion (see, e.g., Ref. [1]). Here, �1,2 are complex fields.
Under gauge transformation by χ , the order parameter
transforms as (�′

1,�
′
2) = eiχ (�1,�2), while spatial sym-

metry operations result in a transformation of (�1,�2)
among themselves. For example, (�′

1,�
′
2) = [�1 cos(φ) +

�2 sin(φ),�2 cos(φ) − �1 sin(φ)] under rotations by φ, with
φ = 2π

n where n is an integer. We shall be mainly inter-
ested in n = 3 and n = 6 for trigonal and hexagonal systems,
respectively. Such multidimensional order parameters have
been considered extensively since superfluid 3He [2], heavy
fermion superconductors [3,4], and also more recently in
many other superconducting systems [5,6], as well as Bose-
Einstein condensates with internal degrees of freedom [7].

When the order parameter acquires a nonzero expecta-
tion value, the system is in the superconducting phase and
spontaneously breaks the U(1) gauge symmetry. If the order
parameter belongs to a multidimensional representation, addi-
tional symmetry must also be broken. In the above-mentioned
two-dimensional representation example, depending on the
microscopic details, the energy minimum can be achieved
by having (�1,�2) ∝ (1, 0), (0, 1) (or their rotated counter-
parts), or (�1,�2) ∝ (1,±i). In the former case, the order
parameter breaks gauge invariance and rotational invariance,
whereas in the latter, it breaks gauge invariance as well as time
reversal invariance [under which �1,2 → �∗

1,2, so (1, i) →
(1,−i)]. In each case, as opposed to the case of an order
parameter � belonging to a one-dimensional representation,
there is additional symmetry breaking other than the gauge
symmetry.

*Contact author: pthow@outlook.com
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The high-temperature phase of the system has all symme-
tries intact, and will be called the symmetric phase. Within
mean-field theory, a single-phase transition (usually second
order) at the superconducting transition temperature separates
the symmetric and superconducting phases: Both the gauge
and rotational (or time reversal) symmetries are broken at
this phase transition. In principle at least, in a more complex
scenario such as when fluctuations are included, these broken
symmetries do not have to occur at the same time. In partic-
ular, one can have a phase where, say, the rotational (or time
reversal) symmetry is broken, whereas the gauge symmetry is
still intact.

This intermediate state is characterized by the vanishing of
the expectation values 〈�1,2〉 = 0, whereas some higher-order
combinations of �1,2 acquire finite expectation values. For
instance, 〈�∗

1�1 − �∗
2�2〉 �= 0, which breaks rotational sym-

metry, or i〈(�∗
1�2 − �∗

2�1)〉 �= 0, which breaks time reversal.
In additional to the above scenarios, one can have the pos-
sibilities that some other symmetry-violating combinations
of �1,2 acquiring nonzero expectation values. For example,
we can have 〈�2

1 + �2
2〉 �= 0 even though 〈�1,2〉 = 0. In this

latter case, while the order parameter is not preserved under
general gauge transformations, it is preserved under a special
transformation χ → χ + π , and thus describes 4e pairing
[8]. Such phases, often called “vestigial” phases or a phase
with “composite” or “higher-order” parameters, are gaining
attention in the recent literature [9–16], though they have
been investigated already in the past in similar [17–20] and
related (e.g., Refs. [21–25]) contexts. Besides superconduc-
tivity, these exotic phases are also relevant to other, e.g.,
magnetic, systems [26–28].

In a previous paper [29], considering three spatial dimen-
sions, we show that, within a Ginzburg-Landau theory with
thermal fluctuations, such a vestigial phase is in general not
stable, except for the case of extreme gradient energy terms
in the free energy. This is because, when the temperature is
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lowered so that the completely symmetric phase is no longer
the free-energy stable minimum, either (i) no saddle point
corresponding to the vestigial phase exists, so that one has
a direct second-order phase transition to the superfluid phase
with broken rotational (time reversal) symmetry as well as
gauge symmetry, or (ii) the vestigial phase with a composite
order parameter is only a saddle point but fails to be a free-
energy minimum. Instead, the free-energy minimum occurs
in the region where the expectation value of �1,2 is/are finite.
The system thus makes a joint first-order phase transition into
the superconducting case. A similar situation can be shown to
occur for a multicomponent Bose gas [30,31].

In this paper, we consider instead two spatial dimensions.
We show that the situation becomes quite different. Case (i)
above remains a possibility, but for case (ii), the saddle point
does become stable in general for a finite range in temperature,
due to a very different free-energy landscape. A similar strong
dependence of the stability of vestigial phases on the spatial
dimensionality has also been found in, e.g., Refs. [24,25].

We shall mainly be studying the broken time reversal
symmetry state. Our approach, based on Ginzburg-Landau
analysis, differs significant from the existing treatments of
the vestigial problem in 2D. References [14,24,32–34] gen-
erally focus on topological excitations, and no amplitude
fluctuations were included. References [14,32,33] depict all
transitions (superfluid and vestigial) as Berezinskii-Kosterlitz-
Thouless (BKT) type. Reference [35] does consider amplitude
fluctuations of the order parameter, but still with the sum of
the amplitudes (corresponding to our |�↑|2 + |�↓|2) fixed to
a constant. These works are mostly numerical. In contrast, we
obtain an effective φ4 theory analytically for this Ising transi-
tion in terms of the parameters entering the Ginzburg-Landau
theory.

Our calculations will be presented in Sec. II. In Sec. III, we
shall include also a short discussion on the nematic case and
the 4e state as well as conclusions.

II. THEORY FOR VESTIGIAL ORDER

For the reminder of this paper, it would be conve-
nient to employ the “spin- 1

2 ” notation �↑,↓ = 1√
2
[�1 ±

i�2]. Under 2π
n rotation, they transform as (�↑,�↓) →

(e− 2π i
n �↑, e

2π i
n �↓). Specializing to trigonal and hexagonal

systems, we write down an effective Hamiltonian density H
that is consistent with rotational, gauge, and time reversal
symmetries,

H = HK + Hint, (1)

with the “kinetic” part

HK =
∑

s=↑,↓

[
α�∗

s �s + K

(
∂�∗

s

∂xi

∂�s

∂xi

)]
(2)

and the interacting part

Hint = g1

2
(|�↑|4 + |�↓|4) + g2(|�↑|2|�↓|2). (3)

Here, xi, with i = 1, 2, are the spatial coordinates. The interac-
tion term in Eq. (3) is the most general quartic term allowed by
symmetry. Note however that the “kinetic part” adopted in (2)

is fully isotropic (invariant under separate rotations of space
xi and order parameter �s). In general, more complicated
gradient terms are allowed (see, e.g., Ref. [1]), which we opt
to ignore. We remind the readers that Ref. [29] established
the absence of the vestigial phase in three spatial dimensions
when the gradient energy is of this form. Here, α = α(T ) is
positive (negative) above (below) a mean-field transition tem-
perature which we shall label as T0, thus α(T ) ≈ α′(T − T0)
with α′ > 0.

So far we choose to view this model as representing a
two-component order parameter. One may switch back to the
�1,2 basis and see that the quartic term now contains a con-
tribution �∗2

1 �2
2 + �∗1

2 �2
1 [29]. With HK fully isotropic, the

model can thus alternatively be viewed as a special case of two
superconductors �1,2 coupled together via a “four-electron”
(two Cooper pairs) tunneling term �∗2

1 �2
2 + �∗1

2 �2
1 [32,33]

(among others).
Mean-field theory amounts to simply assuming uniform �s

and minimizing H. The system is in the completely symmetric
(normal) phase with �↑,↓ = 0 if α > 0. For α < 0, we have
the one of the following: (i) �↑ �= 0, |�↑|2 = |α|

g1
(or ↑↔↓),

with free-energy density − α2

2g1
, with time reversal symme-

try broken, or (ii) |�↑| = |�↓| = |α|
2(g1+g2 ) , with free energy

− α2

2(g1+g2 ) , with rotational symmetry broken (nematic). The

stability of these mean-field states requires g1 > 0, g2 > −g1.
The broken time reversal symmetry state has lower energy
when g2 > g1 > 0. We shall focus on this region unless oth-
erwise stated.

At finite temperatures, we need to consider the partition
function [36,37] Z ≡ ∫

�s
e− ∫

d2xH/T , where
∫
�s

means sum
over all configurations of �s(�r). We employ the Hartree-Fock
(HF) approximation. The effective Hamiltonian density be-
comes

Heff = HK − h↑�∗
↑�↑ − h↓�∗

↓�↓, (4)

where h↑,↓ are the self-energies (not to be confused with
external magnetic fields), which are to be obtained self-
consistently. In the calculations below, we take the equivalent
procedure regarding h↑,↓ as variational parameters, treat the
free energy as a functional of these parameters, and minimize.
h↑ �= h↓ signals that 〈�∗

↑�↑〉 �= 〈�∗
↓�↓〉 [hence i〈(�∗

1�2 −
�∗

2�1)〉 �= 0]. h↑ − h↓ thus serves as an order parameter for
the broken Z2 symmetry.

After Fourier transform,

Heff =
∑
s,�k

�∗
�k,s

(α + Kk2 − hs)��k,s, (5)

where �k represents the wave vector. We thus have the expec-
tation values

〈��k,s�
∗
�k,s′ 〉 = T Gs(�k)δs,s′ , (6)

with the “Green’s function”

Gs(�k) = 1

α + Kk2 − hs
. (7)

For the vestigial phase, we must have α − hs > 0.
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The free-energy density is, within the HF approximation,

F = T

L2

∑
�k,s

[ln(α + Kk2 − hs) + hsGs(�k)]

+ g1

⎡
⎢⎣

⎛
⎝ T

L2

∑
�k

G↑(�k)

⎞
⎠

2

+
⎛
⎝ T

L2

∑
�k

G↓(�k)

⎞
⎠

2
⎤
⎥⎦ + g2

⎡
⎣

⎛
⎝ T

L2

∑
�k

G↑(�k)

⎞
⎠ ×

⎛
⎝ T

L2

∑
�k

G↓(�k)

⎞
⎠

⎤
⎦. (8)

This expression is ultraviolet divergent, both because of the ln(α + Kk2 − hs) and interaction terms. These divergences are
also present even for F ≡ F0 where we set hs to be zero [and thus replace Gs(�k) by G0(�k) ≡ 1

α+Kk2 ]. However, we note that

insertion of the Hartree-Fock self-energies (2g1 + g2) T
L2

∑
�k G0(�k) to the propagators Gs or G0 would amount to replacing α by

α + (2g1 + g2) T
L2

∑
�k G0(�k), which can be regarded as a redefinition of α. Using this renormalized α(T ), the difference of the

free-energy density between the phase under consideration and F0 can then be written as [29]

	F = T

L2

∑
�k,s

[ln(α + Kk2 − hs) − ln(α + Kk2) + hsGs(�k)]

+ g1

⎡
⎢⎣

⎛
⎝ T

L2

∑
�k

[G↑(�k) − G0(�k)]

⎞
⎠

2

+
⎛
⎝ T

L2

∑
�k

[G↓(�k) − G0(�k)]

⎞
⎠

2
⎤
⎥⎦

+ g2

⎡
⎣

⎛
⎝ T

L2

∑
�k

[G↑(�k) − G0(�k)]

⎞
⎠ ×

⎛
⎝ T

L2

∑
�k

[G↓(�k) − G0(�k)]

⎞
⎠

⎤
⎦. (9)

This expression is ultraviolet convergent, and the contributions giving rise to finite 	F arise only for small wave vectors
when α and hs are small, as it should be.

The momentum sums can be easily evaluated. For 3D, we reproduce the result in Ref. [29]. In the present case, we get

	F = − T

4πK

{[
α ln

(
1 − h↑

α

)
+ h↑

]
+

[
α ln

(
1 − h↓

α

)
+ h↓

]}
+ T 2g1

(4πK )2

{[
ln

(
1 − h↑

α

)]2

+
[

ln

(
1 − h↓

α

)]2
}

+ T 2g2

(4πK )2

[
ln

(
1 − h↑

α

)
ln

(
1 − h↓

α

)]
. (10)

An important point to note is that, in contrast to the three-
dimensional case [29], this free energy diverges to +∞ due to
the g1 term (since g1 > 0) when hs → α−. Hence there is no
“falling off” to the unphysical (α − hs < 0) region, in contrast
to Ref. [29], and stable nontrivial minima can exist within the
physical hs < α region. See Fig. 1.

Expansion of the free energy in terms of hz ≡ (h↑ − h↓)/2
and h0 ≡ (h↑ + h↓)/2 gives

	F = ah2
z + bh4

z + γ h0h2
z + ch2

0, (11)

where

a = T I2[1 + T (2g1 − g2)I2], (12)

b = 3
2 T I4 + 2T 2g1

(
I2
3 + 2I2I4

) + T 2g2
(
I2
3 − 2I2I4

)
, (13)

γ = 4T I3 + 2T 2(6g1 − g2)I2I3, (14)

c = T I2[1 + T (2g1 + g2)I2]. (15)

Here, I2 = 1
4πKα

and generally In = 1
(n−1)4πKαn−1 for n � 2.

The coefficient a changes sign at T at T2 where

0 = 1 + (2g1 − g2)
T2

4πKα(T2)
, (16)

signaling a phase transition (at T2 if second order). This
transition thus exists only when g2 − 2g1 > 0. Equation (11)
implies h0 = − γ

2c h2
z . Eliminating h0, the effective coefficient

for h4
z becomes b − γ 2

4c . The value of this coefficient at T2

is given by beff = T2
4πKα3(T2 )

6g1−g2

24g2
hence positive only when

g2 < 6g1. Hence the transition is second order only when
g2 < 6g1 [38]. See the Appendix for further analysis on this
point. Below we shall confine ourselves only to this parameter
regime. Since α is rapidly varying with temperature near T0,
Eq. (16) implies

T2 ≈ T0

[
1 + (g2 − 2g1)

4πKα′

]
, (17)

hence a transition temperature increasing from T0 linearly
with g2 − 2g1 when the latter is positive. Below T2, h2

z ≈
− a′

2beff
(T − T2), with a′ = − T2

4πKα3(T2 )α
′.

The above has assumed that the transition is to a state with
uniform h0,z. One can also consider the free energy F for the
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FIG. 1. Example contour plots of the free energy in Eq. (10).
Abscissa: [ln(1 − h↑

α
) + ln(1 − h↓

α
)]/2 ≡ x; ordinate: [ln(1 − h↑

α
) −

ln(1 − h↓
α

)]/2 ≡ y. Upper diagram: Symmetric phase, with free-
energy minimum located at h↑ = h↓, hence y = 0. Lower diagram:
Broken symmetry phase, with two degenerate minima, at h↑ �= h↓,
y �= 0.

case where the self-energies hs vary with position. If these
fields have wave vector �Q, then the free energy has the form

	F = a(Q)hz( �Q)hz(− �Q) + · · · , (18)

with

a(Q) = T I2(Q)[1 + T (2g1 − g2)I2(Q)], (19)

where

I2(Q) ≡ 1

L2

∑
�k

1

(α + Kk2+)(α + Kk2−)
, (20)

with �k± = �k ± �Q
2 . I2(Q) = I2 if Q = 0, decreases with in-

creasing Q or α, and is positive definite if α > 0. Hence if
2g1 − g2 > 0, a(Q) is positive for any Q and positive α. If
2g1 − g2 < 0, a(Q) > 0 for all Q’s at high temperatures, and
at T2, a(Q) changes sign at Q = 0 with a(Q) > 0 at Q �= 0,
verifying that the transition is to the uniform state.

The above considerations show that, for long-wavelength
fluctuations of hz, the free-energy density has the form

	F = ah2
z + K̃ ( �∇hz )2 + beffh

4
z . (21)

The coefficient K̃ can be obtained from an expansion of a(Q)
at small Q. Using I2(Q) = I2 − α KQ2

2 I4(0), we obtain thus

K̃ = −αK

2
I4[1 + 2T (2g1 − g2)I2]. (22)

Near a = 0 [T2 given in Eq. (16)], K̃ ≈ T
12πα

> 0 [39].
Equation (21) represents an effective Hamiltonian for a
second-order Ising transition, with K̃ > 0 and beff > 0 (the
latter holds if g2 < 6g1, as already mentioned).

The above considerations find the minimum of the free
energy in hz. More precisely, hz is itself a fluctuating quantity
and the free-energy density in Eq. (21) should be regarded as
the effective Hamiltonian density for hz(�r). We thus obtained
an effective φ4 theory for the Ising transition where hz plays
the role of the order parameter for the Z2 transition. The
considerations so far thus give, upon lowering of tempera-
ture, an Ising transition from a completely symmetric phase
to a Z2 broken symmetry phase (hz �= 0 yet with 〈�s〉 = 0)
at T2 > T0 (thus α > 0) given by Eq. (17) if g2 > 2g1. This
is our vestigial phase. In this region, h↑ �= h↓, but both �↑
and �↓ have vanishing expectation values. Correlations be-
tween �s at different positions decay exponentially in space:

〈�∗
s (�r)�s(�r′)〉 ∝ e− |�r−�r′ |

λs . Moreover, due to the finite hz, λ↑ �=
λ↓. Upon lowering of the temperature, hz,0 both grows in
magnitude, whereas α decreases. Within the above consid-
erations, at temperature where α = h↑, the system makes a
transition to the state with 〈�↑〉 �= 0 but 〈�↓〉 = 0 or vice
versa, a state just as T = 0. At this temperature, α − h↓ > 0
so that 〈�∗

↓(�r)�↓(�r′)〉 still decays exponentially. Furthermore,
for g2 < 2g1, hs vanishes, the system goes from the symmetric
phase to the state 〈�↑〉 �= 0 but 〈�↓〉 = 0 or vice versa at T0,
where α vanishes [40].

At finite T , the phase with long-range order just described
is due to the artifact that phase fluctuation of �s was not
considered. Mermin-Wagner theorem states that this long-
range order is destroyed in 2D. However, quasi-long-range
order [43] is allowed. For the phase diagram, the simplest
possibility is that the above-mentioned phase with long-range
order is instead characterized by power-law correlations, thus
instead of finite expectation value for �↑, we have simply
〈�∗

↑(�r)�↑(�r′)〉 ∝ 1
|�r−�r′ |η . The resulting phase diagram is as

given in Fig. 2(a).
Another possibility is that, due to thermal fluctuations

of the phase, there is always a vestigial Z2 broken symme-
try phase that lies between the completely symmetric phase
and the quasi-long-range order phase, even for the region
g2 < 2g1. This possibility has been raised in a few theoretical
calculations based on models which are related to though
not the same as the one we have in this paper [24,32,33,35]
(though there are also related studies where such a phase
is absent [34]). The resulting vestigial phase again only has
short-range order, but since Z2 is broken, the decaying lengths
λ↑,↓ are thus unequal. This phase is indistinguishable from
our vestigial phase described by hz �= 0, though the physical
picture giving rise to this broken Z2 symmetry seems quite
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FIG. 2. Possible phase diagrams. Region A is the symmetric
phase. Region B is the vestigial phase with broken Z2 symmetry, but
with only short-range order for both �↑ and �↓. 〈�∗

s (�r)�s(�r′)〉 ∝
e− |�r−�r′ |

λs , but λ↑ �= λ↓. In region C, one of the �s has quasi-long-range
order while the other has only a short-range correlation. Solid lines:
Ising transitions; dashed or dotted-dashed lines: BKT transitions.

different. The resulting phase diagram is sketched qualita-
tively in Fig. 2(b). [44] For both Figs. 2(a) and 2(b), the phase
transition temperatures all vanish at g2 = g1. At this point
there the symmetry is enhanced to SO(3), which forbids any
order at finite temperature in two spatial dimensions, a fact
also pointed out in Ref. [35].

III. CONCLUSION

Starting from a Ginzburg-Landau theory for a two-
component superconductor, we show that the vestigial broken
time reversal symmetry state with no superconducting order
parameter is possible in two spatial dimensions, provided that
the parameters lie in the suitable region. This is in strong con-
trast to the case in three spatial dimensions [29], where such
a phase is in general not possible except for some extreme
situations.

Similar calculations can be extended also to vestigial ne-
matic order, governed by an order parameter �h = (hx, hy). We
have already shown in Ref. [29] that the vestigial nematic
state is generally unstable in three spatial dimensions. Back
to the present case of two spatial dimensions, calculations
similar to Sec. II can also be carried out. For example, we
still have Eq. (11), etc., if we exchange hz there by |�h|,
provided we also replace g1,2 there by g1+g2

2 and g1, respec-
tively (cf. also Ref. [29]), hence 2g1 − g2 in Eq. (12) by g2.
A vestigial nematic state thus requires g2 < 0. beff is now
proportional to 2g1+3g2

g1
. The effective gradient energy has the

form K̃ (∂ih j )(∂ih j ) [note our Eq. (2) has no “spin-orbit” cou-
pling] with coefficient K̃ given by the same as the expression
below Eq. (22). Instead of an Ising transition, we expect a
Kosterlitz-Thouless transition for �h itself when g2 > − 2

3 g1,
but a more complicated scenario is feasible if this inequality
is not satisfied.

If g2 < 0, we can also have 4e superconductivity with
“pairing” between fields �↑ and �↓. The vestigial 4e state

now corresponds to quasi-long-range order of the product
�↑�↓ (∝�2

1 + �2
2) but without quasi-long-range order of

either �s. When the gradient term is simply taken as in (2), the
calculations for the effective free energy are entirely parallel
to that of the nematic phase, as has already been pointed out in
Refs. [13–15]. Discussions above also apply to this case with
appropriate substitutions.
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APPENDIX: ORDER OF PHASE TRANSITION

We analyze this phase transition without expansion in h0,z.
We define xs = − ln(1 − hs

α
), where we have chosen the sign

so that xs is an increasing function of hs. All hs < α, hence
−∞ < xs < ∞ are acceptable. Employing x = (x↑ + x↓)/2,
and y = (x↑ − x↓)/2, Eq. (10) can be written as

	F
αT/(4πK )

= 2[x + e−x cosh(y) − 1]

+ (2g̃1 + g̃2)x2 + (2g̃1 − g̃2)y2, (A1)

where g̃1,2 = T g1,2

4παK .
The stationary point conditions are

0 = (1 − e−x cosh y) + (2g̃1 + g̃2)x (A2)

and

0 = e−x sinh y − (g̃2 − 2g̃1)y. (A3)

The second equation is trivially satisfied by y = 0. For y �= 0,
we solve for x using this second equation and substitute back
to the first to yield a single equation for y,

G =
y

tanh y − α(T )
α(T2 )

ln
[ sinh y

y
α(T )
α(T2 )

] , (A4)

with G ≡ 2g̃1+g̃2

g̃2−2g̃1
. Since we have 0 < 2g̃ < g̃2, G decreases

with increasing g̃2/g̃1. For 2g̃1 < g̃2 < 6g̃, G lies between 2
and +∞. For 6g̃1 < g̃2, G lies between 1 and 2. The graphical
solution shows that for 2 < G < ∞, y vanishes for α > α(T2).
A nontrivial solution for y starts from zero and grows with
decreasing α < α(T2), thus a typical second-order phase tran-
sition at T = T2. For 1 < G < 2, finite y solutions already
exist at some α(T ) > α(T2), and with decreasing α(T ), one
obtains two solutions, one with y decreasing and the other
increasing with decreasing α. α(T2) is the point at which the
decreasing solution approaches y = 0, which shows a typical
first-order transition behavior. Note however in contrast to 3D,
we have a local free-energy minimum, not just a saddle point.

054519-5



P. T. HOW AND S. K. YIP PHYSICAL REVIEW B 110, 054519 (2024)

[1] M. Sigrist and K. Ueda, Phenomenological theory of unconven-
tional superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[2] A. J. Leggett, A theoretical description of the new phases of
liquid 3He, Rev. Mod. Phys. 47, 331 (1975).

[3] G. E. Volovik and L. P. Gor’kov, Superconducting classes in
heavy-fermion systems, Zh. Eksp. Teor. Fiz. 88, 1412 (1985)
[Sov. Phys. JETP 61, 843 (1985)].

[4] J. A. Sauls, The order parameter for the superconducting phases
of UPt3, Adv. Phys. 43, 113 (1994).

[5] S. Yonezawa, Nematic superconductivity in doped Bi2Se3 topo-
logical superconductors, Condens. Matter 4, 2 (2018).

[6] S. K. Ghosh, M. Smidman, T. Shang, J. F. Annett, A. D. Hillier,
J. Quintanilla, and H. Yuan, Recent progress on superconduc-
tors with time-reversal symmetry breaking, J. Phys.: Condens.
Matter 33, 033001 (2021).

[7] D. M. Stamper-Kurn and M. Ueda, Spinor Bose gases: Symme-
tries, magnetism, and quantum dynamics, Rev. Mod. Phys. 85,
1191 (2013).

[8] More complex situations such as 6e, etc., pairing are possible,
but we shall not go into those in this paper.

[9] R. M. Fernandes, P. P. Orth, and J. Schmalian, Intertwined
vestigial order in quantum materials: Nematicity and beyond,
Annu. Rev. Condens. Matter Phys. 10, 133 (2019).

[10] M. Hecker and J. Schmalian, Vestigial nematic order and su-
perconductivity in the doped topological insulator CuxBi2Se3,
npj Quantum Inf. 3, 26 (2017).

[11] C.-W. Cho, J. Shen, J. Lyu, O. Atanov, Q. Chen, S. H. Lee,
Y. S. Hor, D. J. Gawryluk, E. Pomjakushina, M. Bartkowiak, M.
Hecker, J. Schmalian, and R. Lortz, Z3-vestigial nematic order
due to superconducting fluctuations in the doped topological
insulators NbxBi2Se3 and CuxBi2Se3, Nat. Commun. 11, 3056
(2020).

[12] V. Grinenko, D. Weston, R. Caglieris, C. Wuttke, C. Hess, T.
Gottschall, I. Maccari, D. Gorbunov, S. Zherlitsyn, J. Wosnitza,
A. Rydh, K. Kihou, C.-H. Lee, R. Sarkar, S. Dengre, J. Garaud,
A. Charnukha, R. Hühne, K. Nielsch, B. Büchner, H.-H.
Klauss, and E. Babaev, State with spontaneously broken time-
reversal symmetry above the superconducting phase transition,
Nat. Phys. 17, 1254 (2021).

[13] R. M. Fernandes and L. Fu, Charge-4e superconductivity from
multicomponent nematic pairing: Application to twisted bilayer
graphene, Phys. Rev. Lett. 127, 047001 (2021).

[14] S.-K. Jian, Y. Huang, and H. Yao, Charge-4e superconductiv-
ity from nematic superconductors in two and three dimension,
Phys. Rev. Lett. 127, 227001 (2021).

[15] M. Hecker, R. Willa, J. Schmalian, and R. M. Fernandes, Cas-
cade of vestigial orders in two-component superconductors:
Nematic, ferromagnetic, s-wave charge-4e, and d-wave charge-
4e states, Phys. Rev. B 107, 224503 (2023).

[16] P. P. Poduval and M. S. Scheurer, Vestigial singlet pairing in a
fluctuating magnetic triplet superconductor and its implications
for graphene superlattices, Nat. Commun. 15, 1713 (2024).

[17] S. Ashhab, Superfluid vs ferromagnetic behavior in a Bose gas
of spin-1/2 atoms, J. Low Temp. Phys. 140, 51 (2005).

[18] S. S. Natu and E. J. Mueller, Pairing, ferromagnetism, and
condensation of a normal spin-1 Bose gas, Phys. Rev. A 84,
053625 (2011).
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