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Odd-frequency pairing of Bogoliubov quasiparticles in superconductor junctions
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We study a superconductor Josephson junction with a Bogoliubov Fermi surface, employing McMillan’s
Green’s function technique. The low-energy degrees of freedom are described by spinless fermions (bogolons),
where the characteristic feature appears as an odd-frequency pair potential. The differential equation of the
Green’s function is reduced to the eigenvalue problem of the non-Hermitian effective Hamiltonian. The physical
quantities such as the density of states and pair amplitude are then extracted from the obtained Green’s function.
We find that the zero energy local density of states at the interface decreases as the relative phase of the Josephson
junction increases. This decrease is accompanied by the generation of an even-frequency pair amplitude near the
interface. We also clarify that the π -junction-like current phase relation is realized in terms of bogolons. In
contrast to conventional s-wave superconductor junctions, where even-frequency pairs dominate in the bulk
and odd-frequency pairs are generated near the interface, our findings illuminate the distinct behaviors of
junctions with Bogoliubov Fermi surfaces. We further explore spatial dependencies of these physical quantities
systematically using quasiclassical Green’s functions.
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I. INTRODUCTION

The superconductors (SCs) with gapless fermionic exci-
tations, known as Bogoliubov Fermi surfaces (BFSs) [1–4],
have been the subject of both theoretical [5–37] and ex-
perimental [38–42] studies. BFSs have intriguing physics
due to their potential to exhibit characteristics distinct from
the Fermi surface consisting of electrons in normal metals
[16,17,21,22]. Such an exotic state of quantum matter is po-
tentially realized in Fe(Se,S), where the remaining density of
states (DOS) and gapless quasiparticle behaviors below the
transition temperature are observed [38,39,41,42]. Residual
DOS is observed in other superconductors [43], which are also
candidate systems with BFSs.

Our previous works have demonstrated that BFSs host
purely odd-frequency Cooper pairs composed of Bogoliubov
quasiparticles (bogolons), which is a distinct feature absent
in conventional SCs [21,37]. Specifically, we focused on the
bulk state of bogolons near the BFS, which are described
by spinless fermions [17,21,22,44]. We have evaluated the
self-energy of bogolons by considering the impurity and in-
teraction effects, where a standard perturbative technique is
employed as used in conventional Fermi liquid theory. Since
the number of bogolons is not a conserved quantity in contrast
to that of electrons in the normal metal, the anomalous part
of the self-energy, i.e., the pair potential, is finite, which makes
the bogolon system different from normal Fermi liquid. The
time dependence of this pair potential has a purely odd func-
tional form [45], which is interpreted as the generation of the
odd-frequency Cooper pair composed of bogolons in the bulk.

Up to now, pursuing the odd-frequency pairing has been
an important issue in strongly correlated systems, and there
have been theoretical proposals in (multichannel) Kondo lat-

tice models [26,46–60], itinerant correlated electron models
[61–71], disordered systems [72–75], electron-phonon cou-
pled systems [76,77], SCs with the BFS [21,27,28], and
other systems [78,79]. If the standard relation F+

12 (iωn) =
F ∗

21(−iωn) for the anomalous Green’s function is taken, the
generation of pure odd-frequency pairs in the bulk has a
difficulty from the viewpoints of stability [44,80]. Also, the
pure odd-frequency pairing with another relation F+

12 (iωn) =
−F ∗

21(−iωn) [81,82] has a difficulty when it coexists with the
odd-frequency pairing [83,84] generated by the translational
symmetry breaking of conventional even-frequency supercon-
ductor [85–97]. On the other hand, the odd-frequency pairing
of bogolons discussed in this paper is more naturally induced
by the self-energy effect for the systems with the BFS [21,37],
where the standard relation F+

12 (iωn) = F ∗
21(−iωn) holds in the

bulk.
Thus, the low-energy bogolon model is a suitable platform

to study the physical properties of the odd-frequency Cooper
pair [21,44]. In contrast to the previous discussions focused
on the bulk properties [21,37,44], it is noteworthy that the
translational and inversion symmetries are broken at surfaces
and interfaces. Namely, odd-frequency pairs can be induced
at the surface or the interface of conventional even-frequency
SCs as a result of lack of translational symmetry [87–89].
Hence, it is interesting to study induced even-frequency pairs
at the interface of the odd-frequency SC.

In this paper, we study the junction of the SC with the
BFS based on the bogolon model. The schematic figure is
illustrated in Fig. 1(a). As shown in the next section, we begin
with the Gor’kov equation with different self-energies used
for left- (x < 0) and right-side (x > 0) systems. Here, we use
the techniques of non-Hermitian quantum mechanics [98,99]
and McMillan’s formalism for the Green’s function [100],
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FIG. 1. Schematic figure of one-dimensional SC junction. We
consider two systems: (a) Bogolon junction and (b) s-wave SC
junction.

which has been used in the conventional SC junctions with
even-frequency pair potential [30,97,101–105]. We study a
spatial dependence of the physical quantities such as the local
density of states based on the Green’s function, and also quasi-
classical Green’s function [106–108], which extracts a slowly
varying component. Since the relation between physical quan-
tities in terms of bogolons and experimental observables is not
trivial and depends on specific details of each superconductor,
we focus on properties of bogolons in this paper as a first step
to understanding the junction with the BFS. We emphasize
that the bogolon junction is regarded as a Josephson junction
of the bulk odd-frequency pairing state, which has never been
explored and is a foundation to understanding superconductor
junctions with the BFS.

The rest part of this paper is organized as follows. In
Sec. II, we introduce the Green’s function following a McMil-
lan’s method. Before showing the results for the system with
the BFS, we first summarize the result of the s-wave SC junc-
tion for reference in Sec. III. Section IV provides the result of
the Green’s function and physical quantities at the interface of
the bogolon junction. In Sec. V, we evaluate the quasiclassical
Green’s function to study the slowly-varying spatial compo-
nent of both even and odd-frequency pair amplitudes. We
summarize the paper in Sec. VI. The connection between bo-
golon and original electronic degrees of freedom is explained
in Appendix A. The detailed calculation of the McMillan
Green’s function is given in Appendix B. The detailed results
for the conventional spin-singlet s-wave SC case are listed in
Appendix C as a reference. The specific forms of physical
quantities in quasiclassical representations are given in
Appendix D.

II. MCMILLAN GREEN’S FUNCTION

A. Setup of bogolon junction

We consider a one-dimensional SC junction by combin-
ing the systems with BFSs, where low-energy behaviors are
described by spinless bogolons [17,21,22,44] (bogolon junc-
tion). We also consider the conventional s-wave SC junction in
order to discuss the unique properties of the bogolon junction
by comparing the two systems. Figure 1 shows schemat-
ics of these two systems. The interface is located at x = 0.
Although we focus on one-dimensional systems, our formula-

tion can be extended to a three-dimensional junction system
straightforwardly by considering quantum numbers (ky, kz )
with translational symmetry along y and z directions. The self-
energies take different values between the left side (x < 0)
and the right side (x > 0). In the following of this paper, we
concentrate mainly on the bogolon model. The results for
the conventional s-wave SC are summarized in Sec. III and
Appendix C.

We consider the BFS in a time-reversal symmetry bro-
ken superconductor [3,4,13,14], where elementary excita-
tions near the BFS are described by spinless fermions
[17,21,22,44]. Since the pair of bogolons is realized by taking
into account the anomalous self-energy [21,37], the Green’s
function formalism is suitable for the description of bogolon
junctions. The Green’s function is defined in terms of bo-
golons’ creation/annihilation operators as

Ĝ(τ, x, x′) = −〈T �α(τ, x)�α†(x′)〉, (1)

where T is a time ordering, and A(τ ) is a imaginary-time
Heisenberg representation of an operator A. The vector op-
erator is given by �α(x) = (α(x), α†(x))T where α(x) is an
annihilation operator for the low-energy bogolon. The hat
symbol (ˆ) indicates 2×2 matrices in Nambu space. We re-
quire the Green’s function to satisfy the two (left- and right-)
Gor’kov equations in the fermionic Matsubara frequency (ωn)
domain, which are explicitly given by

[iωn1̂ − Ĥ0(x) − �̂(iωn, x)]Ĝ(iωn, x, x′) = δ(x − x′), (2)

Ĝ(iωn, x, x′)[iωn1̂ − Ĥ0(x′) − �̂(iωn, x′)] = δ(x − x′), (3)

where �̂(iωn, x) is a self-energy matrix, and 1̂ is a two di-
mensional identity matrix. Ĥ0(x) in Eqs. (2) and (3) is a
Hamiltonian of ideal bogolon gas with the barrier potential:

Ĥ0(x) =
[
− h̄2

2m

d2

dx2
− μ + VBδ(x)

]
τ̂ z, (4)

where m and μ are effective mass and chemical potential of
bogolons, respectively. In the above equation, we introduce
the barrier potential VB at the interface x = 0. Since we con-
sider the same Ĥ0(x) between the right side (x > 0) and the
left side (x < 0), we assume that both sides are the same
material.

In conventional superconductivity, a spin-dependent bar-
rier can have a significant effect [109]. However, in the
bogolon model, the effects of both magnetic and nonmagnetic
impurities in terms of original electrons are reflected only
in the magnitude of VB because of the spinless nature of
bogolons.

The model of bogolon for the bulk was introduced in
our previous works [21,37]. The low-energy bogolons form
pure odd-frequency pairs in the bulk. Here, we phenomeno-
logically introduce the spatial dependence of the self-energy
�̂(iωn, x) given by

�̂(iωn, x) = −i

(
�1(x) �2(x)
�2(x)∗ �1(x)

)
sgn ωn. (5)

The presence of the sign function represents the odd-
frequency pair potential in the off-diagonal part. The spatial
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dependence of �1(x) and �2(x) are given by

�1(x) =
{
�1L (x < 0),
�1R (x > 0), (6)

�2(x) =
{

�2L = |�2L|eiθL (x < 0),

�2R = |�2R|eiθR (x > 0),
(7)

where �1r (r = R, L) is a positive constant and corresponds to
the quasiparticle dumping of bogolons. On the other hand, �2r

is a complex number. We note that �1r and �2r must satisfy
the relation �1r > |�2r | (0 � |�2r |/�1r < 1) to guarantee the
positive DOS in the bulk [21,22,44]. The schematic figure of
our setup is illustrated in Fig. 1(a).

B. Origin of phase of pair potential

Let us comment on the correspondence of our bogolon
model with the original electron degrees of freedom, on which
bogolons are based. While the origins of the pair potential
of bogolon have already been discussed in Refs. [21,22,37],
we briefly revisit the discussion with a particular focus on
the origin of the phase of the pair potential for bogolons,
which is crucial in the Josephson junction. Let us consider the
impurity scattering as an origin of the self-energy. The phase
of the pair potential for bogolons can be understood by the
following two steps. The first step is to recognize that impurity
effects on anomalous self-energy for bogolons enter through
α†α-type diagonal scattering (U1) and α†α†-type off-diagonal
one (U2) [37]. The second step is to recognize that the latter
scattering potential is composed of the product of two types
of wave functions u (electron wave function) and v (hole wave
function). Therefore the superconducting phase of the original
electron’s pair potential (arg uv) is reflected in U2, and is then
also inherited to bogolon’s pair potential �2. On the other
hand, U1 is composed of products of u∗u and v∗v, both of
which do not carry the phase of superconducting pair poten-
tial. The more detailed expressions are given in Appendix A
and Ref. [21].

C. McMillan Green’s function

In order to solve the Gor’kov equations given in
Eqs. (2) and (3), we employ the McMillan’s formalism
[30,97,100–105]. We consider the following two eigenequa-
tions for a given ωn:

[Ĥ0(x) + �̂(iωn, x)]
(x) = iωn
(x), (8)


̃(x)T[Ĥ0(x) + �̂(iωn, x)] = iωn
̃(x)T. (9)

Once these eigenequations are solved, the Green’s function
is then expressed as the bilinear form of the eigenfunctions

 and 
̃ as will be shown later [see Eq. (15)]. In Eqs. (8)
and (9), Ĥ0(x) + �̂(iωn, x) can be regarded as an effective
Hamiltonian which is not necessarily Hermitian. Then, as
we will discuss in Sec. II D, we evaluate the Green’s func-
tion using a biorthogonal basis employed for non-Hermitian
Hamiltonian systems [98,99]. Note that the junctions with
the non-Hermitian system have been discussed in previous
studies [110,111]. On the other hand, the non-Hermiticity
discussed in this paper is derived from self-energy. Therefore
the relation �̂(−iωn, x) = �̂†(iωn, x) derived from standard

FIG. 2. Four types of eigenfunctions. The blue (+) arrows and
red (−) arrows indicate the particle- and the hole-like plane waves,
respectively. The dashed lines represent the incident waves. The
directions of arrows indicate the group velocity. The sign in the
superscript of 
, a, b, c, and d indicates particle- (+) or hole-like
particle (−) incident.

Lehmann representation is always satisfied in our formulation.
In this paper, the non-Hermitian formalism is just a method-
ology to solve Eqs. (8) and (9).

In this section, we consider the case of ωn > 0. Since
the self-energy does not depend on the spatial coordinate x
once x > 0 or x < 0 is specified [see Eqs. (6) and (7)], the
eigenfunction for Eq. (8) can be expressed by the plane wave,
as in an ordinary scattering problem. Although the following
argument in this section is essentially the same as the case
for the conventional SC junction, whose �̂ given by Eq. (C1)
is Hermitian [30,97,100–105], it can also be applied to our
bogolon model with Eq. (5).

We need to consider the four types of independent eigen-
functions [outgoing/incoming (out/in), particle/hole (+/−)]
shown in Fig. 2 [30,97,101–105], which depend on the inci-
dent plane wave indicated by dashed lines. For example, the
outgoing particle wave function 


(+)
out is given by



(+)
out (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eik+
L x

(
u+

L
v+

L

)
+ a(+)

out eik−
L x

(
u−

L
v−

L

)

+b(+)
out e−ik+

L x

(
u+

L
v+

L

)
(x < 0),

c(+)
out eik+

R x

(
u+

R
v+

R

)
+ d (+)

out e−ik−
R x

(
u−

R
v−

R

)
(x > 0),

(10)

which is a linear combination of the bulk solutions. In
the above expression, the wave number k±

r , kinetic energy
�r (iωn), and the bulk wave functions u±

r , v±
r (r = L, R) sat-

isfy the following relations:

k±
r =
√

(2m/h̄2)[μ ± �r (iωn)], (11)

[±�r (iωn)τ̂ z + �̂r (iωn)]

(
u±

r

v±
r

)
= iωn

(
u±

r

v±
r

)
. (12)

The solution of Eq. (12) is discussed in the next section in
detail. Note that �r (iωn) can also be represented in another
form as shown later [see Eq. (22)]. In Eq. (12), (u+(−)

r , v+(−)
r )T
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corresponds to the particle (hole) eigenfunction. The
eigenfunctions corresponding to 
̃ in Eq. (9) are denoted as
(ũ±

r , ṽ±
r )T.

As seen in Fig. 2, the coefficients a(±)
out and a(±)

in corre-
spond to the reflection from particle to hole. Then, we call
this type of reflection as Andreev reflection of bogolons,
which is analogous to the conventional SC junctions. Sim-
ilarly, we call “b(±)

out , b(±)
in ” and “c(±)

out , c(±)
in ” in Eq. (10)

and Fig. 2 as normal reflection and normal transmis-
sion, respectively. The transmission from particle to hole
is reflected in “d (±)

out , d (±)
in .” The specific expressions of

a(±)
out , a(±)

in , b(±)
out , b(±)

in , c(±)
out , c(±)

in , d (±)
out , and d (±)

in are deter-
mined by the boundary conditions at x = 0 [30,97,100–105],
which are given by



(±)
out (x = +0+) = 


(±)
out (x = −0+), (13)

d

(±)
out (x)

dx

∣∣∣∣∣
x=0+

− d

(±)
out (x)

dx

∣∣∣∣∣
x=−0+

= 2mVB

h̄2 

(±)
out (x)

∣∣∣∣
x=0

.

(14)

We also impose the same conditions on 

(±)
in . These con-

ditions are similar to those in the scattering problem with
the barrier potential of quantum mechanics. The specific
forms of a(±)

out , a(±)
in , b(±)

out , b(±)
in , c(±)

out , c(±)
in , d (±)

out , and d (±)
in

are listed in Eqs. (B11)–(B18). We also evaluate the eigen-
function 
̃out (x), 
̃in(x) in Eq. (9) in a manner similar to

out (x), 
in(x).

Using the four types of eigenfunctions described in Fig. 2,
the Green’s function is expressed in the following form
[30,97,101–105]:

Ĝ(iωn, x, x′) =
⎧⎨
⎩

α1

(+)
in (x)
̃ (+)

out (x′)T + α2

(+)
in (x)
̃ (−)

out (x′)T + α3

(−)
in (x)
̃ (+)

out (x′)T + α4

(−)
in (x)
̃ (−)

out (x′)T (x < x′),

β1

(+)
out (x)
̃ (+)

in (x′)T + β2

(−)
out (x)
̃ (+)

in (x′)T + β3

(+)
out (x)
̃ (−)

in (x′)T + β4

(−)
out (x)
̃ (−)

in (x′)T (x > x′),
(15)

where coefficients α1, . . . , α4 and β1, . . . , β4 are determined
by the boundary conditions at x = 0, which are given by

Ĝ(iωn, x → x′ + 0+, x′) = Ĝ(iωn, x → x′ + 0−, x′) (16)

and

∂

∂x
Ĝ(iωn, x, x′)

∣∣∣∣
x=x′+0+

− ∂

∂x
Ĝ(iωn, x, x′)

∣∣∣∣
x=x′−0+

= 2m

h̄2 τ̂ z.

(17)

We note that Eq. (17) is derived from the Gor’kov equations in
Eqs. (2) and (3). The Green’s function for ωn < 0 can be
evaluated by the conjugate relation

Ĝ(−iωn, x, x′) = Ĝ†(iωn, x′, x), (18)

which is derived from the Lehmann representation of the
Green’s function.

We emphasize again that Eq. (15) can be used for both
bogolon (non-Hermite case) and s-wave SC (Hermite case). In
the next section, we evaluate the specific form of u±

r , v±
r , ũ±

r ,
and ṽ±

r by using a biorthogonal basis, which can be applied to
both the Hermite (s-wave SC junction) and the non-Hermite
cases (boglon junction).

D. Solution of auxiliary non-Hermitian problem

Now we consider the concrete eigenvalue problem, in
which the characteristic feature of bogolons, i.e., Non-
Hermitian nature of effective Hamiltonian, is reflected. The
following discussion can be used for both ωn > 0 and ωn < 0.
First we write down Eq. (12) for the r-side (r = R for x > 0

and r = L for x < 0) as(±�r (iωn) − i�1rsgn ωn Sr (iωn)

S+
r (iωn) ∓�r (iωn) − i�1rsgn ωn

)(
u±

r
v±

r

)

= iωn

(
u±

r
v±

r

)
. (19)

For the bogolon junction, we set �1r > 0, Sr (iωn) =
−i�2rsgn ωn, S+

r (iωn) = −i�∗
2rsgn ωn [if we set �1r = 0 and

Sr (iωn) = S+
r (iωn)∗ = �r , Eq. (19) applies to the s-wave SC].

Since the matrix in Eq. (19) is non-Hermitian, it is necessary
to consider the following Hermite conjugate version:(±�r (iωn)∗ + i�1rsgn ωn S+

r (iωn)∗

Sr (iωn)∗ ∓�r (iωn)∗ + i�1rsgn ωn

)

×
(

ũ±∗
r

ṽ±∗
r

)
= (iωn)∗

(
ũ±∗

r

ṽ±∗
r

)
. (20)

The wave functions u±
r , ũ±

r , v±
r , and ṽ±

r satisfy the following
biorthogonal condition [112], which is used in the context of
non-Hermitian quantum mechanics [98,99]:

ũ±
r u±

r + ṽ±
r v±

r = 1. (21)

From Eqs. (19) and (20), �r (iωn) is determined as

�r (iωn) =
√

(iωn + i�1rsgn ωn)2 − Sr (iωn)S+
r (iωn). (22)

We note that �r (iωn) is an even function of ωn in the bogolon
model (this is also true for the s-wave SC).

As discussed in Sec. II C, the coefficients α1, . . . , α4

and β1, . . . , β4 in Eq. (15) are determined by the boundary
conditions for the Green’s function in Eqs. (16) and (17).
The specific form of α1, . . . , α4 and β1, . . . , β4 are listed
in Eqs. (B3)–(B10). Using these coefficients, the Green’s
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function Eq. (15) for x, x′ < 0 is reduced to

Ĝ(iωn, x, x′) = m(iωn + i�1Lsgn ωn)

ikF h̄2�L(iωn)

[(
eik+

L |x−x′| + b̃(+)
out e−ik+

L (x+x′ ))(u+
L ũ+

L u+
L ṽ+

L

v+
L ũ+

L v+
L ṽ+

L

)
+ ã(+)

out e−ik+
L x+ik−

L x′
(

u+
L ũ−

L u+
L ṽ−

L

v+
L ũ−

L v+
L ṽ−

L

)

+ (e−ik−
L |x−x′| + b̃(−)

out eik−
L (x+x′ ))(u−

L ũ−
L u−

L ṽ−
L

v−
L ũ−

L v−
L ṽ−

L

)
+ ã(−)

out eik−
L x−ik+

L x′
(

u−
L ũ+

L u−
L ṽ+

L

v−
L ũ+

L v−
L ṽ+

L

)]
, (23)

where kF is a Fermi wave vector of bogolons and ã(±)
out and b̃(±)

out are coefficients in 
̃
(±)
out (x). This expression, which includes

six terms, provides a clearer physical meaning than Eq. (15) [101]. Namely, the first line describes particle behavior, while the
second line describes hole behavior. The contributions from the bulk are represented by the first and fourth terms. The second
and the fifth terms, which are proportional to b̃(±)

out , correspond to the normal reflection. The third and sixth terms proportional to
ã(±)

out represent the contributions from the Andreev reflection.

E. Concrete form of Green’s function

In the following of this paper, we focus on the bogolon junction with �1L = �1R and |�2L| = |�2R|. The concrete form of the
Green’s function in this section is one of the central results of this paper. Using the functional forms of u±

L , v±
L , ũ±∗

L , and ṽ±∗
L

given in Appendix B, the Green’s function for x, x′ < 0 is obtained as follows:

Ĝ(iωn, x, x′) = m

2ikF h̄2�L(iωn)

[(
eik+

L |x−x′| + b̃(+)
out e−ik+

L (x+x′ ))(iωn + i�1Lsgn ωn + �L(iωn) −i�2Lsgn ωn

−i�∗
2Lsgn ωn iωn + i�1Lsgn ωn − �L(iωn)

)

+ ã(+)
out e−ik+

L x+ik−
L x′
(

i|�2L|sgn ωn −eiθL [iωn + i�1Lsgn ωn + �L(iωn)]

−e−iθL [iωn + i�1Lsgn ωn − �L(iωn)] i|�2L|sgn ωn

)

+ (e−ik−
L |x−x′| + b̃(−)

out eik−
L (x+x′ ))(iωn + i�1Lsgn ωn − �L(iωn) −i�2Lsgn ωn

−i�∗
2Lsgn ωn iωn + i�1Lsgn ωn + �L(iωn)

)

+ ã(−)
out eik−

L x−ik+
L x′
(

i|�2L|sgn ωn −eiθL [iωn + i�1Lsgn ωn − �L(iωn)]

−e−iθL [iωn + i�1Lsgn ωn + �L(iωn)] i|�2L|sgn ωn

)]
(24)

with

ã(±)
out (iωn) = −i|�2L|sgn ωn[(iωn + i�1Lsgn ωn) sin2(θ/2) ± i�L(iωn) sin(θ/2) cos(θ/2)]

Z2�L(iωn)2 + (iωn + i�1Lsgn ωn)2 + |�2L|2 cos2(θ/2)
, (25)

b̃(±)
out (iωn) = − Z (Z ± isgn ωn)�L(iωn)2

Z2�L(iωn)2 + (iωn + i�1Lsgn ωn)2 + |�2L|2 cos2(θ/2)
. (26)

We have introduced the relative phase of the pair potential
θ = θR − θL with −π < θ � π and defined

Z = mVB

kF h̄2 , (27)

which represents a magnitude of the delta-function barrier
potential at x = 0.

F. Physical quantities

1. s-wave component

Let us consider the physical quantities derived from the
McMillan Green’s function. From the local Green’s function
(x = x′), we define the s-wave component (i.e., symmetric in
terms of the exchange of x and x′) of the pair amplitude as

Fs(iωn, x) = [Ĝ(iωn, x, x)]12. (28)

We employ the Matsubara frequency representation for the
pair amplitude, which is useful to recognize the even- and
odd-frequency components.

We can also evaluate the local density of states (LDOS)
of bogolons from the local Green’s function. The LDOS of
bogolons is defined by using the diagonal components of the
retarded Green’s function, which is obtained through analyti-
cal continuation with respect to frequency:

D(ω, x) = − 1

π
Im Tr Ĝ(ω + i0+, x, x), (29)

with which the probability density of bogolons is identified.

2. p-wave component

Next, we define p-wave component of Green’s function
(i.e., antisymmetric in terms of the exchange of x and x′) as

Ĝp(iωn, x) = lim
�x→0

1

�x
[Ĝ(iωn, x + �x, x)

− Ĝ(iωn, x, x + �x)]

=
(

∂

∂x
− ∂

∂x′

)
Ĝ(iωn, x, x′)

∣∣∣∣
x′→x

. (30)
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Inserting Eq. (24) into Eq. (30) and assuming k+ 	 k− 	 kF,
one finds that the bulk parts in Eq. (24) vanishes. This fact
implies that Ĝp(iωn, x) is induced by the presence of the
interface.

The p-wave component of the pair amplitude Fp(iωn, x) is
defined by [88,89]

Fp(iωn, x) = [Ĝp(iωn, x)]12. (31)

We note that, from the Fermi-Dirac statistics, Fs(iωn, x) is
an odd (even) function of ωn for bogolons (s-wave SC),
and Fp(iωn, x) is an even (odd) function of ωn for bogolons
(s-wave SC).

It is also worthwhile to explore the diagonal components
in Nambu space of Ĝp(iωn, x). The trace of Ĝp(iωn, x) can be
regarded as quasiparticle contribution of current [101], which
is given by

J (x) = i

〈
α†(x)

∂

∂x
α(x) −

(
∂

∂x
α†(x)

)
α(x)

〉

= 1

β

∑
n

j(iωn, x) (32)

with

j(iωn, x) = i

nd
Tr Ĝp(iωn, x), (33)

and nd is a factor correcting double counting: nd = 2 for the
bogolon model and nd = 1 for the s-wave SC.

III. SUMMARY OF s-WAVE
SUPERCONDUCTOR JUNCTION

Before showing the results for the bogolon junction, here
we summarize the results of the s-wave SC junction for
reference. The detailed setup and expressions are listed in
Appendix C. In the following of this section, we assume
|�L| = |�R| corresponding to the discussion in Sec. II E.
For all figures in this section, we choose |�L|/μ = 0.01
with μ = h̄2k2

F/2m and set μ = 1 and kF = 1. The specific
form of the Green’s function is shown in Eqs. (C3)–(C5).
We note that the results in this section are not completely
original.

A. Semi-infinite superconductor

First, we discuss the result for the semi-infinite SC (x < 0),
where the edge is located at x = 0. We take the limit Z →
∞ in Eqs. (C3)–(C5). The pair amplitude [Ĝ(iωn, x, x′)]12 is
given by

[Ĝ(iωn, x, x′)]12

= m�L

2ikF h̄2
√

(iωn)2 − |�L|2
× (eik+

L |x−x′| − e−ik+
L (x+x′ ) + e−ik−

L |x−x′| − eik−
L (x+x′ )).

(34)

[Ĝ(iωn, x, x′)]12 is the even function of frequency, which is
the same frequency dependence as the bulk. This frequency
dependence implies the absence of Andreev reflection in
Eq. (34). In this way, s-wave pair potential, which does not

have the spatial dependence, does not induce the p-wave
component at the edge [113]. Although odd-frequency pairs
are not induced by the constant pair potential, spatially vary-
ing pair potential, �(x) �= Const., induces the odd-frequency
p-wave pair at the surface [88,89].

B. Superconductor junction without barrier potential

Next, we show the result of the SC junction without the
barrier potential, i.e., Z = 0. We assume x, x′ < 0 in the
following of this section. The expressions of the physical
quantities are listed below. The s-wave component of the pair
amplitude defined by Eq. (28) is given by

Fs(iωn, x)

= �Lm

ikF h̄2�L(iωn)

[
1 − e−i(k+

L −k−
L )x

× (iωn)2 sin2(θ/2) + i�L(iωn)2 sin(θ/2) cos(θ/2)

(iωn)2 − |�L|2 cos2(θ/2)

]
.

(35)

The numerical result at x = 0 is shown in Fig. 3(a). We note
that the phase of Fs(iωn, x = 0) is independent of ωn. For the
plot, we choose the phase such that Fs(iωn, x = 0) becomes
real [this choice also applies to Figs. 3(b), 4(a), and 4(b)]. The
functional form is substantially modified from the bulk as the
relative phase θ = θR − θL is increased. The peak of the pair
amplitude becomes sharper with increasing θ and shows delta-
function-like behavior at θ = π − δ with δ � 1. The specific
form of the pair amplitude at x = 0 is given by

Fs(iωn, x = 0) = i�Lm
√

ω2
n + |�L|2

kF|�L|h̄2

δ|�L|/2

ω2
n + δ2|�L|2/4

(36)

for θ = π − δ with δ � 1. The right-hand side shows the
presence of the Lorentzian with the width δ|�L|/2.

The p-wave component of the pair amplitude defined by
Eq. (31) becomes finite due to translational symmetry break-
ing [88,89]:

Fp(iωn, x) = 2i�Lm

h̄2

iωn sin(θ/2)e−iθ/2

(iωn)2 − |�L|2 cos2(θ/2)
e−i(k+

L −k−
L )x.

(37)

Fp(iωn, x = 0) is shown in Fig. 3(b). For θ = π , the pair
amplitude diverges at ωn → 0, because the denominator in
Eq. (37) becomes zero at θ → π,ωn → 0.

Let us also discuss diagonal components of the Green’s
function. The LDOS is given by

D(ω, x) = Dbulk (ω) − 2m

kF h̄2π
Re

×
[
ω + i0+

�ret (ω)

|�L|2 sin2(θ/2)e−i(k+
L −k−

L )x

(ω + i0+)2 − |�L|2 cos2(θ/2)

]

(38)

with �ret (ω) = �L(ω + i0+)sgn ω. We choose the branch cut
of square root function in � along the negative side of the real
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FIG. 3. Physical quantities at x = 0 for s-wave SC junction
without barrier potential. (a) The s-wave component of the pair
amplitude, (b) the p-wave component of the pair amplitude, (c) the
LDOS normalized by its value in normal state (�L = 0), (d) the
LDOS in the complex plane for θ = 2π/3, which is defined by
the extension of ω to the complex energy plane z, i.e., D(ω, x =
0) → D(z, x = 0), (e) j(iωn) = j(iωn, x = 0), and (f) the Josephson
current J (x = 0). Figure legend of (c) is the same as that of (a) and
the legend of (e) is the same as that of (b).

axis. We have introduced the bulk DOS by

Dbulk (ω) = 2m

kF h̄2π
Re

ω + i0+

�ret (ω)
. (39)

The LDOS of the s-wave SC shown in Fig. 3(c) has diver-
gent peaks, which correspond to the Andreev bound states
[113,114].

In Sec. IV B, we will discuss a generalized LDOS by
changing ω ∈ R → z ∈ C: D(ω, x) → D(z, x), which will
allow us to understand the relation between LDOSs of s-wave
SC and bogolon junctions. Figure 3(d) shows the LDOS
in the complex plane. The positions of the peaks origi-
nated from Andreev bound states are given by ωABS(θ ) =
±|�L|

√
1 − sin2(θ/2), which appear on the real axis. The

comparison with the bogolon junction will be discussed in
Sec. IV B.

We turn to the discussion of J (x) defined by Eq. (32). We
start the discussion with j(iωn, x), which shows a contribution
at the frequency ωn [see Eq. (33)]:

j(iωn, x) = −4m|�L|2
h̄2

sin(θ/2) cos(θ/2)e−i(k+
L −k−

L )x

(iωn)2 − |�L|2 cos2(θ/2)
. (40)

FIG. 4. Frequency dependence of physical quantities of s-wave
SC at x = 0 for several values of Z . (a) The s-wave component of the
pair amplitude (even-frequency), (b) the p-wave component of the
pair amplitude (odd-frequency), and (c) the LDOS normalized by its
value in normal state (�L = 0), and (d) j(iωn) = j(iωn, x = 0). The
relative phase is chosen as θ = 2π/3.

The numerical result is shown in Fig. 3(e) for the x = 0 case.
The peak of j(iωn, x = 0) becomes sharper as the relative
phase θ increases and delta-function-like behavior at θ =
π − δ with δ � 1, which is similar to the s-wave component
of the pair amplitude. Especially at x = 0, we can perform the
summation of ωn in Eq. (32) and obtain [115]

J (x = 0) = 2m|�L|
h̄2 sin

θ

2
tanh

(
β|�L|

2
cos

θ

2

)
. (41)

For zero-temperature limit β → ∞ with θ �= π , we obtain the
simpler form:

J (x = 0) = 2m|�L|
h̄2 sin

θ

2
. (42)

The current-phase relation is plotted in Fig. 3(f) for −π <

θ < π .
Actually, Eq. (41) is related to the Josephson (conserving)

current [115]. According to Ref. [101], the conserving current
I is evaluated as I = J (x = 0) for s-wave SC junction case,
which is derived from Heisenberg equation.

C. Effect of barrier potential

We consider the effect of the barrier potential controlled
by the parameter Z defined in Eq. (27). Figures 4(a) and 4(b)
show the Z dependence of the s-wave and p-wave components
of the pair amplitude at x = 0, respectively. The relative phase
is chosen as θ = 2π/3. The delta-function-like behavior in
Fs(iωn, x = 0) near θ = π can be seen only at Z = 0 as shown
in the inset of (a).

Below, we discuss the characteristic features of the LDOS
and J (x) at x = 0 in detail. The LDOS at x = 0 is expressed
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TABLE I. Comparison of functional forms between bogolon junction (the third column) and s-wave SC junction (the fourth column). We
show the frequency dependence of pair amplitudes in (a) the bulk and (b) the interface. The zero-energy LDOS is shown for (c) θ = 0 and (d)
θ = π at x = 0, and the quasiparticle current J (x = 0) for (e) Z = 0 and (f) Z → ∞ at zero temperature.

Bogolon junction s-wave SC junction

(a) Bulk pair (s-wave) Odd-freq. pair Even-freq. pair
(b) Induced pair at the interface (p-wave) Even-freq. pair Odd-freq. pair
(c) Zero-energy LDOS

at (θ, Z ) = (0, 0) (bulk) [Dbulk (ω = 0)]
2m

kF h̄2π

1√
1 − (|�2L|/�1L )2

0 (gapped)

(d) Zero-energy LDOS

at (θ, Z ) = (π, 0) [D(ω = 0, x = 0)]
2m

kF h̄2π

√
1 − (|�2L|/�1L )2

2m|�L|
kF h̄2π

δ(ω)

(e) Current phase relation for −π < θ < π

at T = 0 (Z = 0) [J (x = 0)] −m|�2L|
π h̄2 sin

θ

2
ln

(
�1L + |�2L| cos(θ/2)

�1L − |�2L| cos(θ/2)

)
2m|�L|

h̄2 sin
θ

2
(f) Current phase relation for −π < θ < π

at T = 0 (Z → ∞) [J (x = 0)] − m|�2L|
2π h̄2Z2

ln

(
�1L + |�2L|
�1L − |�2L|

)
sin θ

m|�L|
h̄2Z2

sin θ

as follows:

D(ω, x = 0) = 2m

πkF h̄2 Re
(ω + i0+)�ret (ω)

Z2�ret (ω)2 + (ω + i0+)2 − |�L|2 cos2(θ/2)
. (43)

Figure 4(c) shows the LDOS for θ = 2π/3. The position of
the peak for ω > 0 in the LDOS moves to the higher energy as
Z increases. The positions of the peaks are given by ωAB(θ ) =
±|�L|

√
1 − sin2(θ/2)/(Z2 + 1) [101,116]. Taking the limit

Z → ∞, we obtain

D(ω, x = 0) = 2m

πZ2kF h̄2 Re
ω + i0+

�ret (ω)
= 1

Z2
Dbulk (ω), (44)

where Dbulk (ω) is the bulk DOS defined in Eq. (39). It is
notable that Eq. (44) is independent of θ and proportional
to the bulk DOS in this limit. The magnitude of the LDOS
becomes smaller by the factor 1/Z2.

Next, we discuss the result of J (x = 0). Before taking
the summation of ωn in Eq. (32), j(iωn) is suppressed as
Z increases, which is shown in Fig. 4(d). We perform the
summation of ωn and the expression at zero temperature limit
β → ∞ is obtained as [113]

J (x = 0) = m|�L|
h̄2

1

Z2 + 1

√
Z2 + 1

Z2 + cos2(θ/2)
sin θ. (45)

We can confirm that the above expression reduces to Eq. (42)
in Z → 0 limit. On the other hand, for Z → ∞ limit, we
obtain

J (x = 0) = m|�L|
h̄2Z2

sin θ, (46)

whose θ dependence is determined by the factor sin θ [117].
We note that J (x = 0) is accompanied by the factor 1/Z2,

which is the same feature as that of the LDOS in the strong
barrier limit.

IV. RESULT FOR BOGOLON JUNCTION

With the knowledge of the conventional SC junction ex-
plained in Sec. III, we are now ready to discuss the bogolon
junction. In the following sections, we apply the Green’s
function in Eq. (24) to the specific cases. Firstly, in the next
section (Sec. IV A) we will provide the result of the semi-
infinite system as the simplest case. This case corresponds to
the Z → ∞ limit of Eq. (24). Secondly, in Sec. IV B, we will
discuss the result of the bogolon junction without the barrier
potential, i.e., Z = 0, to explore the physics of Andreev reflec-
tion of bogolons. Finally, in Sec. IV C, we will consider the
bogolon junction for Z �= 0 and clarify the effect of the barrier
potential. The comparison of the bogolon junction with the
s-wave SC junction is summarized in Table I. For all figures in
this section, we choose �1L/μ = 0.01 with μ = h̄2k2

F/2m and
set μ = 1 and kF = 1.

We mainly discuss the physical quantities at the interface
(x = 0) in this section. The x dependence can be seen more
clearly using the quasiclassical Green’s function, which will
be discussed in the next section (Sec. V).

A. Semi-infinite superconductor with Bogoliubov Fermi surface

In this section, we consider the semi-infinite SC (x < 0) as
the simplest nonuniform system, where the edge is located at
x = 0. We take the limit Z → ∞ in Eqs. (24)–(26) [118]. The
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pair amplitude [Ĝ(iωn, x, x′)]12 is given in the following form:

[Ĝ(iωn, x, x′)]12 = −i�2Lsgn ωnm

2ikF h̄2
√

(iωn + i�1Lsgn ωn)2 + |�2L|2
(
eik+

L |x−x′| − e−ik+
L (x+x′ ) + e−ik−

L |x−x′| − eik−
L (x+x′ )). (47)

Since there are no Andreev reflections, the pair amplitude, i.e., [Ĝ(iωn, x, x′)]12, exhibits a pure odd-frequency pairing in Eq. (47),
which is the same frequency dependence as the bulk. Namely, the p-wave component is not induced at the edge in the case of
the bogolons junction without the spatial dependence in the self-energy.

In order to highlight distinctive properties arising from the translational symmetry breaking at interfaces, the following
sections focus on the SC junctions and studies the physics of Andreev reflection of bogolons.

B. Bogolon junction without barrier potential

In this section, we consider the bogolon junction with Z = 0. From Eq. (26), we have the relation b(±)
out = 0, which implies

that there are no normal reflections and transmissions. Then, we can focus on the contribution of the Andereev reflection to the
physical properties of the bogolon junction.

1. Off-diagonal quantities

In contrast to the semi-infinite case discussed in Sec. IV A, the pair amplitude is the mixed function of even and odd
frequencies. The s-wave component of the pair amplitude defined by Eq. (28) is given by

Fs(iωn, x) = −i�2Lsgn ωnm

ikF h̄2�L(iωn)

[
1 − e−i(k+

L −k−
L )x (iωn + i�1Lsgn ωn)2 sin2(θ/2) + i�L(iωn)2 sin(θ/2) cos(θ/2)

(iωn + i�1L)2 + |�2L|2 cos2(θ/2)

]
. (48)

The first term is the contribution from the bulk and the second one is from the Andreev reflection. The numerical result of
Fs(iωn, x = 0) is shown in Fig. 5(a). The phase of Fs(iωn, x = 0) is independent of ωn, which is the same feature as the s-wave
SC junction. We choose the phase such that Fs(iωn, x = 0) becomes real for the plot [this choice also applies to Figs. 5(b), 6(a),
and 6(b)]. The odd-frequency dependence of Fs(iωn, x) can be directly verified from Eq. (48) by noting that �L(iωn) is an even
function of ωn. The height of the pair amplitude gradually decreases as the relative phase θ increases and reaches zero at θ = π .

In the present bogolon junction, the even-frequency pairing is induced near the interface due to the translational symmetry
breaking. To see this, we evaluate the p-wave component of the pair amplitude defined by Eq. (31) as

Fp(iωn, x) = 2�2Lsgn ωnm

h̄2

(iωn + i�1Lsgn ωn) sin(θ/2)e−iθ/2

(iωn + i�1Lsgn ωn)2 + |�2L|2 cos2(θ/2)
e−i(k+

L −k−
L )x. (49)

In Eq. (49), the bulk terms vanish, and then only the term from Andreev reflection contributes. The results at x = 0 is shown in
Fig. 5(b). In contrast to the s-wave SC, the pair amplitude of bogolons does not diverge near θ = π due to the presence of finite
�1L in the denominator of Eq. (49).

2. Diagonal quantities

Now we turn to the diagonal quantities such as the LDOS and J (x). The specific form of the LDOS of bogolons is given by

D(ω, x) = Dbulk (ω) + 2m

kF h̄2π
Re

[
ω + i�1L

�ret (ω)

|�2L|2 sin2(θ/2)e−i(k+
L −k−

L )x

(ω + i�1L)2 + |�2L|2 cos2(θ/2)

]
, (50)

where Dbulk (ω) is the bulk DOS of bogolons defined by

Dbulk (ω) = 2m

kF h̄2π
Re

ω + i�1L

�ret (ω)
(51)

with �ret (ω) = �(ω + i0+)sgn ω. The second term of
Eq. (50) is the Andreev reflection part, which takes a finite
value in the nonuniform case (θ �= 0). We list in Table I the
expressions of the LDOS of bogolons in the low-ω limit for
θ = 0 [row (c)] and θ = π [row (d)].

Figure 5(c) shows the LDOS of bogolons at x = 0. In
the uniform case (θ = 0), the LDOS has the zero-energy
peak, which is consistent with the previous calculations in
the bulk [21,37]. As θ increases, the pseudogap appears at

zero energy. The gap formation in the LDOS is incomplete
for any θ , i.e., the value of the LDOS at ω = 0 is always
finite.

As discussed above, the LDOS behaviors of s-wave SC
and bogolon junctions are quite different. Nevertheless, the
correspondence between the two junctions can be visualized
by considering the LDOS in a complex frequency space. Let
us extend ω in the LDOS of bogolons onto the complex
plane as D(ω, x) → D(z, x) with z ∈ C. Figure 5(d) shows
the LDOS in the complex plane at x = 0 for the bogolon
junction. The positions of the peaks are given by ωABS(θ ) =
−i�1L ± i|�2L|

√
1 − sin2(θ/2) located on the imaginary axis.

On the other hand, for the s-wave SC case, these peak
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FIG. 5. Physical quantities at x = 0 for bogolon junction without
barrier potential. (a) The s-wave component of the pair amplitude,
(b) the p-wave component of the pair amplitude, (c) the LDOS of
bogolons normalized by its value of clean limit (�1L = �2L = 0),
(d) the LDOS of bogolons in the complex energy plane for θ =
2π/3, which is defined by the extension of ω to the complex plane z,
i.e., D(ω, x = 0) → D(z, x = 0), (e) j(iωn) = j(iωn, x = 0), and (f)
J (x = 0) = (1/β )

∑
n j(iωn). Figure legends of (b), (c), (e) are the

same as that of (a). We set |�2L|/�1L = 0.9 in (a)–(e).

positions appear on the real axis as discussed in Sec. III. The
LDOS of bogolons [Fig. 5(c)] corresponds to the s-wave SC
junction with 90◦ rotation in the complex plane [Fig. 3(d)].
This rotational relation can be applied also to the other re-
tarded Green’s functions.

Next, we show the results for quasiparticle current J (x).
We first consider the contribution at ωn defined by Eq. (33):

j(iωn, x)

= 2m|�2L|2
h̄2

sin(θ/2) cos(θ/2)e−i(k+
L −k−

L )x

(iωn + i�1Lsgn ωn)2 + |�2L|2 cos2(θ/2)
.

(52)

Here, Andreev reflection only contributes to j(iωn, x) similar
to Eq. (49). The frequency dependence of Eq. (52) at x = 0 is
shown in Fig. 5(e). j(iωn, x = 0) becomes zero at θ = 0 or π .
The value at ω = 0 for θ = 2π/3 case is larger than the value
at ω = 0 for θ = π/3 case, which is in contrast to the s-wave
SC junction. The absolute value of j(iωn, x) for ωn → 0 takes
the maximum value when θ = cos−1(�2

1L/(2�2
1L − |�2L|2)).

FIG. 6. Frequency dependence of LDOS of bogolons normalized
by its value of clean limit (�1L = �2L = 0) and pair amplitudes
at Z = 0. (a) LDOS at θ = 0 and (b) s-wave component of pair
amplitude at θ = 0. (c) LDOS at θ = π and (d) p-wave component
of pair amplitude at θ = π . The line style in (b)–(d) are shared with
those in (a).

For zero-temperature limit β → ∞, we can take the sum-
mation of ωn:

J (x = 0) = −m|�2L|
π h̄2 sin

θ

2
ln

(
�1L + |�2L| cos(θ/2)

�1L − |�2L| cos(θ/2)

)
.

(53)

Compared with the s-wave SC junction case, the θ depen-

dence of Eq. (53) has the additional factor ln ( �1L+|�2L| cos(θ/2)
�1L−|�2L| cos(θ/2) )

(see row (e) in Table I). Due to this logarithmic factor,
J (x = 0) is a continuous function even at θ = π , which
is a clear difference from the s-wave SC junction. Addi-
tionally, in comparison to the s-wave SC junction case in
Eq. (42), the different sign for the bogolon junction is a con-
sequence of odd-frequency pair potential, which is referred
to as the π junction. Namely, the relation [�̂(−iωn, x)]12 =
−[�̂(iωn, x)]12, is the origin of the minus sign. Figure 5(f)
shows J (x = 0) for several values of |�2L|/�1L. The maxi-
mum value of |J (x = 0)| shifts towards θ = 0 as |�2L|/�1L

increases because the contribution of the factor cos(θ/2) in
Eq. (53) becomes larger.

3. Correlation between LDOS and pair amplitudes

Let us discuss the correlation between the LDOS of bo-
golon and the pair amplitudes Fs(iωn, x) and Fp(iωn, x). We
here focus on the |�2L|/�1L dependence for the uniform case
(θ = 0) and the nonuniform case (θ = π ). Since the relation
�1L > |�2L| must be satisfied to guarantee the positive DOS,
we consider the case for 0 < |�2L|/�1L < 1.

First, in the uniform case (θ = 0), the LDOS and s-wave
pair amplitude are shown in Figs. 6(a) and 6(b), respectively.
Note that the p-wave component of the pair amplitude is zero
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in this uniform case. The LDOS at ω = 0 in (a) increases as
|Fs(iωn → 0, x = 0)| in (b) increases. Especially in the limit
of |�2L|/�1L → 1, both LDOS at ω = 0 and Fs(iωn → 0, x =
0) diverge. We note that, in this limit, it is expected that the
BFS becomes unstable in the presence of interaction. We will
revisit the relation between the LDOS and Fs in Sec. V.

Second, in the θ = π case, the LDOS and p-wave pair
amplitude are shown in Figs. 6(c) and 6(d), respectively. The
s-wave component of the pair amplitude is zero in this case.
The depth of the pseudogap of the LDOS in (c) becomes
larger as Fp(iωn, x = 0) in (d) increases. Hence, the depth of
pseudogap in the LDOS is correlated with the magnitude of
the p-wave pair amplitude.

Thus, the zero-energy LDOS is correlated with the pair
amplitude in both the bulk and the junction systems.

C. Effect of barrier potential

In this section, we study the effect of the barrier potential.
The barrier-potential dependence of the Green’s function, as
expressed in Eqs. (24)–(26) [see also Eqs. (C3)–(C5)], is con-
trolled by the parameter Z defined in Eq. (27). In the limit of
Z → ∞, the Z dependence of ã(±)

out given by Eq. (25) is roughly
expressed as ã(±)

out ∼ 1/Z2, while b̃(±)
out is expressed as b̃(±)

out ∼ 1.
Thus, the contribution of Andreev reflection becomes smaller
than the normal reflection.

Figure 7 shows the physical quantities of bogolons at x =
0. The s-wave pair amplitude, p-wave pair amplitude, the
LDOS of bogolons, and j(iωn) are shown in (a), (b), (c), and
(d), respectively. The relative phase is chosen as θ = 2π/3.

FIG. 7. Frequency dependence of physical quantities of bogolon
junction at x = 0 for several values of Z with |�2L|/�1L = 0.9.
(a) The s-wave component pair amplitude, (b) the p-wave component
pair amplitude, (c) the LDOS of bogolons normalized by its value
of clean limit (�1L = �2L = 0), and (d) j(iωn). The line style in
(b)–(d) are shared with those in (a). The relative phase is chosen as
θ = 2π/3.

The absolute values of the pair amplitudes at x = 0 in (a)
and (b) become smaller as Z increases due to high barrier
potential.

Let us take a closer look at the LDOS of bogolons, which is given by

D(ω, x = 0) = 2m

πkF h̄2 Re
(ω + i�1L)�ret (ω)

Z2�ret (ω)2 + (ω + i�1L)2 + |�2L|2 cos2(θ/2)
. (54)

Figure 7(c) shows the LDOS at x = 0. The pseudogap for a
small value of Z [Z = 0 and 1 in Fig. 7(c)] changes into the
zero energy peak for a larger value of Z [Z = 3 in Fig. 7(c)],
which is proportional to the bulk value as shown in Eq. (55).
Indeed, in the limit of Z → ∞, we obtain

D(ω, x = 0) = 2m

πZ2kF h̄2 Re
ω + i�1L

�ret (ω)
= 1

Z2
Dbulk (ω, x = 0),

(55)

where Dbulk (ω) is the bulk DOS defined in Eq. (51). In this
limit, Eq. (55) is independent of θ and proportional to the
bulk DOS and decays with the factor 1/Z2. The appearance
of the bulk DOS in Z → ∞ limit is a common feature with
the s-wave SC junction [see Eq. (44)].

Let us proceed to consider J (x = 0), which is given by the
frequency summation of Fig. 7(d). To see the Z dependence,
we evaluate J (x = 0) for zero-temperature limit in the analyt-
ical expression:

J (x = 0) = −m|�2L|
2π h̄2

1

Z2 + 1

√
Z2 + 1

Z2 + cos2(θ/2)
sin θ ln

(
�1L

√
Z2 + 1 + |�2L|

√
Z2 + cos2(θ/2)

�1L

√
Z2 + 1 − |�2L|

√
Z2 + cos2(θ/2)

)
. (56)

Specifically in the limit of Z → ∞, we obtain

J (x = 0) = − m|�2L|
2π h̄2Z2

sin θ ln

(
�1L + |�2L|
�1L − |�2L|

)
. (57)

The θ dependence is determined by the factor sin θ , and J (x =
0) is proportional to 1/Z2 in the limit of β → ∞.

D. Comparison between bogolon junction
and s-wave SC junction

We have studied the bogolon junction with the bulk odd-
frequency pair and made a contrast against the conventional
s-wave SC with the bulk even-frequency pair. We summarize
the main results in Table I. The third column shows the prop-
erties of the bogolon junction, and the fourth column shows
those of the s-wave SC junction.
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At the interface, the even-frequency p-wave pair is induced
by the translational symmetry breaking for the bogolon junc-
tion, and the odd-frequency p-wave pair is induced for the
s-wave SC junction [rows (a) and (b)].

The bogolon junction has a zero-energy peak in the
LDOS in the bulk (θ = 0), whose height is given by
∼[1 − (|�2L|/�1L)2]−1/2, while the s-wave SC has a su-
perconducting gap [row (c)]. For θ = π , the LDOS of the
bogolon junction at the interface has a pseudogap with the
depth of ∼[1 − (|�2L|/�1L)2]1/2, which is the inverse of the
bulk DOS, while the s-wave SC has a delta-function behavior
due to the Andreev bound states [row (d)].

The rows (e) and (f) show the current phase relations of
the two cases, which have opposite signs due to the differ-
ent frequency dependence of the pair potential. For Z = 0
shown in row (e), the bogolon junction includes an additional
logarithmic factor compared to the s-wave SC junction. The
θ dependence becomes the same for both the junctions in
Z → ∞ limit as shown in row (f), except for the presence
of a minus sign in the bogolon junction.

In this way, the bogolon junction has the characteristic
features compared with the conventional s-wave SC junction.

V. QUASICLASSICAL GREEN’S FUNCTION

In the above, we have mainly focused on the Green’s
function at x = 0. On the other hand, since we consider the
nonuniform system, the unique properties of bogolons can
also be captured in the x dependence of the Green’s function.
While the McMillan Green’s function includes the rapidly
oscillating components with a characteristic scale of k−1

F ,
we focus on the quasiclassical Green’s function with slowly-
varying spatial components [106–108].

We construct the quasiclassical Green’s function by com-
bining the method in Refs. [119,120] and McMillan Green’s
function derived in Sec. II. We start by decomposing the
Green’s function as

Ĝ(iωn, x, x′) =
∑

αα′=±
Ĝαα′

(iωn, x, x′)eikF (αx−α′x′ ). (58)

The x dependence of each component Ĝαα′
(iωn, x, x′) does

not include rapidly oscillating contribution with a character-
istic scale of k−1

F , which is consistent with the picture of the
quasiclassical Green’s function. However, Ĝαα′

(iωn, x, x′) is
discontinuous at x = x′. Therefore, to satisfy the Eilenberger
equation [107,108], we define the continuous semiclassical
Green’s function as

ĝ±±(iωn, x) = ±i1̂ − 2vFτ̂
zĜ±±(iωn, x − 0+, x), (59)

where vF = h̄kF/m is a Fermi velocity [119,120].
Since the overall phase does not change the physical prop-

erties, we fix the phase on the left side as θL = 0. Then, from
Eq (59), we obtain the quasiclassical Green’s function for
x < 0 as

ĝ±±(iωn, x) = i

�L(iωn)
[�2Lsgn ωnτ̂

y + (iωn + i�1Lsgn ωn)τ̂ z

+ ã(∓)
out e−ikF (�L(iωn )/μ)x(±�L(iωn)τ̂ x

− i(iωn + i�1Lsgn ωn)τ̂ y + i|�2L|sgn ωnτ̂
z )].
(60)

The first line is a the bulk part, and the second line, which
is proportional to ã(∓)

out , describes the contributions from the
Andreev reflection. Using Eq. (60), we can evaluate the
physical quantities defined in Sec. II F in the quasiclas-
sical representations, whose specific forms are listed in
Appendix D. One can confirm that Eq. (60) satisfies the fol-
lowing Eilenberger equation [107,113,119,120]:

−ivF
∂

∂x
ĝ±±(iωn, x) = ± (iωn1̂ − �̂)τ̂ zĝ±±(iωn, x)

∓ ĝ±±(iωn, x)(iωn1̂ − �̂)τ̂ z. (61)

We can also check that ĝ±±(iωn, x) satisfies the normalization
condition

ĝ±±(iωn, x)2 = −1̂. (62)

One can extract the factor of spatial dependence from
Eq. (60) as

e−ikF (�L(iωn )/μ)x =exp(2
√

(ωn + �1Lsgn ωn)2 − |�2L|2x/h̄vF).

(63)

Since
√

(ωn + �1Lsgn ωn)2 − |�2L|2 is real, Eq. (63) does not
have an oscillating part and is suppressed with increasing dis-
tance from the interface. [The s-wave SC junction has similar
feature because

√
ω2

n + |�L|2 in Eqs. (C7) is also real.] Then,
the Green’s function converges to the bulk value for the limit
of x → −∞.

On the other hand, the spatial dependence of the retarded
Green’s function is extracted as

exp(−2i
√

(ω + i�1L)2 + |�2L|2 sgn ω x/h̄vF). (64)

In contrast to Matsubara form, Eq. (63), the above
quantity includes both damping and oscillating parts,
because

√
(ω + i�1L)2 + |�2L|2sgn ω with �1L > 0 has

both real and imaginary part. Especially for small en-
ergy [ω � (�2

1L − |�2L|2)/�1L], the oscillating part of

Eq. (64) reduces to exp(−2i�1L|ω|x/h̄vF

√
�2

1L − |�2L|2).
Namely, the quasiclassical Green’s function has oscillat-
ing components with the frequency-dependent length scale
k−1

F

√
�2

1 − |�2L|2μ/�1L|ω|, even though we have excluded
rapidly oscillating components with a period of k−1

F .
In the s-wave SC case [Eq. (C8)],

√
ω2 − |�L|2sgn ω is

real for |ω| > |�L| and purely imaginary for |ω| < |�L|.
This indicates that the LDOS has oscillation without dumping
in |ω| > |�L|, while it has dumping without oscillation in
|ω| < |�L|.

We define the characteristic decay length by taking the
limit of ω → 0 in Eq. (64), which is expressed as ξ =
h̄vF/

√
�2

1L − |�2L|2 . We have evaluated a similar quantity for
the bulk in Ref. [21], which is defined by the relative position
of two bogolons and hence corresponds to the pair radius. In
contrast, the length ξ in this paper is defined by the center of
mass coordinate of the Green’s function, which corresponds
to the coherent length. Nevertheless, we obtain the same form
for the two length scales.

Finally, we comment on the correlation between the LDOS
and the pair amplitude of bogolons in the bulk limit. The
second line of Eq. (60) for θ = 0 is zero. Then, Eq. (60)
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reduces to

ĝ±±(iωn, x) = f (iωn, x)τ̂ y + g(iωn, x)τ̂ z (65)

with

f (iωn, x) = �2Lsgn ωn√
(ωn + �1L)2 − |�2L|2

, (66)

g(iωn, x) = iωn + i�1Lsgn ωn√
(ωn + �1L)2 − |�2L|2

. (67)

Note that g(iωn, x) is purely imaginary, and f (iωn, x) is real,
which is a consequence of odd-frequency pairing. In this case,
the normalization condition is given by

f (iωn, x)2 + g(iωn, x)2 = −1. (68)

Since f (iωn, x) is real and g(iωn, x) is purely imaginary, if
| f (iωn, x)| increases, |g(iωn, x)| must also increase to satisfy
Eq. (68). Such correlation is consistent with the behavior
of the LDOS in Fig. 6. On the other hand, in the case of
s-wave SC with even-frequency pairing, both g(iωn, x) and
f (iωn, x) are purely imaginary. Hence, if | f (iωn, x)| increases,
|g(iωn, x)| decreases. This tradeoff relation corresponds to
the gap in the LDOS in the presence of the pair amplitude.
Although the correlation between the LDOS and the pair
amplitude is demonstrated for the bulk, we expect that it also
holds for nonuniform cases, as supported by the numerical
results in Sec. IV B 3.

VI. SUMMARY AND DISCUSSION

In this paper, we have studied superconductor Josephson
junctions with the Bogoliubov Fermi surface (BFS), utiliz-
ing the low-energy effective model of bogolons. Since the
bogolon Cooper pair arises from the self-energy effect, it is
necessary to determine the Green’s function satisfying the
Gor’kov equation. For the evaluation of the Green’s function,
we applied the McMillan’s method, with which the non-
Hermitian effective Hamiltonian Ĥ0(x) + �̂(iωn, x) needs
to be analyzed. We have also calculated the quasiclassical
Green’s function by eliminating rapidly oscillating compo-
nents with a scale k−1

F and revealed spatial dependencies.
We have compared the results with those of a conventional

spin-singlet s-wave superconductor and examined the unique
characteristics of bogolon Cooper pairs near the interface.
A central difference between the two cases is the frequency
dependences of the Cooper pairs. The bogolons form the
odd-frequency pair in the bulk and induce the even-frequency
pair at the interface. On the other hand, in the s-wave su-
perconductor, the even-frequency pair is realized in the bulk
and the odd-frequency pair is induced near the interface. This
difference leads to the different θ dependences of Green’s
function. As recapitulated in Table I, the bogolon Cooper pair
shows distinctive features in physical quantities such as the
LDOS and the current-phase relation.

We have studied properties of bogolons (such as bogolons’
LDOS, Cooper pairs, and quasiparticle current) in this pa-
per as a first step to understanding the junctions with the
BFS. To gain more quantitative insights relevant to existing
superconductors, the relation between physical quantities in
terms of bogolons and experimental observables needs to be
clarified. For example, the Josephson current should contain

the contributions from both the conventional one and the
bogolons near the BFS. To separate these contributions, we
need to consider the original electronic degrees of freedom,
which remains as a future work. Furthermore, a combination
of first principles calculations [37] with junctions presents an
intriguing avenue for future research [121,122]. Application
of the Usadel’s quasiclassical method [108,113] to analyze
diffusive systems is also a nontrivial and intriguing problem
to be explored.

ACKNOWLEDGMENTS

T.M. is grateful to R. Iwazaki for fruitful discussions. This
work was supported by JSPS with Grants-in-Aid for Sci-
entific research No. 23KJ0298 (T.M.), No. 23K17668 (Y.T.
and S.H.), No. 24K00583 (Y.T.), No. 21K03459 (S.H.), and
No. 23H01130 (S.H.). S.T. was supported by the Würzburg-
Dresden Cluster of Excellence ct.qmat, EXC2147, Project Id
390858490, the DFG (SFB 1170), and the Bavarian Min-
istry of Economic Affairs, Regional Development and Energy
within the High-Tech Agenda Project “Bausteine für das
Quanten Computing auf Basis topologischer Materialen.”

APPENDIX A: CORRESPONDENCE BETWEEN
BOGOLONS AND ORIGINAL ELECTRON

DEGREES OF FREEDOM

To see the origin of the pair potential of bogolons, we start
with the Hamiltonian of original electrons. We here consider
the impurity effect, which is significant in the low energy
region in the presence of the BFS [21]. Our bogolon model
is applicable to inversion symmetric superconductors with the
BFS [21], in the presence of both magnetic and nonmagnetic
impurities [37]. For concreteness, we employ the j = 3/2
model, which has been discussed in previous studies on the
superconductors with the BFS [3,4,16,17,29]. The impurity
potential part of the Hamiltonian is defined in terms of original
electrons:

Himp =
∑

i

∫
dr
∑

η

Uη(r − Ri )�c†(r)Ôη�c(r) (A1)

with �c(r) = (c3/2(r), c3/2(r), c1/2(r), c−1/2(r), c−3/2(r))T. In
the above expression, we consider the isotropic (η = 1) and
anisotropic (η = xy, yz, zx, z2, x2 − y2) scattering centers lo-
cated at Ri.

The operators of electrons and those of bogolons are con-
nected by the Bogoliubov transformation, which is given by

ckm = u∗
kmαk + v−k,mα

†
−k, (A2)

where ckm is a Fourier component of cm(r) in Eq. (A1). Using
this transformation, we rewrite Eq. (A1) as

Himp = 1

V

∑
k,q

ρqU1(k, q)α†
k+qαk

+ 1

V

∑
k,q

ρqU2(k, q)α†
k+qα

†
−k + H.c. + Const. (A3)

with

U1(k, q) =
∑

η

∑
m,m′

Uη(q)
[
uk+q,mOη

mm′u∗
k,m′

− v∗
k,mOη

mm′vk+q,m′
]
, (A4)
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U2(k, q) =
∑

η

∑
m,m′

Uη(q)uk+q,mOη

mm′v−k,m′ . (A5)

The full list of 4×4 matrices is defined by using the Ĵ matrix
in Ref. [17]. The particle number of bogolons is not conserved
because of the presence of U2(k, q). We here provide the
expression of the pair potential with the Born approximation
from Ref [21]:

�2k = 4πD0nimp〈U ∗
1 (q, k − q)U2(q, k − q)〉q, (A6)

where 〈· · · 〉q = ∫ dq · · · / ∫ dq1, nimp = V −1∑
i 1, and D0 is

a DOS at Fermi energy. Therefore we need to take into ac-
count U2(k, q) for the presence of the pair potential �2k. Since
the phase of the superconductor is given by arg uv, the phase
of �2 for bogolons is identical to the phase of the supercon-
ductor as discussed in the main text.

We note that a similar discussion is possible for the self-
consistent Born approximation [108] by considering that the
Green’s function is determined self consistently including the
anomalous Green’s function [21]. Although the frequency
dependence enters to the self-energies, the above conclusion
does not change.

APPENDIX B: MCMILLAN FORMALISM

In this Appendix, we briefly follow the formalism by
McMillan [30,97,100–105]. To begin with, we impose the
boundary condition for the Green’s function. For x < x′, the
boundary condition at x → ±∞ is given by

Ĝ(iωn, x, x′ → ∞) = Ĝ(iωn, x → −∞, x′) = 0, (B1)

while for x > x′, the condition is given by

Ĝ(iωn, x → ∞, x′) = Ĝ(iωn, x, x′ → −∞) = 0. (B2)

We chose the wave functions in Eq. (10) to satisfy Eqs. (B1)
and (B2) [30,97,100–105].

Although the coefficients α1, . . . , α4, β1, . . . , β4 are
uniquely determined by the boundary conditions Eqs. (16)
and (17), these are rewritten in a simpler form by using
Eqs. (B20) and (B21). Consequently, we obtain the following
forms [30,97,101–105]:

α1 = m(iωn + i�1L)

ikF h̄2�L(iωn)

c(−)
in

c(+)
in c(−)

in − d (+)
in d (−)

in

, (B3)

α2 = −m(iωn + i�1L)

ikF h̄2�L(iωn)

d (−)
in

c(+)
in c(−)

in − d (+)
in d (−)

in

, (B4)

α3 = −m(iωn + i�1L)

ikF h̄2�L(iωn)

d (+)
in

c(+)
in c(−)

in − d (+)
in d (−)

in

, (B5)

α4 = m(iωn + i�1L)

ikF h̄2�L(iωn)

c(+)
in

c(+)
in c(−)

in − d (+)
in d−

in

, (B6)

and

β1 = m(iωn + i�1L)

ikF h̄2�L(iωn)

c̃(−)
in

c̃(+)
in c̃(−)

in − d̃ (+)
in d̃ (−)

in

, (B7)

β2 = −m(iωn + i�1L)

ikF h̄2�L(iωn)

d̃ (−)
in

c̃(+)
in c̃(−)

in − d̃ (+)
in d̃ (−)

in

, (B8)

β3 = −m(iωn + i�1L)

ikF h̄2�L(iωn)

d̃ (+)
in

c̃(+)
in c̃(−)

in − d̃ (+)
in d̃ (−)

in

, (B9)

β4 = m(iωn + i�1L)

ikF h̄2�L(iωn)

c̃(+)
in

c̃(+)
in c̃(−)

in − d̃ (+)
in d̃ (−)

in

, (B10)

where we have assumed k±
L 	 k±

R 	 kF. Solving Eqs. (13)
and (14), we obtain the coefficients a(±)

out , a(±)
in , b(±)

out , b(±)
in ,

c(±)
out , c(±)

in , d (±)
out , and d (±)

in , which are given by

a(±)
out = �±±

LR �±∓
LR

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B11)

b(±)
out = −Z (Z ± i)�∓±

LL �∓±
RR

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B12)

c(±)
out = (±iZ − 1)�±∓

LR �∓±
LL

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B13)

d (±)
out = ±iZ�±±

LR �∓±
LL

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B14)

and

a(±)
in = �±±

RL �±∓
RL

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B15)

b(±)
in = −Z (Z ± i)�∓±

RR �∓±
LL

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B16)

c(±)
in = (±iZ − 1)�±∓

RL �∓±
RR

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

, (B17)

d (±)
in = ±iZ�±±

RL �∓±
RR

Z2�∓±
LL �∓±

RR − �∓±
LR �±∓

LR

(B18)

with

�ss′
rr′ = us

rv
s′
r′ − us′

r′v
s
r (B19)

and s, s′ = ±, r, r′ = L, R. We note that the coeffi-
cients for wave functions with tilde ã(±)

out , ã(±)
in , b̃(±)

out , b̃(±)
in ,

c̃(±)
out , c̃(±)

in , d̃ (±)
out , and d̃ (±)

in can be obtained by substituting
θ → −θ in a(±)

out , a(±)
in , b(±)

out , b(±)
in , c(±)

out , c(±)
in , d (±)

out , and d (±)
in , re-

spectively. For �1L = �1R and |�2L| = |�2R|, the coefficients
ã(±)

out and b̃(±)
out reduce to Eq. (25).

We here comment on the eigenequation of Eq. (12). Using
Eq. (19)–(21), we obtain the following relations:

ũ±
r u±

r = 1

2

(
1 ± �r (iωn)

iωn + i�1rsgn ωn

)
, (B20)

ṽ±
r v±

r = 1

2

(
1 ∓ �r (iωn)

iωn + i�1rsgn ωn

)
. (B21)

We choose the phase of the eigenvector such that u±
r is

given by

u±
r =
√√√√1

2

(
1 ± �r (iωn)

iωn + i�1r

)
(B22)

for the practical calculation. Then, v±
r , ũ±

r , and ṽ±
r are

uniquely determined under this choice.
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APPENDIX C: SPECIFIC EXPRESSION FOR s-WAVE SUPERCONDUCTOR JUNCTION

In this Appendix, we summarize the results for electrons in the s-wave SC as a reference for comparison with the results for
the bogolon junction. The basis is given by �c(x) = (c↑(x), c†

↓(x))T, where cσ (x) is an annihilation operator for the spin σ =↑,↓
electron. The self-energy is defined by

�̂(x) =
(

0 �(x)
�(x)∗ 0

)
(C1)

with

�(x) =
{
�L = |�L|eiθL (x < 0),
�R = |�R|eiθR (x > 0).

(C2)

Following the McMillan’s method discussed in Sec. II and Appendix B, we obtain the Green’s function as follows [30,97,
100–105,113]:

Ĝ(iωn, x, x′) = m

2ikF h̄2�L(iωn)

[(
eik+

L |x−x′| + b̃(+)
out e−ik+

L (x+x′ ))(iωn + �L(iωn) �L

�∗
L iωn − �L(iωn)

)

+ ã(+)
out e−ik+

L x+ik−
L x′
( |�L| eiθL [iωn + �L(iωn)]

e−iθL [iωn − �L(iωn)] |�L|
)

+ (e−ik−
L |x−x′| + b̃(−)

out eik−
L (x+x′ ))(iωn − �L(iωn) �L

�∗
L iωn + �L(iωn)

)

+ ã(−)
out eik−

L x−ik+
L x′
( |�L| eiθL [iωn − �L(iωn)]

e−iθL [iωn + �L(iωn)] |�L|
)]

(C3)

with

ã(±)
out (iωn) = −|�L|[iωn sin2(θ/2) ± i�L(iωn) sin(θ/2) cos(θ/2)]

Z2�L(iωn)2 + (iωn)2 − |�L|2 cos2(θ/2)
, (C4)

b̃(±)
out (iωn) = − Z (Z ± isgn ωn)�L(iωn)2

Z2�L(iωn)2 + (iωn)2 − |�L|2 cos2(θ/2)
. (C5)

We turn to the discussion of the quasiclassical representation, which corresponds to Sec. V for the bogolon junction. The
quasiclassical Green’s function is given by [120]

ĝ±±(iωn, x) = i

�L(iωn)

[
i�Lτ̂ y + iωnτ̂

z + ã(∓)
out e−ikF (�L (iωn )/μ)x(∓�L(iωn)τ̂ x + iωniτ̂ y + |�L|τ̂ z )

]
, (C6)

where we set θL = 0 as done for the bogolon junction in Sec. V. The spatial dependence is determined by the factor

exp(2
√

ω2
n + |�L|2x/h̄vF). (C7)

In the retarded Green’s function, the factor is given by

exp(−2i
√

ω2 − |�L|2sgn ωx/h̄vF). (C8)

Using Eq. (C6), we obtain the pair amplitudes fs(iωn, x) and fp(iωn, x) defined by Eqs. (D1) and (D2), which are given by

fs(iωn, x) = 2i�L

�L(iωn)
+
[

i(ã(+)
out − ã(−)

out ) + i(ã(+)
out + ã(−)

out )
iωn

�L(iωn)

]
e−ikF (�L (iωn )/μ)x, (C9)

fp(iωn, x) =
[

i(ã(+)
out + ã(−)

out ) − i(ã(+)
out − ã(−)

out )
iωn

�L(iωn)

]
e−ikF (�L (iωn )/μ)x. (C10)

We also calculate the LDOS and j(iωn, x) in quasiclassical representation. The LDOS is expressed as

D(ω, x) = − 1

π
Re

[
2(ω + i0+)

�ret (ω)
+ ã(+)

out,ret + ã(−)
out,ret

�ret (ω)
|�L|e−ikF (�ret (ω)/μ)x

]
, (C11)

where a(±)
out,ret is a retarded version of a(±)

out . j(iωn, x) defined by Eq. (D4) is given by

j(iωn, x) = |�L|
�L(iωn)

(ã(+)
out − ã(−)

out )e−ikF (�L (iωn )/μ)x. (C12)
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APPENDIX D: QUASICLASSICAL GREEN’S FUNCTION
FOR BOGOLON JUNCTION

In this Appendix, we list the specific form of the physical
quantities in the quasiclassical representations. The physical
quantities discussed in Sec. IV are expressed as the com-
bination of g++ and g−− [120]. The s-wave and p-wave
components of the pair amplitude are given by

fs(iωn, x) = [ĝ++(iωn, x) + ĝ−−(iωn, x)]12, (D1)

fp(iωn, x) = [ĝ++(iωn, x) − ĝ−−(iωn, x)]12. (D2)

The LDOS of bogolons and j(iωn, x) in the quasiclassical
representations are expressed as

D(ω, x) = − 1

π
Im [ĝ++(ω + i0+, x) + ĝ−−(ω + i0+, x)]11,

(D3)

j(iωn, x) = i

nd
[ĝ++(iωn, x) − ĝ−−(iωn, x)]11, (D4)

respectively.

Below, we list the expressions of physical quantities derived from the quasiclassical Green’s function in Eq. (60). The s-wave
and p-wave components of the pair amplitude in Eqs. (D1) and (D2) are reduced to

fs(iωn, x) = −2i�2sgn ωn

�L(iωn)
+
[
−(ã(+)

out − ã(−)
out ) − (ã(+)

out + ã(−)
out )

iωn + i�1Lsgn ωn

�L(iωn)

]
e−ikF (�L(iωn )/μ)x, (D5)

and

fp(iωn, x) =
[

(ã(+)
out + ã(−)

out ) + (ã(+)
out − ã(−)

out )
iωn + i�1Lsgn ωn

�L(iωn)

]
e−ikF (�L (iωn )/μ)x, (D6)

respectively. We note that ã(+)
out + ã(−)

out is an even-function with respect to frequency, while ã(+)
out − ã(−)

out is an odd-function.
Furthermore, comparing Eq. (D5) with Eq. (D6), the positions of two factors ã(+)

out + ã(−)
out and ã(+)

out − ã(−)
out are reversed. Therefore

we can check that Eq. (D5) corresponds to the odd-frequency pair amplitude, while Eq. (D6) corresponds to the even-frequency
pair amplitude even in the quasiclassical representation.

The LDOS of bogolons is given by

D(ω, x) = − 1

π
Re

[
2(ω + i�1L)

�ret (ω)
+ ã(+)

out,ret + ã(−)
out,ret

�ret (ω)
i|�2L|e−ikF (�ret (ω)/μ)x

]
, (D7)

where a(±)
out,ret is a retarded version of a(±)

out . j(iωn, x) is expressed as

j(iωn, x) = −|�2L|sgn ωn

2i�L(iωn)
(ã(+)

out − ã(−)
out )e−ikF (�L (iωn )/μ)x. (D8)
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