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Theoretical study of spin-fluctuation-mediated superconductivity in two-dimensional Hubbard
models with an incipient flat band

Tetsuaki Aida,1 Karin Matsumoto,1,* Daisuke Ogura,1,† Masayuki Ochi ,1,2 and Kazuhiko Kuroki1
1Department of Physics, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

2Forefront Research Center, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

(Received 3 June 2024; revised 5 August 2024; accepted 7 August 2024; published 19 August 2024)

One promising way to enhance superconductivity is to have coexisting wide and incipient narrow bands,
where the Fermi level intersecting the wide band lies just above the narrow band, by which finite-energy
spin fluctuations act as glue to mediate pair scattering. As an extreme case of the narrow band dispersion, we
investigate spin-fluctuation-mediated superconductivity in two-dimensional Hubbard models with an incipient
flat band. For all of the systems investigated in this study, the Kagome, Lieb, and bilayer square lattices with a flat
band, we find that spin-singlet pairing superconductivity is enhanced when the flat band is nearly fully filled, due
to the interband pair scattering even when the flat band becomes dispersive by correlation effects. Among these
models, enhancement of superconductivity is weak in the Lieb lattice, possibly because the density of states of
the wide band goes to zero at the Dirac point where the flat and wide bands intersect. Also, when the electron
density is smaller so that the flat band approaches half-filling, ferromagnetic spin fluctuations and spin-triplet
pairing arises, which does not develop strongly compared to the case of the spin-singlet pairing for the incipient
band situation.
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I. INTRODUCTION

Providing theoretical guidelines for realizing high Tc su-
perconductivity is one of the most challenging problems in
the field of condensed matter physics. A difficulty in realizing
high Tc superconductivity lies in that while strong pairing
interaction in itself favors superconductivity, the origin of the
strong pairing interaction usually leads to strong renormaliza-
tion of the quasiparticles, which degrades superconductivity.
One way to circumvent the problem [1] is to consider a system
consisting of wide and narrow bands and place the Fermi level
so that it intersects the wide band, but it lies just above the
narrow band. In such a system, assuming an on-site repulsive
interaction, finite-energy spin fluctuations arise and act as glue
to mediate pair scattering between the narrow and wide bands,
resulting in a so-called s±-wave superconductivity, where the
sign of the superconducting gap changes between the two
bands. While the glue itself is strong due to the large density
of states (DOS) of the narrow band, the renormalization of the
quasiparticles is not so strong because the Fermi level does
not intersect the narrow band. Nowadays, such a band (not
necessarily a narrow band) that lies just below (or above) the
Fermi level is called the incipient band [2–17].

An extreme case in the above-mentioned situation is to
have a perfectly flat band as an incipient narrow band. In
fact, there have been various studies on the occurrence and/or
enhancement of superconductivity by a combination of wide
and incipient flat bands [11,14,18–22]. Among those are
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studies on one-dimensional ladder [11] and two-dimensional
bilayer [14] models, where one of the bands becomes per-
fectly flat when the interlayer (or interchain in the ladder
case) diagonal hoppings are equal to the intralayer (intrachain)
nearest-neighbor hoppings. Also among those are the studies
on the Hubbard model on a one-dimensional diamond chain
lattice [11,18], which naturally gives rise to a flat band by
simply connecting the neighboring sites with hoppings having
identical values. There, it was indeed shown that supercon-
ductivity is enhanced when the Fermi level intersects the wide
band and lies just above the flat band.

As an extension along this line, in the present paper,
we study the Hubbard model on two-dimensional lattices in
which coexisting wide and flat bands arise by simply con-
necting the nearest-neighbor sites with identical hoppings,
namely, the Kagome and Lieb [23] lattices. For compari-
son, we also revisit the Hubbard model on a bilayer square
lattice having diagonal interlayer hoppings that are equal to
the intralayer nearest-neighbor hoppings, where the relative
position between the wide and flat bands can be varied by
the interlayer hopping perpendicular to the planes. Applying
the fluctuation exchange (FLEX) approximation to the models
to obtain the renormalized Green’s function and solving the
linearized Eliashberg equation for spin-fluctuation-mediated
superconductivity, we discuss the condition that favors su-
perconductivity. In all the systems studied, we find that
spin-singlet pairing superconductivity is enhanced when the
flat band is (nearly) fully filled, while it is degraded when
the electron density is too large so that the Fermi level lies
far away from the flat band. Among these models, enhance-
ment of superconductivity is weak in the Lieb lattice, possibly
because the density of states of the wide band goes to zero
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Bilayer Kagome Lieb(a)

(b) Bilayer Kagome Lieb

FIG. 1. (a) Real-space structure of the bilayer square lattice, the
Kagome lattice, and the Lieb lattice. (b) Tight-binding band struc-
tures of these lattices.

at the Dirac point where the flat and wide bands intersect.
Also, when the electron density is smaller so that the flat band
approaches half-filling, ferromagnetic spin fluctuations arise
as expected [23,24], and in this case, not only the spin-singlet
pairing superconductivity is strongly suppressed, but also a
tendency towards spin-triplet pairing arises [25], which does
not develop strongly compared to the case of the spin-singlet
pairing for the incipient band situation.

The present study is purely theoretical, and, at least at
present, we do not have any actual materials in mind. We
do note, however, that recently, superconductivity in actual
materials having Kagome lattice structure has attracted much
attention [26–31]. In particular, for LaRu3Si2 [26–28], which
possesses a relatively high Tc of ∼ 7 K, the relevance of the
nearly flat band that lies somewhat above the Fermi level has
been discussed [28].

II. METHODS

We study the two-dimensional Hubbard model of elec-
trons,

H =
∑

i, j,R1,R2,σ

tiR1 jR2 c†
i,R1,σ

c j,R2,σ + U
∑
i,R

ni,R,↑ni,R,↓, (1)

for three lattices: the bilayer square lattice, the Kagome lattice,
and the Lieb lattice, which are depicted in Fig. 1(a). Here, i
( j), R, σ , t , and U denote a site in the unit cell, cell, spin,
hopping, and on-site Coulomb interaction, respectively. We
assume that one orbital is defined at each site.

Tight-binding Hamiltonian defined as the first term of
Eq. (1) can be written as

H0 =
∑

i, j,k,σ

εk,i, jc
†
i,k,σ

c j,k,σ (2)

in momentum space by Fourier transformation, where k =
(kx, ky) denotes a Bloch wave vector. For the bilayer square
lattice, the above matrix ε̂k(= εk,i, j ) reads

ε̂k =
(

2t (cos kx + cos ky) 2t ′(cos kx + cos ky) + t⊥
2t ′(cos kx + cos ky) + t⊥ 2t (cos kx + cos ky)

)

(3)

by considering the intralayer nearest-neighbor hopping t , in-
terlayer vertical hopping t⊥, and interlayer diagonal hopping
t ′, which are shown in Fig. 1(a). Two eigenstates of the matrix
ε̂k are as follows:

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1

−1

)
. (4)

The eigenvalues are 2(t ± t ′)(cos kx + cos ky) ± t⊥ for the
states |±〉, respectively. In this study, we focus on the case
of t ′/t = 1, by which the eigenvalues come down to

εk,+ = 4t (cos kx + cos ky) + t⊥ (5)

εk,− = −t⊥, (6)

where one of these two bands, εk,−, has flat dispersion.
This flat dispersion originates from the quantum interference
caused by t = t ′. Similarly, it is well known that a flat band
appears also in Kagome and Lieb lattices with the nearest-
neighboring hopping. Tight-binding band dispersions of the
three models investigated in this study are shown in Fig. 1(b).

To investigate spin-fluctuation-mediated superconductiv-
ity in the Hubbard model, we adopt FLEX approximation
[32,33] combined with the linearized Eliashberg equation. Us-
ing the self-energy �(k, iωn) calculated in FLEX where ring
and ladder diagrams are considered, the linearized Eliashberg
equation reads

λ�l,l ′ (k, iωn) = −T

N

∑
k′,n′,l1,l2,l3,l4

�ll1l4l ′[k − k′, i(ωn − ωn′ )]

× Gl1l2 (k′, iωn′ )�l2l3 (k′, iωn′ )Gl4l3

× (−k′,−iωn′ ), (7)

where T , N , �, �, G, λ are the absolute temperature, the
number of cells, the gap function, the pairing interaction,
the renormalized Green’s function, and the eigenvalue of the
linearized Eliashberg equation, respectively. We regard λ cal-
culated in a fixed temperature as the quantity representing how
high the superconducting critical temperature Tc of the system
is. We use U/t = 4, 2 × 4096 Matsubara frequencies, and a
32 × 32 k mesh in FLEX calculations unless noted.

In the following section, we will show the absolute value
of the renormalized Green’s function, |G(k, iω0)|, where ω0 =
iπkBT is the lowest Matsubara frequency, because the peak of
|G(k, iω0)| approximately represents the Fermi surface after
including electron correlation effects. We will also show the
trace of the spin susceptibility, Tr[χS], defined as follows:

Tr[χS](q) =
∑

l1,l2,l3,l4

χ
(0)
l1,l2,l3,l4

(q)[1 − Û χ̂ (0)(q)]−1
l3,l4,l1,l2

, (8)

where (Û )l1,l2,l3,l4 = Uδl1,l2δl1,l3δl1,l4 and

χ
(0)
l1,l2,l3,l4

(q) = −T

N

∑
k,n

Gl1l3 (k, iωn)Gl4l2 (k + q, iωn), (9)

to investigate the spin fluctuation of the system. We call the
maximum eigenvalue of Û χ̂ (0)(q) the Stoner factor.
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FIG. 2. Tight-binding band dispersions for the bilayer square
lattice with t⊥/t = 1, 2.5, 4.

III. RESULTS AND DISCUSSIONS

A. Bilayer square lattice (t ′/t = 1)

We start from the bilayer square lattice satisfying the
flat-band condition, t ′/t = 1. Figure 2 presents the band dis-
persion of the tight-binding model with several values of t⊥/t .
As seen in Eq. (6), a large t⊥/t pushes down the flat band
and t⊥/t = 4 makes the flat band touching with the dispersive
band at the M point.

Calculated results of the linearized Eliashberg equation for
T/t = 0.01 are shown in Fig. 3. In Fig. 3(a), we find a peak
structure of the eigenvalue λ against the band filling n for
each t⊥/t . Here, the band filling n is defined as the number
of electrons per spin per unit cell throughout the paper.

To investigate the peak of λ, the absolute value of the renor-
malized Green’s function |G(kx, ky, iω0)|, the gap function
�(kx, ky, iω0), and the trace of the spin susceptibility Tr[χS]

are shown for (t⊥/t = 1, n = 1.21) in Figs. 3(b)–3(f), and for
(t⊥/t = 4, n = 1.01) in Figs. 3(g)–3(k). For all these quanti-
ties, those at the lowest Matsubara frequency (ω0 = iπkBT
for |G| and �, 0 for χS) are presented as mentioned in Sec. II.
In addition, |G| and � are shown in the band basis, e.g.,
�++ = 〈+|�̂|+〉. We note that the flat band is retained even
in the presence of electron correlations in this model owing
to the lattice symmetry as shown in the Appendix, i.e., |±〉,
which are the eigenstates of ε̂k, are also the eigenstates of
ε̂k + �̂(k, iωn).

For both cases of (t⊥/t = 1, n = 1.21) and (t⊥/t = 4, n =
1.01), we find several common features. First, the flat band
persists against the electron correlation effects as we have
mentioned above, which is verified by the k-independent value
of |G−−|. In addition, considering the band filling and a rel-
atively small |G−−| compared with the peak of |G++|, we
can say that the flat band is incipient, i.e., the Fermi level is
close to but does not cross the flat band. We can also find
that the spin susceptibility Tr[χS] does not have a clear peak
in momentum space. The gap function � is s-like for each
band while it clearly changes a sign between two bands, which
means that the interband pair scattering enhances supercon-
ductivity in this system. Since the flat band does not cross
the Fermi level, the finite-energy spin fluctuation plays a role
in this enhancement. One difference between (t⊥/t = 1, n =
1.21) and (t⊥/t = 4, n = 1.01) is that the size of the Fermi
surface of the dispersive band is much smaller for the latter,
as is naturally expected from the noninteracting band disper-
sion. As a result, the eigenstate of the linearized Eliashberg
equation, λ, is suppressed for the latter.
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FIG. 3. Calculation results of the FLEX + linearized Eliashberg equation for the bilayer square lattice satisfying the flat-band condition,
t ′ = t , for T/t = 0.01. (a) The eigenvalue λ against the band filling n using several values of t⊥/t . (b), (c) The absolute value of the renormalized
Green’s function |G(kx, ky, iω0)|, (d), (e) the gap function �(kx, ky, iω0), and (f) the trace of the spin susceptibility Tr[χS] for (t⊥/t = 1, n =
1.21). |G| and � are shown with the band representation (see the main text). (g)–(k) Those for (t⊥/t = 4, n = 1.01). (l), (m) −π−1Im G(iω0)
for G++ (open blue squares) and G−− (filled red circles) together with λ (gray crosses) against the band filling n for (l) t⊥/t = 1 and (m)
t⊥/t = 4.
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(arb. units)
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FIG. 4. Calculation results of the FLEX + linearized Eliashberg equation for the Kagome lattice. (a) The eigenvalue λ against the band
filling n for several values of T/t . Spin-singlet and triplet solutions are shown with red solid and blue dotted lines, respectively. (b) Stoner
factor against the band filling n. (c), (d) The absolute value of the renormalized Green’s function |G(kx, ky, iω0)|, (e), (f) the gap function
�(kx, ky, iω0), and (g) the trace of the spin susceptibility Tr[χS] for the spin-singlet pairing solution with (T/t = 0.01, n = 0.97). |G| and �

are shown with the band representation (see the main text). (h) −π−1Im G(iω0) for G11 (filled red circles) and G22 (open blue squares) together
with λ (gray crosses) against the band filling n for spin-singlet pairing solutions at T/t = 0.01. (i) � for the first band (i.e., the flat band) and
(j) Tr[χS] for the spin-triplet pairing solution with (T/t = 0.01, n = 0.60). The first Brillouin zone is shown with black lines in (c)–(g) and
(i)–(j).

These features were pointed out in Ref. [14]. Also, we
verify our view by seeing

− 1

π
Im G(iω0) ≡ − 1

πN

∑
k

Im G(k, iω0), (10)

which can be approximately regarded as DOS at the Fermi
level, as shown in Figs. 3(l) and 3(m). A 64 × 64 k mesh is
used for these figures. These plots clearly show that λ has a
peak when the flat band becomes incipient. A difference in
the dispersive-band DOS between t⊥/t = 1 and 4 is also clear.
Referring to these observations, from the next section, we
will show calculation results for the Kagome and Lieb lattices
and discuss commonalities and differences among these three
lattices having a flat band.

We also note that, for the bilayer square lattice, we cannot
get a spin-triplet pairing solution of the linearized Eliashberg
equation. Since it is well known that the flat band can enhance
the ferromagnetism, we will check the possibility of the spin-
triplet pairing for the Kagome and Lieb lattices.

B. Kagome lattice

Figure 4 presents calculation results of the linearized
Eliashberg equation for the Kagome lattice. As shown in
Fig. 4(a), we get both spin-singlet and triplet pairing states
around n ∼ 1 and 0.5, respectively. These two band fillings
correspond to the situations where the flat band is almost fully
filled or around half-filled, respectively.

First, we discuss the spin-singlet solutions. The situation
is roughly consistent with that for the bilayer square lattice;
superconductivity is enhanced around the band filling where
the flat band is fully filled. It is also noteworthy that the Stoner
factor, the maximum eigenvalue of Û χ̂ (0)(q), is relatively
small, ∼0.9 at n ∼ 1, as shown in Fig. 4(b). This is a natural

feature of superconductivity enhanced by the incipient nar-
row band where the finite-energy spin fluctuations rather than
the zero-energy spin fluctuations enhance superconductivity.
However, we find some differences between the bilayer square
lattice and the Kagome lattice. To begin with, the flat band
is no longer retained in the presence of electron correlations.
This is seen in the renormalized Green’s functions shown in
Figs. 4(c) and 4(d) for (T/t = 0.01, n = 0.97). Here, the band
indices 1 and 2 are assigned for the eigenstates with the lowest
and the second lowest eigenenergies for ε̂k + [�̂(k, iω0) +
�̂†(k, iω0)]/2, respectively. The Green’s function for the third
band is much far from the Fermi level, and thus is not shown.
A sizable k dependence of |G11| representing that the flatness
of the band dispersion is broken, which is clearly different
from the k-independent |G−−| for the bilayer square lattice
shown in Figs. 3(c)–3(h). This is naturally expected because
it is well known that distant hopping breaks the flat band in
the Kagome lattice (see Appendix).

In addition, peak values of |G11| and |G22| are comparable,
which suggests that both of two bands form the Fermi surface
around the � point. In this sense, the situation is not incip-
ient in a strict sense that the Fermi level crosses the narrow
(originally flat) band. However, we call that this narrow band
is incipient, in somewhat extended meaning that the finite-
energy spin fluctuations strongly enhance superconductivity
where the corresponding band dispersion is almost fully oc-
cupied. In fact, the gap function presenting in Figs. 4(e) and
4(f) does not change its sign on the Fermi surfaces for two
bands, i.e., � > 0 around the � point for the two bands.
Here, we infer the position of the Fermi surface from |G|.
Therefore, neither interband nor intraband zero-energy pair
scattering, i.e., pair scattering on the Fermi surface, can en-
hance superconductivity. Thus, a sharp enhancement of λ for
the spin-singlet pairing shown in Fig. 4(a) should originate
from the finite-energy spin fluctuation. This is also inferred
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FIG. 5. Calculation results of the FLEX + linearized Eliashberg equation for the Lieb lattice. (a) The eigenvalue λ against the band filling
n for several values of T/t . Spin-singlet and triplet solutions are shown with red solid and blue dotted lines, respectively. (b), (c) The absolute
value of the renormalized Green’s function |G(kx, ky, iω0)|, (d), (e) the gap function �(kx, ky, iω0), and (f) the trace of the spin susceptibility
Tr[χS] for the spin-singlet pairing solution with (T/t = 0.003, n = 1.06). |G| and � are shown with the band representation (see the main
text). (g) −π−1Im G(iω0) for G11 (open blue squares) and G22 (filled red circles) together with λ (gray crosses) against the band filling n for
spin-singlet pairing solutions at T/t = 0.003. (h) � for the second band (i.e., the flat band) and (i) Tr[χS] for the spin-triplet pairing solution
with (T/t = 0.003, n = 1.18).

from the relatively small Stoner factor as mentioned in the
previous paragraph.

Considering the sign of the gap function, there are two
possible origins that can enhance spin-singlet superconduc-
tivity. One is the intra-narrow-band pair scattering, and the
other one is the interband pair scattering between two bands.
By focusing on the peak of the spin susceptibility shown
in Fig. 4(g), we can find the following scattering processes.
For the intra-narrow-band pair scattering, the gap function of
the narrow band shown in Fig. 4(e) indeed changes its sign
between the � point (� > 0) and the M point (� < 0). Also
for the interband pair scattering, the gap function near the �

point for the wide band [� > 0 as shown in Fig. 4(f)], which is
close to the Fermi level, and that near the M point for the nar-
row band [� < 0 as shown in Fig. 4(e)] have different signs.
The question here is which origin is mainly responsible for
superconductivity. We will return to this problem in Sec. III D.

We also calculate −π−1Im G(iω0) using a 64 × 64 k
mesh as shown in Fig. 4(h). This plot clearly shows that
λ has a peak when the narrow band (the first band) is al-
most fully filled, by which our view described above is
verified.

Next, we discuss the spin-triplet paring solutions. The
q = 0 ferromagnetic spin fluctuation and the resulting f -
wave superconductivity are observed in Figs. 4(i) and 4(j) for
(T/t = 0.01, n = 0.60). We note that a half-filled flat band
suffers from extremely strong electron correlation effects, for
which FLEX might not be validated. We do not go into details
for the spin-triplet pairing solutions in this study considering
the limitation of FLEX. Nevertheless, the possible crossover
between the spin-triplet pairing for n much smaller than one
and the spin-singlet pairing driven by the incipient narrow
band is interesting.

C. Lieb lattice

Figure 5 presents calculation results for the Lieb lattice.
The situation is very similar to that for the Kagome lattice,
except for that the temperature giving a comparable λ is much
lower in the Lieb lattice, i.e., superconductivity is not so
favored.

In Fig. 5(a), we find a peak structure of λ for the spin-
singlet pairing near the band filling n ∼ 1, which lies in the
incipient-narrow-band regime. The spin-triplet pairing solu-
tion grows when the number of electrons occupying the flat
band increases. Here, we only investigate 0 < n < 1.5 be-
cause of the electron-hole symmetry of this system [see, Fig. 1
(f)].

For the spin-singlet-pairing solution, we show the renor-
malized Green’s function, gap function, and spin suscepti-
bility for (T/t = 0.003, n = 1.06), in Figs. 5(b)–5(f). The
band indices 1 and 2 are again assigned for the eigenstates
with the lowest and the second lowest eigenenergies for ε̂k +
[�̂(k, iω0) + �̂†(k, iω0)]/2, respectively. Alike the Kagome
lattice, we find that the flat band, indexed as band 2, becomes
dispersive by including electron correlation effects. This is
natural considering the well-known fact that the flat band in
the Lieb lattice is also broken by including distant hopping.

As a result, sizable electrons are doped in the flat band,
where the flat band is not incipient in the strict sense of
meaning. On the other hand, the sign of the gap function again
shows that the zero-energy spin fluctuation cannot enhance su-
perconductivity because of the same sign of the gap functions
for two bands near the M point, where the Fermi level crosses
these bands. Thus, finite-energy spin fluctuation should play
a role in enhancing λ, by which we still call this situation the
incipient-narrow-band regime.
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Kagome Lieb(a) (b)

FIG. 6. The eigenvalue λ of the linearized Eliashberg equa-
tion for spin-singlet pairing solutions using a transformed self energy
�̃ (α) (see the main text) for (a) the Kagome and (b) the Lieb lattices,
respectively. T/t = 0.01 and 0.003 were used for the Kagome and
the Lieb lattices, respectively.

Alike the Kagome lattice, both intra-narrow-band pair
scattering and interband pair-scattering can enhance super-
conductivity. Both pair scatterings are consistent with the
peak of the spin susceptibility shown in Fig. 5(f), developing
at around the X point (π , 0) and (0, π ). For example, the
intra-narrow-band pair scattering between (0, π ) and (π , π )
changes the sign of the gap function �22 in Fig. 5(e). The gap
function for the wide band �11 at (π , π ) and �22 at (0, π ) also
have the opposite signs as shown in Figs. 5(d) and 5(e).

We also calculate −π−1Im G(iω0) using a 64 × 64 k mesh
as shown in Fig. 5(g). This plot clearly shows that λ has a
peak when the narrow band (the second band) begins to be
occupied, which again verifies our view described above.

As for the spin-triplet-pairing solution, we show calcu-
lation results for (T/t = 0.003, n = 1.06) in Figs. 5(h) and
5(i). The ferromagnetic spin susceptibility is prominent, and
the gap function is a p wave. We note that, because of the
C4 symmetry of the system, a pairing function rotated by
90 degrees for Fig. 5(h) is also a solution of the linearized
Eliashberg equation with the same eigenvalue.

D. Interband and intraband pair scatterings

For the Kagome and Lieb lattices, it is unclear which plays
an important role in enhancing superconductivity, the intra-
narrow-band pair scattering or the interband pair scattering.
To answer this question, we define a transformed self-energy,

�̃
(α)
i j =

{
Re�i j + αIm�i j i = j = i0
�i j otherwise , (11)

where i0 is the wide band index. Namely, the imaginary part
of the self energy for the wide band component is selectively
changed. By using �̃(α), we recalculate the renormalized
Green’s function, the susceptibilities, and the pairing interac-
tion, and then solve the linearized Eliashberg equation to get
λ as shown in Figs. 6(a) and 6(b) for the Kagome and Lieb
lattices, respectively. In both lattices, λ is strongly suppressed
by using α > 1, which means that the short lifetime of the
wide-band electrons is detrimental for superconductivity. Al-
though the exact decomposition of the self-energy between
two bands is not possible in these models, this result suggests
that the interband pair scatterings are mainly responsible for
the enhancement of superconductivity.

TABLE I. Maximum λ for spin-singlet pairing using T/t = 0.01
for each lattice.

Lattice λ band filling n

bilayer square (t⊥/t = 1) 1.33 1.21
bilayer square (t⊥/t = 2) 1.36 1.11
bilayer square (t⊥/t = 3) 1.11 1.03
bilayer square (t⊥/t = 4) 0.51 1.01
Kagome 0.59 0.97
Lieb 0.34 1.04

E. Comparison among two-dimensional lattices with a flat band

We found that the interband pair scattering between the
incipient flat and wide bands enhances spin-singlet supercon-
ductivity in all the three models investigated in this study.
It is interesting that the incipient flat band robustly en-
hances superconductivity. On the other hand, Tc seems much
different among these three models. By using T/t = 0.01,
peak eigenvalues λ with respect to the band filling are com-
pared in Table I.

To interpret the difference in λ, we raise some differences
among these models as follows. First, it seems that large DOS
of the dispersive band at the Fermi level is favorable for su-
perconductivity. While the bilayer square and Kagome lattices
have a similar two-dimensional DOS near the band edge, DOS
goes to zero at the Dirac point where the flat and wide bands
intersect for the Lieb lattice, which is considered to suppress λ

for the Lieb lattice. Second, the flat band becomes dispersive
for the Kagome and Lieb lattices while it remains flat for
the bilayer square lattice. However, at present, it is unclear
whether the warping of the flat band is detrimental for super-
conductivity, which is an important future issue. Third, the
real-space overlap between the flat-band and wide-band wave
functions is different among these models, while it should be
important because the on-site U interaction is a source of spin
fluctuation. For example, in the Lieb lattice, the flat-band state
has zero weight on the vertex site, while a half of the wide-
band-state weight lies on the vertex site in the tight-binding
model, which can be another source that suppresses λ.

IV. CONCLUDING REMARKS

We have investigated spin-fluctuation-mediated super-
conductivity in two-dimensional Hubbard models with an
incipient flat band. For all the systems investigated in this
study, the Kagome, Lieb, and bilayer square lattices with
a flat band, we have found that spin-singlet pairing super-
conductivity is enhanced when the flat band is nearly fully
filled, due to the interband pair scattering even when the flat
band becomes dispersive by correlation effects. Among these
models, enhancement of superconductivity has been shown to
be weak in the Lieb lattice, possibly because the density of
states of the wide band goes to zero at the Dirac point where
the flat and wide bands intersect. Also, when the electron
density is smaller so that the flat band approaches half-filling,
ferromagnetic spin fluctuations and spin-triplet pairing have
found to arise, while the spin-triplet pairing does not develop
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strongly compared to the case of the spin-singlet pairing for
the incipient band situation.

Possible relation of the present theoretical study to the
actual superconducting materials having (nearly) flat bands
would serve as an interesting future study. Apart from taking
into account realistic band structures, extensions towards con-
sidering more realistic interactions can also be an interesting
problem. In the present study, we have concentrated on sys-
tems with only the on-site repulsion U , but we may consider
models that include off-site interactions. Off-site interactions
are known to suppress spin fluctuations in general, so the
eigenvalue of superconductivity is likely to be reduced com-
pared to the cases with only the on-site U . Nevertheless, we
speculate that even in the presence of the off-site interactions,
the tendency that superconductivity is enhanced when the flat
band is incipient is likely to remain, considering the physics
involved here, i.e., the large pairing magnitude of the glue
due to the large density of states vs. the large renormalization
effect when the Fermi level is within the flat band.

Another possible extension is to consider models with
multiple orbitals per site, in which even just the on-site in-
teractions would include the intraorbital U , interorbital U ′,
Hund’s coupling JH , and the pair hopping Jpair. In fact, some
of the present authors have studied a multiorbital Hubbard
model on the Lieb lattice [34] as a model for a new type
of cuprate superconductor Ba2CuO3+δ [35]. In this case, the
flatness of the band is lost due to the interorbital hybridization,
but bands with different orbital character, i.e., a relatively wide
dx2−y2 and a somewhat narrow d3z2−r2 bands appear near the
Fermi level. There also, we have found that superconductivity
is strongly enhanced when the d3z2−r2 band is incipient. We
have further extended this study to cases where there is only
one site per unit cell but multiorbitals per site, and also found
that the coexistence of wide dx2−y2 and somewhat narrow
incipient d bands results in a similar enhancement of super-
conductivity [36,37]. These results appear to be in accord with
the conclusion reached in the present study, but it will be an
interesting future problem to investigate how the interorbital
interactions U ′, JH and Jpair would affect the present scenario
in cases where wide and flat (or narrow) bands originating
from the same orbital coexists near the Fermi level.

Speaking of intersite or interorbital interactions, these
interactions themselves can induce charge and/or orbital fluc-
tuations, which may also mediate unconventional Cooper
pairing. Investigating whether incipient flat band situations
are favorable for such unconventional pairings other than the
spin-fluctuation-mediated one also serves as an interesting
future study.
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APPENDIX: ROBUST FLAT BAND AGAINST ELECTRON
CORRELATION EFFECTS IN THE BILAYER

SQUARE LATTICE (t = t ′)

We prove that the flat band is robust against electron cor-
relation effects in the bilayer square lattice with t = t ′. The
model Hamiltonian is invariant against an exchange of two
sites (R, 1) and (R, 2) for an arbitrary R = (Rx, Ry). For ex-
ample, for R′ = (Rx − 1, Ry ), t(R,1),(R′,1) = t = t ′ = t(R,2),(R′,1)
holds. In other words, this site exchange interchanges t and
t ′ terms, which does not change the Hamiltonian if t = t ′.
Under this symmetry, any function fi j (R) ≡ f(R,i),(0, j) where
1 � i, j � 2 are the site indices in the unit cell satisfies

f11(R) = f12(R) = f21(R) = f22(R) (A1)

for arbitrary R �= 0. We note that, for R = 0, the site exchange
only guarantees f11(0) = f22(0) and f12(0) = f21(0). Thus,
the Fourier transform of this function, fi j (k) satisfies

f11(k) = f22(k) = f12(k) + c = f21(k) + c, (A2)

where the constant c originating from f11(0) − f12(0) does not
depend on k.

Therefore, supposing that the symmetry is not broken by
including electron correlation effects, the self-energy has the
following form,

�̂(k, iωn) =
(

�12(k, iωn) + c �12(k, iωn)
�12(k, iωn) �12(k, iωn) + c

)
,

(A3)
which is the same structure as the tight-binding Hamiltonian.
Then, the state |−〉 defined in Eq. (4) is an eigenstate of the
self energy with the k-independent eigenvalue:

�̂(k, iωn)|−〉 = c|−〉. (A4)

Because |−〉 is the flat band eigenstate of the tight-binding
Hamiltonian ε̂k, the renormalized Green’s function Ĝ(k, z) =
((z + μ)Î − ε̂k − �̂(k, z))−1 has an k-independent pole z,
which means that the flat band persists against electron cor-
relation effects. We also note that the state |+〉 representing
the dispersive band is also an eigenstate of ε̂k + �̂(k, z) while
its eigenvalue depends on k.

We note that electron correlation effects can break the flat
band in Lieb and Kagome lattices as we have seen in the main
text. In fact, it is well known that additional distant hopping
amplitudes break the flat band in these tight-binding models.
This fact means that a corresponding self-energy contribution
will break the flat band.
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