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Mean-field study of superconductivity in the t-J square lattice model with three-site hopping
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It remains an open question whether the two-dimensional single-band pure Hubbard model and its related
pure t-J model truly capture the superconducting order in cuprates. Recent numerical studies on this issue have
raised a notable disparity in superconducting order between the pure Hubbard model and the pure t-J model.
Inspired by these works, we investigate the role of the three-site hopping term in d-wave superconductivity,
such a term is usually neglected in the effective Hamiltonian of the Hubbard model, although its amplitude
is of the same order as the superexchange coupling J in the t-J model. Our slave-boson mean-field solution
demonstrates the suppression of d-wave superconducting order by incorporating the three-site hopping term,
consistent with numerical observations by the density-matrix renormalization group. This suppression could
be understood as a result of competition between superexchange interaction and three-site hopping, the former
favors d-wave pairing while the latter favors s-wave pairing. We also discussed its role in quasiparticle dispersion
and boson-condensation temperature. Our findings may offer an alternative understanding of the recent numerical
contrasting findings in the strong-coupling regime: the absent or weak superconductivity in the pure Hubbard
model, while the robust superconductivity in the t-J model without including the three-site hopping term.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity in cuprates, numerous theories have been developed to
understand their correlation physics [1–4]. It is widely ac-
knowledged that the essential physics of cuprates can be
described by the three-band Hubbard model [5]. Within
the Zhang-Rice (ZR) singlet paradigm [6], the low-energy
effective model simplifies to a one-band t-J type model
[6–8]. Despite the consensus that the correlation effects in
copper-oxygen planes play a pivotal role in the emergence of
d-wave superconductivity [9–11], it remains an open question
whether the two-dimensional (2D) pure Hubbard model and
its related pure t-J model truly capture the superconducting
(SC) order in cuprates [3,12–16].

Recent numerical studies on this issue have raised a no-
table disparity in SC order in the strong-coupling regime
between the pure Hubbard model and the pure t-J model.
Specifically, numerical simulations utilizing density-matrix
renormalization group (DMRG) and quantum Monte Carlo
(QMC) suggest the absence of SC order in the pure Hubbard
model over a range of doping δ ≈ 0.1–0.2 and interaction
strength U/t ≈ 6–8 [17]. By contrast, more recent DMRG
calculations of the pure t-J model [18] demonstrate the robust
SC order in the underdoped region. Moreover, tremendous
efforts have also been devoted to exploring the fundamen-
tal physics in the theoretical models and characterizing the
properties of real materials, for instance, the impact of
long-range hoppings or Coulomb interactions [18–31], in-
corporating the superexchange interaction into the extended
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Hubbard Hamiltonian [32,33], the spin-charge mutual statistic
[34–37], the additional gradients in multiple orbitals [38–41],
the bosonic modes such as phonons [42–44], the fluctuation
effects [45,46], the lattice anisotropy [47,48], the interlayer
hoppings or Coulomb interactions [49–51] and other various
factors [1–4].

Theoretically, the pure t-J model is often adopted as the
effective Hamiltonian of the pure Hubbard model in the
strong-coupling limit, and the three-site hopping term [52]
is neglected despite its amplitude α being of the same order
as the superexchange coupling J , i.e., α = t2/U = J/4 [1–3].
Earlier studies have investigated the effects of the three-site
hopping term on SC states in two-dimensional (2D) t-J type
models [53–60]. A variational Monte Carlo (VMC) study
[57] shows the three-site hopping term becomes quantitatively
important for doping δ � 0.1 and favors the s-wave state.
Mean-field analyses [58,59] support this finding and provide
insight into the superconducting mechanism in models incor-
porating this term. Notably, a renormalized mean-field theory
(RMFT) study [61] reports that the three-site hopping term
suppresses d-wave superconductivity when δ > 0.1. Their
theoretical results aligned fairly with the experimental results
at the optimal doping and in the overdoped regime, offering
insight into the upper critical doping concentration. Moreover,
in one-dimensional (1D) models that incorporate the three-site
hopping term, the ground-state phase diagrams have been in-
vestigated by exact diagonalization [62,63] and DMRG [64].
Beyond the debates on ground states, the spectral properties
are also examined for both 1D and 2D models with such a
term [41,65–67]. However, there remains a lack of compre-
hensive analysis of the three-site term in 2D t-J type models
by combining microscopic analytical methods and unbiased
large-scale numerical simulations.
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We denote the pure t-J model with a three-site hopping
term as the t-J-α model. Since the t-J-α model is inherently
employed as the effective model of the pure Hubbard Hamilto-
nian, α is fixed. However, recent quantum simulators realized
by loading ultracold atoms onto the optical lattices have be-
come promising platforms for simulating the two-dimensional
(2D) strongly correlated lattice models [68,69]. By incorpo-
rating a tunable three-site hopping amplitude α, the t-J-α
model has been widely used to simulate a driven Hubbard sys-
tem over a broad parameter space [70–72]. On the other hand,
the strength of α is under debate among different proposed
effective Hamiltonians derived from particular cases of the
three-band model and is influenced by the detailed hopping
strengths, potential energies, and Coulomb interactions of the
oxygen and copper sites [8,73,74]. Therefore, considering a
tunable strength of the three-site term is a reasonable way to
understand its effects.

Motivated by recent developments and numerical debates,
in this work, we analytically and numerically investigate the
d-wave superconductivity in the t-J-α model, with a tun-
able amplitude α on the square lattice. Our primary focus
is identifying the role of the three-site hopping in SC order.
By employing the slave-boson mean-field (SBMF) analysis,
we have revealed that increasing the three-site hopping am-
plitude suppresses the d-wave SC order. We also perform
DMRG simulations of the t-J-α model and confirm the role of
three-site hopping in d-wave superconductivity. Notably, this
finding aligns qualitatively with the previous RMFT results
[61]. Furthermore, we examine the impact of increased α

on the quasiparticle dispersion and the boson-condensation
temperature, thereby enriching our understanding of d-wave
superconductivity under the SBMF framework. Inspired by
recent numerical discrepancies, we explore the impact of sys-
tem size and aspect ratio of the square lattice on SC order.
Compared with the pure t-J model, the effective Hamilto-
nian of the pure Hubbard model is more sensitive to system
size and geometry. Lastly, we discuss the s-wave solution at
large α.

This paper is organized as follows: In Sec. II we introduce
the t-J-α model and the SBMF approximation. In Sec. III
we present the results obtained from the solution of self-
consistent equations. Section IV is dedicated to showcasing
the DMRG results of the t-J-α model, which are qualitatively
in agreement with the SBMF findings on SC properties. Fi-
nally, in Sec. V we discuss and in Sec. VI we summarize the
main results.

II. MODEL AND METHODS

The one-band Hubbard model stands as the minimal model
describing the correlated physics of doped Mott insulators.
The Hamiltonian is given by

HHubbard = −t
∑
〈i,j〉,σ

(c†
iσ cjσ + H.c.) + U

∑
i

ni↑ni↓, (1)

where c†
iσ and ciσ are the electron operators of spin σ =↑,↓

and ni = ∑
σ c†

iσ ciσ is the density operator, t is the hopping in-
tegral with summation 〈i, j〉 running over the nearest-neighbor
(NN) sites, and U > 0 is the repulsive onsite Coulomb in-

FIG. 1. Graphical representation of the Hubbard model and its
effective model. (a) The pure Hubbard model, where t denotes
the amplitude of the nearest-neighbor hopping, U represents the
Coulomb repulsion. (b) The effective model obtained from the pure
Hubbard model in the strong-coupling limit is known as the t-J-α
model. J describes the superexchange interaction (blue dashed line);
α represents the amplitude of three-site hopping (green dashed
line), which exhibits collinear and noncollinear hopping shapes. J =
4t2/U and α = J/4 are of the same order. (c) Two types of three-site
hopping processes with hopping amplitude α. The left panel depicts a
second-neighbor hopping via an intermediate site without a spin flip,
and the right panel shows a second-neighbor hopping with a spin flip.
The three-site hopping can also be viewed as pair hopping of a spin
singlet.

teraction. In the strong-coupling limit (U � t), the complete
effective Hamiltonian of the Hubbard model includes both the
pure t-J model and the three-site hopping term, as depicted in
Fig. 1. The effective Hamiltonian [52] reads

Ht−J−α = P (Ht + HJ + Hα )P, (2)

where P is the projection operator onto the subspaces that
eliminates doubly occupied sites. The first term

Ht = −t
∑
〈i,j〉,σ

(c†
iσ cjσ + H.c.) (3)

describes charge hopping with amplitude t . The second term

HJ = J
∑
〈i,j〉

(
Si · Sj − 1

4
ninj

)
(4)

represents the superexchange interaction with exchange in-
tegral J = 4t2/U . Si = 1

2

∑
σσ ′ c†

iσ σ̂σσ ′ciσ ′ denotes the spin
operator with Pauli matrix σ̂. The three-site hopping term Hα ,
as sketched in Fig. 1(c), is written as

Hα = −α
∑

〈i,j,k〉,σ
i 	=k

(c†
iσ c†

jσ̄ cjσ̄ ckσ − c†
iσ c†

jσ̄ cjσ ckσ̄ ). (5)

Here, the three-site hopping amplitude α = tijtjk/U = J/4,
where tij = t is the hopping integral for the NN sites i and j,
is of the same order as superexchange interaction strength J .
〈i, j, k〉 denotes bonds of three-site hopping, with i 	= k being
neighbors of j. Here we set J = 1 as the unit of energy, and
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tune α/J ∈ [0, 0.25] to study the role of the three-site hopping
term. Notably, α/J = 0.25 and α/J = 0 correspond to the
effective model of large-U Hubbard Hamiltonian and the pure
t-J model, respectively.

We use the SBMF method [75,76] to study the t-J-α
model on a square lattice written in Eq. (2) [see Appendix B
for details]. Based on the resonating valence bond (RVB)
theory [9,77,78], the ground state can be approximated as
a Gutzwiller projected BCS-like wave function. The elec-
tron annihilation operator ciσ is decomposed as ciσ = b†

i fiσ ,
where b†

i denotes bosonic holon creation operator and fiσ
represents fermionic spinon annihilation operator. Within the
SBMF framework, the SC order is characterized by the con-
densation of holons and the RVB pairing of spinons. The
local constraint b†

i bi + ∑
σ f †

iσ fiσ = 1 is introduced with a
static Lagrange multiplier λi = λ. Here we assume the sim-
plest boson condensation 〈bi〉 = √

δ, where δ denotes doping
concentration. The chemical potential μ is determined by
1 − δ = 〈∑σ f †

iσ fiσ 〉 under the local constraint. The density-
density interaction (1 + b†

i bi)(1 + b†
j bj) is approximated as

(1 + δ)2 ≈ 1. In the framework of SBMF, it is natural to con-
sider a doping-dependent amplitude for the three-site hopping
term [2], which has been adopted to argue the insignificant
influence of this term at low-hole doping. However, it is
pointed out that the effect of the three-site term becomes
important at intermediate doping δ > 0.1 [57], which can be
understood as the renormalization effect and is found to be
beyond the order of Jδ [60,61]. In particular, starting from the
three-band model, the strength of this term can be estimated
as variable [8,73,74], due to the detailed parameters including
inter- and intra-orbital hopping amplitudes, orbital potential
energies, and inter-orbital Coulomb interactions, etc. There-
fore, we evaluate the role of this extended term by introducing
an adjustable three-site term without doping dependence. We
also have examined the doping-dependent three-site hopping
amplitude in SBMF solution, which gives qualitatively con-
sistent conclusions but with a reduced impact. These results
are presented in Appendix A.

We give a Hartree-Fock-Bogoliubov factorization to de-
couple the Hamiltonian (2) in the particle-hole (i.e., hopping
channel f †

i fj) and particle-particle (i.e., pairing channel f †
i f †

j )
channels [1]. We introduce the uniform bond order parameter
χij = 〈∑σ f †

iσ fjσ 〉 ≡ χ and the RVB pairing order parameter
�ij = 〈 fi↓ fj↑ − fi↑ fj↓〉 ≡ �x(y) with d-wave pairing symme-
try, i.e., �x = −�y = �. Here, �x(y) represents NN bonds
〈i, j〉 along the x(y) direction. The resulting mean-field Hamil-
tonian can be obtained as

HSBMF =
∑
k,σ

εk f †
kσ fkσ +

∑
k

ωkb†
kbk

−
∑

k

(�∗
k fk↓ f−k↑ + �k f †

−k↑ f †
k↓). (6)

The corresponding free energy is given by

F = H0 +
∑

k

εk − β−1
∑

k

2 ln 2 cosh
βEk

2

+β−1
∑

k

ln(1 − e−βωk ), (7)

where H0 includes the constants and β is the inverse of the
temperature. The gap function is written as

�k = (J − 2α)�(cos kx − cos ky). (8)

The spinon dispersion εk and holon dispersion ωk read

εk = −
[
μ f +

(
1

2
Jχ + 3αχ + 2tδ

)
(cos kx + cos ky)

+1

2
α(1 − δ)(4 cos kx cos ky + cos 2kx + cos 2ky)

]
, (9)

ωk = μb − 2tχ (cos kx + cos ky). (10)

Here μ f and μb are chemical potentials for spinons and
holons, respectively. Both are determined self-consistently, as
detailed in the self-consistent equations (B9) and (B10) in Ap-
pendix B. The mean-field order parameters can be obtained by
searching for solutions that yield the lowest free energy. The
corresponding self-consistent equations are given as follows:

� = 1

2N

∑
k

tanh
βEk

2

�k

Ek
(cos kx − cos ky), (11)

χ = − 1

2N

∑
k

tanh
βEk

2

εk

Ek
(cos kx + cos ky). (12)

Here N is the total number of lattice sites. The quasiparticle
energy can be obtained through Ek = (|�k|2 + ε2

k )1/2.

III. MEAN-FIELD RESULTS

As schematically depicted in Fig. 1(c), the three-site hop-
ping term Hα describes two types of hopping processes, with
and without flipping the intermediate spin. The contributions
from these processes are proportional to the doping concen-
tration δ. We can understand the three-site hopping as pair
hopping of spin-singlet, which incorporates both collinear
and noncollinear hopping shapes [see Fig. 1(b)]. The singlet
hopping process can be expressed as follows [53]:

Hα = −
∑
〈i,j,k〉
i 	=k

αB†
ijBkj, (13)

where the spin-singlet pairing operator is defined as B†
ij =

c†
i↑c†

j↓ − c†
i↓c†

j↑. By implementing a Hartree-Fock factorization
on Eq. (13), it is straightforward to notice that the nonzero
〈B†

ij〉 arising from singlet hopping impacts the mean-field
parameter �, which is dominated by the superexchange mech-
anism in a pure t-J model [75,76]. At the mean-field level,
the phase diagram of t-J-α should be influenced by both the
superexchange interaction and pair singlet hopping.

We first discuss the solutions for d-wave RVB pairing
as a function of doping concentration δ. The RVB pairing
order parameter � is displayed in Fig. 2(a) at T = 0 and
the corresponding critical temperature TRVB [75,76] is plotted
in Fig. 2(b). The SBMF solution with a doping-dependent
three-site hopping amplitude is provided in Appendix A. The
d-wave RVB pairing is suppressed as the three-site hopping
amplitude α increases. We further investigate the solutions
for d-wave RVB pairing as a function of ratio t/J . At a
fixed doping concentration δ = 0.1, as shown in Fig. 2(c),
TRVB is suppressed by α and t/J but it is still nonzero over
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FIG. 2. Suppression of the d-wave superconductivity with the in-
crease of three-site hopping amplitude α. Here, we consider α/J = 0
(square), 0.1 (circle), and 0.25 (diamond). Panels (a) and (b) show the
RVB pairing order parameter � at T = 0 (a) and the corresponding
critical temperature TRVB (b) as a function of doping concentration
δ with fixed t/J = 3. At typical doping δ = 0.1, the critical tem-
perature TRVB as a function of coupling strength t/J is illustrated in
panel (c).

a broad range of coupling strength t/J ≈ 2–6. The mean-
field solutions demonstrate the suppression of SC order by
incorporating the three-site hopping term. Due to the pres-
ence of singlet pair hopping processes, the coefficient of the
gap function �k is (J − 2α) [see Eq. (8)]. Since α > 0, Hα

competes with HJ, leading to the general suppression of the
superexchange mechanism. This provides an alternative un-
derstanding of the numerical discrepancies between the weak
or absent superconductivity in the pure Hubbard model and
the strong superconductivity in the pure t-J model.

We further examine the effect of three-site hopping on
quasiparticle dispersion Ek. The contour plots are presented in
Figs. 3(a)–3(c) for α/J = 0, 0.1, 0.25 at doping concentration
δ = 0.125. And in Fig. 3(d), the corresponding dispersion is
plotted along the high-symmetry line [illustrated in the inset of
Fig. 3(d)]. The quasiparticle dispersion illustrated in Fig. 3(d)
has a local minimum around S point [i.e., k = ( π

2 , π
2 )], cor-

responding to the valley near S point in Figs. 3(a)–3(c), and
displays nearly flat quasiparticle energy along the X -to-Y
line. Along the X -to-Y line, increasing α further flattens the
dispersion [see Fig. 3(d)], as suggested by the energy differ-
ence |Ek=X − Ek=S|, and enlarges the range of the valley [see
Figs. 3(a)–3(c)]. Due to the broadening of the valley along
the X -to-Y line, the dispersion along the Y -to-� line [plotted
in Fig. 3(d)] shows that a local minimum approaches to Y
as α increases. The results in Fig. 3 indicate that increasing
α diminishes the feature of the valley near S, and when �
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FIG. 3. The quasiparticle dispersion Ek at doping concentration δ = 0.125 for typical values of α/J . Here we consider t/J = 3 and show
the contour plot of Ek for (a) α/J = 0, (b) α/J = 0.1, (c) α/J = 0.25. Panel (d) displays Ek along the high-symmetry line, with the path
illustrated in its inset.
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approaches zero, the valley reduces to contours nearly parallel
to the X -to-Y line. In addition, as presented in Fig. 3, the
quasiparticle energy increases at the � point [i.e., k = (0, 0)]
with growing α and decreases at X point [i.e., k = (π, 0)]
and Y point [i.e., k = (0, π )]. Due to the formulas of �k and
εk , the increase corresponds to the rising spinon energy at �,
and the decrease is attributed to the suppression of the d-wave
pairing. When � is suppressed to nearly zero by increasing α,
the spinon dispersion εk dominates the quasiparticle energy.
Mean-field analysis indicates that incorporating the three-site
hopping term modifies the shape of quasiparticle dispersion
Ek. As a result of suppressed d-wave pairing, the feature of the
valley near the S point is diminished, and the spinon energy
becomes more significant in quasiparticle energy. The quasi-
particle dispersion Ek using the doping-dependent three-site
hopping amplitude is presented in Appendix A.

Next, we investigate the influence of three-site hopping on
the boson-condensation temperature TBEC, which also deter-
mines the phase diagram [1,2]. The SC state is characterized
by both 〈bibj〉 	= 0 and 〈 fiσ fjσ̄ 〉 	= 0, corresponding respec-
tively to the critical temperatures TBEC and TRVB. The critical
temperature of superconductivity Tc is determined from Tc =
min{TRVB, TBEC}. The nonvanishing order parameter 〈bibj〉 is
approximately obtained by single boson condensation 〈bi〉 =√

δ. To get a finite critical temperature TBEC, it is necessary
to introduce a weak NN three-dimensional hopping between
layers [75,76,79]. The self-consistent equations are solved by
assuming a small interlayer hopping amplitude tz in the z
direction to obtain a finite boson condensation temperature
TBEC and TRVB. We set ratio rz = tz/t , assuming exchange cou-
pling along the z direction as Jz = r2

z J . Singlet-pair hopping
from the xy plane to the z direction is denoted αz-xy = rzα,
and along the z direction as αz-z = r2

z α. We can then update
the gap function and the energy dispersion to the following
expressions:

�k = (J − 2α)�(cos kx − cos ky)

+ 4αrz�z(cos kx + cos ky) + (J + 2α)(rz )2�z cos kz,

(14)

εk = −
[
μ f +

(
1

2
Jχ − αχ

)
[cos kx + cos ky + (rz )2 cos kz]

+ 2(2 + rz )αχ (cos kx + cos ky + rz cos kz )

+ 2tδ(cos kx + cos ky + rz cos kz )

+ 2α(1 − δ)(cos kx cos ky

+ rz[cos ky cos kz + cos kz cos kx])

+ 1

2
α(1 − δ)[cos 2kx + cos 2ky + (rz )2 cos 2kz]

]
,

(15)

ωk = μb − 2tχ (cos kx + cos ky + rz cos kz ), (16)

where �z = � is the NN bonds along z direction. The self-
consistent equations are solved with μb = 0 [76]. In Fig. 4
we show the influence of α on the critical temperature TBEC

with rz = 0.01, and the shaded area represents the super-
conducting regime. The influence of a doping-dependent
three-site hopping amplitude is also estimated in Appendix A.
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J
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α/J=0

TBEC
TRVB

T/
J

δ

α/J=0.25(b)

FIG. 4. The impact of the three-site hopping on the boson-
condensation temperature TBEC at different doping concentrations δ.
Here we compare two cases: (a) the pure t-J model with α/J = 0,
and (b) the t-J-α model with α/J = 0.25, i.e., the effective Hamil-
tonian of the pure Hubbard model. The critical temperature TBEC

is calculated with rz = 0.01. The critical temperature TRVB is also
plotted to identify the phase diagram. The shaded area represents the
superconducting regime.

Comparing results for α/J = 0 and 0.25, the critical tem-
perature TBEC is slightly enhanced by the presence of Hα ,
in sharp contrast to the strong suppression of TRVB. The
mean-field analysis indicates that the impact of this term on
the phase diagram is primarily mediated by altering RVB
pairing.

IV. NUMERICAL RESULTS

In this section, we employ DMRG [80–82] to confirm the
validity of SBMF results. DMRG has been proven to be one of
the most accurate methods to obtain the ground-state proper-
ties of many-body systems, but its computational cost grows
exponentially with system width, therefore we focus on the
quasi-one-dimensional cylinders as usual practice [83]. We
compute Cooper pair correlations to examine the properties
of superconductivity. In the quasi-one dimension, true long-
range order in the pair correlation function is forbidden by the
Mermin-Wagner theorem, and then the pair correlations decay
in a power-law fashion. We employ a square lattice geometry,
defined by the primitive vectors ex = (1, 0), ey = (0, 1), and
wrapped on cylinders with a lattice spacing of unity. The sys-
tem size is denoted as N = LxLy, where Lx and Ly correspond
to the cylinder length and circumference, respectively. In our
study, we focus on the width-4 cylinders, i.e., Ly = 4. The pair
correlations are defined as

Dαβ (r) ≡ 〈�̂†
α (i0)�̂β (i0 + r)〉, (17)

where the pair operator is given by �̂α (i) ≡
1√
2

∑
σ σci,σ ci+eα,σ̄ , and α, β = x, y. When calculating the

correlations, we set the reference position i0 = (Lx/4, y0) with
y0 = 2 to avoid a boundary effect. In quasi-one-dimensional
cylinders, we explore the presence of quasi-long-range
order, which is characterized by Dαβ (r) ∼ r−ηsc . Here,
we set r = rex. Specifically, ηsc < 2 indicates a divergent
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FIG. 5. Ratio R ≡ Dyy(r)|α/J=0/Dyy(r)|α/J=0.25 from DMRG sim-
ulation. Here, we set δ = 0.1, t/J = 3, N = 30 × 4.

superconducting susceptibility in two dimensions as the
temperature T → 0.

Figure 5 illustrates the ratio R of Dyy(r) at
α/J = 0 compared with α/J = 0.25, i.e., R ≡
Dyy(r)|α/J=0/Dyy(r)|α/J=0.25. We find that R consistently
exceeds one, suggesting that pair correlation is relatively
suppressed by including the three-site hopping term Hα . We
also notice that this suppressive effect is not prominent in
DMRG cylinders. Moreover, we find exponentially decaying
spin correlations S(r) ≡ 〈Si0 · Si0+rex 〉 and single-particle
propagator C(r) ≡ ∑

σ 〈c†
i0,σ

ci0+rex,σ 〉 (see Appendix D). This
underscores the persistence of qualitative decay behaviors
across various correlations in the presence of the three-site
hopping term.

V. DISCUSSION

Inspired by recent debates in DMRG studies regarding the
existence of superconductivity in the pure Hubbard and pure
t-J models, and considering the limitations posed by con-
ducting DMRG calculations on lattices with finite widths—a
factor previously emphasized for its crucial role in detecting
SC order—we examine the impact of system size and aspect
ratio of the square lattice on SC order. Specifically, we con-
duct the SBMF analysis on square lattices with system sizes
accessible to DMRG calculations and compare the supercon-
ducting order parameter � between the pure t-J model and
the effective model of the pure Hubbard Hamiltonian, which
corresponds to the t-J-α model with α = 0 and α = 0.25,
respectively. The SBMF solution with a doping-dependent
three-site hopping amplitude is provided in Appendix A.
Here, we set the aspect ratio as r ≡ Lx/Ly, with Lx and Ly

representing the system length and width. Generally, r � 1
for DMRG calculations.

In Figs. 6(a) and 6(b), we fix Lx = 200 and vary aspect
ratio r from r � 1 down to r = 1. The convergence of �

with increasing Ly for α/J = 0.25 is much slower than that for
α/J = 0. For α/J = 0.25, � shows stronger finite-size effect
when r � 1, and the saturated value of � decreases with
increasing doping concentration δ. In particular, the super-
conductivity almost vanishes at δ = 0.175 for a larger aspect
ratio. In Figs. 6(c) and 6(d), we fix r = 1 and vary system size
N up to 200 × 200. The SC order parameter � is also larger at
α/J = 0 than α/J = 0.25. � saturates faster with increasing
system size for α/J = 0 and its amplitude decreases with
increasing doping concentration δ. The mean-field findings
indicate the effective model of the pure Hubbard Hamiltonian
is more sensitive to system size and aspect ratio. Considering
the order parameter is also suppressed compared with the
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FIG. 6. The superconducting order parameter � versus the inverse of width Ly in the t-J-α model. Here, we consider two cases: the pure t-J
model with α/J = 0 (squares) and the effective model of the pure Hubbard Hamiltonian with α/J = 0.25 (circles). The doping concentrations
are set at (a), (c) δ = 0.125 and (b), (d) δ = 0.175 with a fixed ratio t/J = 3. System sizes are N = LxLy, where Lx and Ly denote the system
length and width, respectively. The aspect ratio is r ≡ Lx/Ly. In panels (a) and (b), we fix Lx = 200 and vary aspect ratio r down to 1. In panels
(c) and (d), we fix r = 1 and vary system size N up to 200 × 200.
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FIG. 7. For larger three-site hopping amplitude α, the s-wave
pairing order parameter � as a function of doping concentration δ.
Here, we fix t/J = 3 and consider α/J = 0.5, 1, 1.5, 2, where the
d-wave RVB pairing vanishes.

pure t-J model, this observation suggests a greater challenge
to probe superconductivity numerically within the effective
model of the pure Hubbard Hamiltonian.

Within the framework of mean-field theory, one should
also consider the possibility of s-wave-like solution (see de-
tails in Appendix C) [57–59], i.e., �x = �y = �. In a pure
t-J model, the d-wave pairing state is always favored. How-
ever, the three-site hopping term favors the extended s-wave
component [57–59]. We tune the three-site hopping amplitude
α beyond the physical region to explore the possible s-wave
solution, and the results are presented in Fig. 7. The results of
large α for a doping-dependent three-site hopping amplitude
are provided in Appendix A. The d-wave order parameters are
strongly suppressed to zero at α/J = 0.5, 1.0, 1.5, and 2.0.
In contrast, the s-wave pairing order parameter is enhanced
with increasing α. We tune the three-site hopping amplitude
α beyond the physical region to explore the possible s-wave
solution, and find that the s-wave pairing order parameter
is enhanced with increasing α, as illustrated in Fig. 7. By
contrast, the d-wave order parameters are strongly suppressed
to zero at α/J = 0.5, 1.0, 1.5.

When comparing the model study with real materials
like cuprates, it is also proposed to start from the three-
band Hubbard model and its effective Hamiltonian in the
strong-coupling limit. [74] In this case, the exact form of the
three-site hopping term derived from the three-band model is
similar to the single-band model [8]. In the strong-coupling
limit, where the energy potential between the oxygen site
and the copper site is large, one can obtain a more general
three-site term [8],

Hα = −
∑

〈i,j,k〉,σ
i 	=k

(α1c†
iσ c†

jσ̄ cjσ̄ ckσ − α2c†
iσ c†

jσ̄ cjσ ckσ̄ ), (18)

where the strengths of the two hopping processes, as depicted
in Fig. 1, are considered different. They are determined by the
detailed potentials and interactions of the three-band model.

Under mean-field approximations, the contributions of the
three-site term into the pairing channel are qualitatively con-
sistent with the case derived from the one-band model. The
corresponding Hamiltonian is formulated as follows:

H�
α = −

∑
〈i,j,k〉
i 	=k

α[�∗
ij( fj↓ fk↑ − fj↑ fk↓) + �jk( f †

i↑ f †
j↓ − f †

i↓ f †
j↑)],

(19)

where we set α = (α1 + α2)/2. When the detailed potentials
and interactions of the three-band model are varied, α can be
considered adjustable. Thus, employing a tunable α to assess
the effects of the three-site hopping provides a practical and
reasonable approximation. As we focus on a large value of
t/J and we focus on the superconducting properties which
are mainly determined by the pairing channel, the one-band
model with tunable coefficients in the three-site hopping term
potentially captures the essential physics of the cuprates.

The NN Coulomb interaction is known to play an impor-
tant role in the superconductivity of cuprates [27]. At the
mean-field level, the related gap function can be expressed as

�k = 4α(�x + �y)[cos(kx ) + cos(ky)]

+2(J� − α)[�x cos(kx ) + �y cos(ky)]. (20)

where J� = 1
2 (J − V ), J is the strength for superexchange

term J
∑

〈ij〉(Si · Sj − 1
4 ninj), and V is the strength for NN

Coulomb interaction term V
∑

〈ij〉 ninj. We can find that the
repulsive NN Coulomb interaction (V > 0) disfavors SC pair-
ing at the mean-field level. The recent study suggests that
including fluctuations beyond the mean-field level screens the
NN Coulomb interaction, thereby preserving d-wave super-
conductivity [31]. In our work, both the mean-field analysis
and DMRG numerical calculations suggest the weakening of
the d-wave superconductivity by the three-site hopping term.
The impact of there-site hopping on SC order is different
from the impact of the fluctuations combined with Coulomb
repulsion reported in Ref. [31]. A systematical understanding
of the interplay between these two effects could be intriguing
and calls for systematic study in the future.

VI. CONCLUSION

In this work, we combine slave-boson mean-field (SBMF)
theory and density-matrix renormalization group (DMRG) to
study the t-J-α model and provide a comprehensive analysis
of the role of the three-site hopping term Hα in supercon-
ductivity emerged in doped Mott insulators on the square
lattice. Our study employs the strengths of the slave-boson
mean-field theory in microscopically understanding the im-
pact of the three-site hopping term on the superconducting
order parameter, and the capacity of DMRG in capturing the
superconductivity. We also vary the three-site hopping ampli-
tude α, discuss the s-wave solution at high α values, assess
the impact of the three-site term on quasiparticle dispersion
and the boson-condensation temperature, and explore the im-
pact of systems sizes and aspect ratios on superconductivity.
The mean-field analysis suggests the suppression of d-wave
superconductivity in the presence of a three-site hopping
term, consistent with numerical observations by DMRG. This
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FIG. 8. Suppression of the d-wave superconductivity with the
increase of the effective three-site hopping amplitude α̃. Here, we
consider t/J = 3 and compare the results of the doping-dependent
effective amplitude α̃/J = 0.25δ with those presented in Fig. 2 for
α̃/J = 0, and the doping-independent effective amplitudes α̃/J =
0.1 and 0.25.

suppression could be understood as a result of competition be-
tween superexchange interaction and three-site hopping (i.e.,
singlet pair hopping), the former favors d-wave pairing while
the latter favors s-wave pairing. Our findings may offer an
alternative understanding of the recent numerical contrasting
findings in the strong-coupling regime: the absent or weak
superconductivity in the pure Hubbard model, versus the ro-
bust superconductivity in the t-J model without including the
three-site hopping term.

In particular, our comparative study of the t-J and t-J-α
model on other physical phenomena may also provide insights
into the difference between the pure Hubbard and pure t-J
models, and stimulate future studies in identifying the role
of three-site hopping in doped Mott insulators besides the
suppression of d-wave superconductivity. Moreover, our work
may also stimulate future studies in identifying the role of the

three-site hopping term in superconductivity on other lattice
geometries, such as the triangular lattice [84–88], where su-
perconductivity is recently discovered in materials like twisted
bilayer of transition-metal-dichalcogenides [89,90].
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APPENDIX A: RESULTS FOR THE DOPING-DEPENDENT
THREE-SITE HOPPING AMPLITUDE IN THE SBMF

SOLUTION

The three-site hopping term defined in Hamiltonian (5) can
be rewritten in the SBMF description with an effective three-
site hopping amplitude α̃, as follows:

Hα = −α̃

i 	=k∑
〈i,j,k〉,σ

( f †
iσ f †

jσ̄ fjσ̄ fkσ − f †
iσ f †

jσ̄ fjσ fkσ̄ ), (A1)

where the effective amplitude α̃ = αδ accounts for the
doping-dependent three-site hopping amplitude, and when
α̃ = α is used, it is equivalent to the doping-independent
three-site hopping amplitude employed in the main text. In
this section, we evaluate the SBMF solutions that use the
doping-dependent effective amplitude α̃/J = 0.25δ and com-
pare them with α̃/J = 0 and the doping-independent effective
amplitudes α̃/J = 0.1 and 0.25, which are presented in the
main text

In Fig. 8, we estimate the suppression of d-wave supercon-
ductivity induced by doping-dependent effective amplitude
α̃/J = 0.25δ, and compare these results with those presented
in Fig. 2. The d-wave superconductivity of α̃/J = 0.25δ

is close to that of α̃/J = 0 at low doping levels, and the
suppression induced by α̃/J = 0.25δ becomes stronger as δ

increases. At higher doping levels, the suppressive effect is
close to that of the doping-independent effective amplitude
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FIG. 9. Quasiparticle dispersion Ek, boson-condensation temperature TBEC, and s-wave solutions for large α, with the effective three-site
hopping amplitude α̃. Here, we consider t/J = 3. In panels (a) and (b), we compare results using α̃/J = 0.25δ with those obtained using
α̃/J = 0, 0.1, 0.25 which is presented in Figs. 3(d) and 4. Panel (c) shows the superconducting regime for α̃/J = 0.25δ, indicated by the
shaded area. In panel (d), results for large α using α̃ = δα are compared with those using α̃ = α which is presented in Fig. 7. The quasiparticle
dispersion Ek at doping concentration δ = 0.125 is plotted along the high-symmetry line, with the path illustrated in the inset. The critical
temperature TBEC is calculated with rz = 0.01.
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FIG. 10. The superconducting order parameter � versus the inverse of width Ly using the doping-dependent effective three-site hopping
amplitude α̃/J = 0.25δ. Here, we compare the results with those presented in Fig. 6 for α̃/J = 0, and the doping-independent effective
amplitude α̃/J = 0.25. The doping concentrations are set at δ = 0.125 and δ = 0.175 with a fixed ratio t/J = 3. In panel (a), we fix Lx = 200
and vary the aspect ratio r down to 1. In panels (b), we fix r = 1 and vary the system size N up to 200 × 200.

α̃/J = 0.1. In Fig. 9, we examine other properties within the
mean-field framework, including quasiparticle dispersion Ek,
boson-condensation temperature TBEC, and s-wave solutions.
As shown in Figs. 9(a)–9(c), the modification of quasiparticle
dispersion Ek and the impact on the condensation temperature
caused by using the doping-dependent effective amplitude
align with those from the main text. The phase diagram is still
primarily influenced by RVB pairing. To search for s-wave
solutions, a larger α is required with the doping-dependent
effective amplitude than with a doping-independent effective
amplitude, as shown in Fig. 9(d). We find that using a doping-
dependent effective amplitude still enhances s-wave. Then a
larger α at intermediate doping levels will produce an effec-
tive α̃ sufficient to support s-wave solutions. As displayed in
Fig. 9(d) for α̃/J = 3δ, an increase in � is observed as dop-
ing increases at intermediate doping levels. This increase is
attributed to the doping-dependent α̃ and the relatively stable
� for large α in the intermediate doping region as shown in
Fig. 7. More discussions on the s-wave solutions can be found
in Appendix C. In Fig. 10, the impacts of system sizes and
aspect ratio of the square lattice on SC order are explored us-
ing the doping-dependent effective amplitude. The result with
a doping-dependent α̃ is similar to that of α̃ = 0. However,
the differences increase with a larger δ. In summary, these
results, which use a doping-dependent α̃, provide conclusions
that are qualitatively consistent with those obtained using a
doping-independent α̃ employed in the main text, but show a
weakened impact.

APPENDIX B: SLAVE-BOSON MEAN-FIELD
APPROXIMATION

The resonating valence bond (RVB) theory successfully
understands the superconducting mechanism in cuprates from
a strong-correlation viewpoint [9,77,78]. The ground state
is approximated by a Gutzwiller projected BCS-like wave
function. The spins are assumed to form spin-singlet valence
bonds in pairs. Superconductivity is induced when the half

filled Mott insulator is doped with electrons or holes. Under
the slave-boson description, the SC order is characterized by
the condensation of holons and RVB pairing of spinons.

We have the electron annihilation operator ciσ = b†
i fiσ .

And under the local constraint, we have b†
i bi + ∑

σ f †
iσ fiσ =

1. This decomposition will reproduce the Hamiltonian (2) into
a slave-boson representation. The charge hopping term can be
written as

Ht = −
∑
〈i,j〉

∑
σ

t (b†
j bi f †

iσ fjσ + b†
i bj f †

jσ fiσ ). (B1)

By introducing the bond order parameter for spinons χij =
〈∑σ f †

iσ fjσ 〉 ≡ χ and assuming the bond order parameter for
holons 〈b†

i bj〉 ≡ δ, we can get a mean-field decoupling as

HMF
t = −t

∑
〈i,j〉

χij(b
†
j bi + H.c.) + δ

∑
σ

( f †
iσ fjσ + H.c.).

(B2)

As a result of approximation (1 + δ)2 � 1, the spin-exchange
and density-exchange terms can be written only in terms of
spinon operators given by

Si · Sj = 1

4

∑
σ

2 f †
iσ fiσ̄ f †

jσ̄ fjσ + f †
iσ fiσ f †

jσ fjσ − f †
iσ fiσ f †

jσ̄ fjσ̄ ,

ninj =
∑

σ

f †
iσ fiσ f †

jσ fjσ + f †
iσ fiσ f †

jσ̄ fjσ̄ . (B3)

Then we can get the exchange term written in the slave-boson
description, which reads

HJ = 1

2
J

∑
〈i,j〉,σ

f †
iσ fiσ̄ f †

jσ̄ fjσ − f †
iσ fiσ f †

jσ̄ fjσ̄ . (B4)

We introduce the RVB pairing order parameter �ij =
〈 fi↓ fj↑ − fi↑ fj↓〉 ≡ �x(y) with d-wave pairing symmetry, i.e.,
�x = −�y = �. Here, �x(y) represents NN bonds along the
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x(y) direction. The mean-field Hamiltonian takes the form

HMF
J = −

∑
〈i,j〉

{
1

2
J[�∗

ij( fi↓ fj↑ − fi↑ fj↓) + H.c.] + 1

4
Jχij

∑
σ

( f †
iσ fjσ + H.c.) + 1

4
J (1 − δ)

∑
σ

( f †
iσ fiσ + f †

jσ fjσ )

}
. (B5)

The three-site hopping term defined in Hamiltonian (5) can be similarly rewritten at the same order as the Heisenberg term when
neglecting the doping dependence, as follows:

Hα = −α

i 	=k∑
〈i,j,k〉,σ

( f †
iσ f †

jσ̄ fjσ̄ fkσ − f †
iσ f †

jσ̄ fjσ fkσ̄ ). (B6)

We decouple the four-spinon term into particle-particle channel and particle-hole channel, the mean-field Hamiltonian reads

HMF
α = −α

i 	=k∑
〈i,j,k〉

{
[�∗

ij( fj↓ fk↑ − fj↑ fk↓) + �jk( f †
i↑ f †

j↓ − f †
i↓ f †

j↑)] + 1

2

∑
σ

[χik f †
jσ fjσ + (1 − δ) f †

iσ fkσ

+χij f †
jσ fkσ + χjk f †

iσ fjσ ]

}
. (B7)

The SBMF Hamiltonian for t-J-α model is written as
HSBMF = HMF

t + HMF
J + HMF

α . While the H0 term includes
constant contributions and reads

H0/N = (J − 2α)�2 + (
1
2 J + 3α

)
χ2

+ 4tδχ + 1
2 J (1 − δ)2 − (

μ f + μb
)
δ + μ f . (B8)

The chemical potential for spinons μ f includes Lagrange
multiplier constant λ and chemical potential μ. The chemical
potential for holons is μb = μ. They are determined from self-
consistent equations (see Refs. [2,76]):

1 − δ = 1

N

∑
k

[
1 − εk

Ek
tanh

(
βEk

2

)]
, (B9)

δ = 1

N

∑
k

1

eβωk − 1
. (B10)

The mean-field Hamiltonian HSBMF in momentum space,
written in Eq. (6), can be expressed in matrix form,

HSBMF =
∑

k

1

2
ψ

†
kMkψk +

∑
k

ωkb†
kbk +

∑
k

εk, (B11)

where ψk = ( fk↓, f †
k↓, f−k↑, f †

−k↑)T and

Mk =

⎛
⎜⎜⎝

εk 0 0 �k
0 −εk −�∗

k 0
0 −�k ε−k 0

�∗
k 0 0 −ε−k

⎞
⎟⎟⎠. (B12)
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FIG. 11. The impact of coupling strength on an s-wave solution. The results are presented for using both doping-independent effective
amplitude α̃ = α [panels (a) and (b)] and doping-dependent effective amplitude α̃ = δα [panels (c) and (d)]. In panels (a) and (c), the s-wave
RVB pairing order parameter � is plotted against doping concentration δ. Here, we consider t/J = 2, 3, 4 and T = 0. We fix α̃/J = 0.5 in
panel (a) and α̃/J = 3δ in panel (c). Increasing coupling strength t/J intensely suppresses the s-wave pairing. In panels (b) and (d), the critical
temperature TRVB is plotted against coupling strength t/J . Here, we fix doping concentration δ = 0.14. We consider α̃/J = 0.5, 0.7, 1.0 in
panel (b) and α̃/J = 3.5δ, 4.0δ, 4.5δ in panel (d). The TRVB curve for s-wave solution exhibits a sharp drop in a broad range of increasing t/J .
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By applying ψk to �k = (αk, α
†
k, βk, β

†
k )T with a Bogoliubov

transformation, we can get the diagonal Hamiltonian

HSBMF =
∑

k

1

2
�

†
k�k�k +

∑
k

ωkb†
kbk +

∑
k

εk. (B13)

Where Ek = (|�k|2 + ε2
k )1/2 and

�k =

⎛
⎜⎜⎝

Ek 0 0 0
0 −Ek 0 0
0 0 E−k 0
0 0 0 −E−k

⎞
⎟⎟⎠. (B14)

The order parameters can be self-consistently determined by
minimizing the free energy written in Eq. (7).

APPENDIX C: THE s-WAVE SOLUTION

The s-wave pairing and d-wave pairing give rise to BCS
gap functions such as cos kx + cos ky and cos kx − cos ky, re-
spectively [57]. We numerically search for solutions that
minimize the Ginzburg-Landau free energy within the mean-
field approximation, indicating both s-wave and d-wave
solutions to be theoretically viable in self-consistent cal-
culations. In the pure t-J model, the d-wave pairing is
generally favored, while the three-site hopping term enhances
the s-wave component [57–59] [see our results in Figs. 7
and 9(d)]. In this section, results are presented for using
both doping-independent effective amplitude, i.e., α̃ = α, and
doping-dependent effective amplitude, i.e., α̃ = δα (see Ap-
pendix A).

We investigate the impact of coupling strength on the s-
wave solution in Fig. 11. In Figs. 11(a) and 11(c), the results
demonstrate the intense suppression in the t-J-α model, in
agreement with earlier reports [59]. In Figs. 11(b) and 11(d),
the curve of s-wave solution experiences a sharp drop in a
broad range of t/J ≈ 2–6. By contrast, the results of the
d-wave solution shown in Fig. 8(c) exhibit a slight linear
decrease.
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FIG. 12. Correlation functions from DMRG simulation.
(a) Double-logarithmic plot of the pairing correlations Dyy(r).
(b) Semilogarithmic plot of the spin correlations |S(r)|.
(c) Semilogarithmic plot of the single-particle propagator |C(r)|.
Here, we set δ = 0.1, t/J = 3, N = 30 × 4.

APPENDIX D: CORRELATION FUNCTIONS

For the t-J model with three-site hopping term, we analyze
the pair correlations Dyy(r), the spin correlations S(r), and the
single-particle propagator C(r), which are defined as

Dαβ (r) ≡ 〈�̂†
α (r0)�̂β (r0 + rex )〉,

S(r) ≡ 〈Sr0 · Sr0+rex 〉,
C(r) ≡

∑
σ

〈c†
r0,σ

cr0+rex,σ 〉. (D1)

Here, �̂†
α (r0) ≡ 1√

2
(c†

r0+eα,↓c†
r0,↑ − c†

r0+eα,↑c†
r0,↓) and α, β de-

note the bonds α, β = x, y. Despite the inclusion of the three-
site hopping, the qualitative behaviors of these correlations—
power-law decay for Dyy(r) and exponential decay for both
|S(r)| and |C(r)|—remain unchanged for four-leg cylinders
with N = 30 × 4, δ = 0.1, and t/J = 3, as illustrated in
Fig. 12. This finding underscores the robustness of correlation
behavior in the presence of the three-site term.
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