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Bloch oscillations in a transmon embedded in a resonant electromagnetic environment
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Recently developed Josephson junction array transmission lines implement strong-coupling circuit electrody-
namics compatible with a range of superconducting quantum devices. They provide both the high impedance
which allows for strong quantum fluctuations, and photon modes with which to probe a quantum device, such
as a small Josephson junction. In this high-impedance environment, current through the junction is accompanied
by charge Bloch oscillations analogous to those in crystalline systems. However, the interplay between Bloch
oscillations and environmental photon resonances remains largely unexplored. Here we describe the Bloch
oscillations in a transmon-type qubit attached to high-impedance transmission lines with discrete photon spectra.
Transmons are characterized by well-separated charge bands, favoring Bloch oscillations over Landau-Zener
tunneling. We find resonances in the voltage-current relation and the spectrum of photons emitted by the Bloch
oscillations. The transmon also scatters photons inelastically; we find the cross section for an anti-Stokes-like
process whereby photons gain a Bloch oscillation quantum. Our results outline how Bloch oscillations leave
fingerprints for experiments across the DC, MHz, and GHz ranges.

DOI: 10.1103/PhysRevB.110.054508

I. INTRODUCTION

The introduction of the fluxonium qubit [1–3] touched
off the development of high-impedance, low-loss circuit ele-
ments, dubbed superinductors [4–10]. To date, their use has
extended beyond the superconducting devices of quantum
information technology. Superinductors are used to engineer
a high-impedance electromagnetic environment crucial for
allowing strong quantum phase fluctuations in a nominally
superconducting circuit. The simplest circuit of this kind con-
sists of a small-capacitance Josephson junction shunted by
a superinductor [11]. Quantum fluctuations of phase across
the small junction were demonstrated by observing inelas-
tic photon scattering with the production of a number of
smaller-frequency microwave photons [12,13]. A more re-
cent microwave experiment [14] provided evidence in favor
of the Schmid dissipative quantum phase transition [15]. In
theory [15], this transition from a superconducting to insu-
lating state occurs once the zero-frequency impedance Z0 of
the junction’s electromagnetic environment reaches a critical
value, the resistance quantum RQ = h/(4e2).

In the insulating state (Z0 > RQ), Coulomb blockade of
the small junction wins over the Josephson effect. The re-
sulting differential resistance of the junction, R(I ) = dV/dI ,
becomes a decreasing function of the direct current (DC)
passing through the circuit. The dissipative nature of the DC
charge transport is associated with the Bloch oscillation of
charge occupying the small junction capacitance [16–18].
These oscillations radiate waves propagating along the su-
perinductor and carrying energy away from the junction. The
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Bloch oscillations frequency is determined by the DC current
and the Cooper pair charge, �/(2π ) = I/2e.

The notion of the Schmid transition and aforementioned
dissipation mechanism assume a featureless frequency depen-
dence of the superinductor impedance Z (ω) “seen” by the
small junction. A featureless dependence, smoothly approach-
ing Z0 in the limit ω → 0, is impossible for a finite-length
superinductor.

A superinductor of finite length, along with the
impedance mismatch at its interface with the external
microwave circuit, results in standing wave resonances and a
frequency-dependent Z (ω) different from the characteristic
impedance Z0 of the array [19]. Unless carefully matched
(see, e.g., [20,21]), the impedance mismatch is typically
strong [11,22,23] and the resonances are narrow. The effect
of resonances in Z (ω) on the photon inelastic scattering off
a small junction is well documented [13]. Nevertheless, how
they pertain to Bloch oscillations and the Schmid picture is
not yet clear.

Our goal is thus twofold. First, we seek the ramifications
narrow resonances in Z (ω) have for the V (I ) dependence
in the nominally insulating small junction. Second, we aim
to build a theory of photon emission and inelastic photon
scattering in the presence of Bloch oscillations excited by a
direct current passing through the circuit. We focus on the
most interesting case of Josephson junctions arrays with high
characteristic impedance Z0 � RQ, allowing for strong Bloch
oscillations, and transmon junctions, for which the insulating
state is the most striking. In the following sections, we intro-
duce the model for a DC-biased transmon (Sec. II), analyze
the manifestations of Bloch oscillations in the voltage-current
characteristic (Sec. III), in photon radiation (Sec. IV), and
in inelastic photon scattering (Sec. V), and draw connec-
tions to present experimental platforms (Sec. VI). All the
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FIG. 1. The circuit under consideration. (a) A transmon qubit
(EJ and EC are the Josephson and charging energies, respectively) is
shunted by a Josephson junction array superinductor of length x0. At
frequencies far below cutoff, it behaves as a waveguide with a high
nominal (infinite-length) characteristic impedance Z0. The opposite
end of the superinductor is contacted by microwave measurement
circuitry with low impedance Ze. External DC bias I drives qubit
Bloch oscillations, which excite photons in the array (wavy lines).
Reflection at the impedance-mismatched interface leads to standing
wave modes ωn. (b) Lumped-element representation of the superin-
ductor. In terms of the lumped elements parameters, the velocity v0 =
a(8EgẼJ )1/2/h̄, characteristic impedance Z0 = (h̄/e2)(Eg/ẼJ )1/2, and
cutoff frequency ωB = (8ẼCẼJ )1/2/h̄. Here a is the linear size of an
element, Eg is the charging energy (per electron) associated with the
capacitance to ground, and ẼJ and ẼC are the Josephson and charging
energies of each array junction.

while, we will bring the effects of impedance mismatch to
the fore.

II. LOW-FREQUENCY CIRCUIT MODEL

We consider the circuit depicted in Fig. 1, of a small
Josephson junction terminating a superinductor, also com-
prised of Josephson junctions [4,24]; see Fig. 1(b). We are
interested in Bloch oscillation frequencies � much lower than
the hard ultraviolet cutoff ωB associated [22,25] with the finite
size of lumped elements in the circuit of Fig. 1(b). That al-
lows us to disregard irrelevant deviations in the superinductor
plasmon dispersion relation from a linear one. Furthermore,
we will assume the Josephson plasma frequency ωQ of the
transmon is small compared with ωB, so the hard cutoff [22]
frequency will not appear below.

The Hamiltonian of an isolated junction is

HJ = 4EC (N̂ − n)2 − EJ cos ϕ̂. (1)

The phase difference across the junction, ϕ̂, is a canonical con-
jugate to the number of transferred Cooper pairs N̂ : [ϕ̂, N̂] =
i. EC and EJ are the junction charging and Josephson en-

ergies, respectively, and n is the displacement charge across
the junction (see below). In a transmon [26], the Joseph-
son plasma frequency ωQ = √

8EJEC/h̄ substantially exceeds
the widths λm of the first few “bands” parametrized by the
displacement charge n (playing the role of quasimomentum
here). This is achieved by making the ratio EJ/EC sufficiently

large. The same condition establishes a hierarchy between the
charge bandwidths,

ωQ � |λ1| � |λ0|, (2)

involving the two lowest bands [26]

λ0 = −32EC

√
2

π

(
EJ

2EC

)3/4

e−√
8EJ/EC ,

λ1 = −8

√
EJ

EC
λ0 (3)

(hereinafter we use units with h̄ = 1). The bandwidths λ0,1

are associated with the amplitude of a phase slip across the
Josephson junction in the absence or presence of a plasmon
excitation, respectively. Hence, the energy separation between
the bands is approximately h̄ωQ.

Next, consider the charge waves propagating along the
Josephson junction array. We assume its junctions belong to
the “classical” limit, corresponding to a negligible probability
for their phases to slip. Therefore, the array serves as a har-
monic medium for the waves. Their spectrum ω(k) is linear,
ω(k) = v0k, for wavelengths longer than the unit cell a of
the periodic array, k � 2π/a. [In practice, at k ∼ 2π/a spec-
trum ω(k) approaches the upper cutoff ωB, which is provided
by the junctions’ plasma resonance.] The excitations in the
linear part of the spectrum can be described [27] in terms
of canonically conjugated fields of phase φ(x) and charge
density ρ(x) = 2e∂xθ/π ,

Harray =
∫ x0

0
dx

v0

2π

[
1

K
(∂xθ )2 + K (∂xφ)2

]
. (4)

Here v0 is the wave velocity in the array. Fields θ (x)
and φ(x) satisfy the commutation relation [∂xθ (x), φ(x′)] =
iπδ(x − x′); the boundary coupling at x = 0 between the array
fields and the transmon is addressed below. Finally, K is a di-
mensionless parameter related to the characteristic impedance
of the array Z0:

K = RQ

2Z0
, RQ = h

4e2
. (5)

We reiterate, that we are interested in frequencies ω � ωB,
well below the cutoff frequency of the superinductor. That
allowed us to limit the gradient expansion in Harray to the
lowest-order terms, and made the Hamiltonian independent of
the charging energy ẼC of the junctions comprising the array.
The latter energy would first appear along the higher-order
gradient-expansion term (∂2

x θ )2, which is beyond the accuracy
of the accepted approximation.

We will consider only circuits deep on the insulating side
of the Schmid transition, that is K � 1/2, which occurs at
fairly high impedance Z0. To capture the impedance mismatch
at the interface with the external low-impedance circuit, we
complement Eq. (4) with Hamiltonian

Hlow-imp =
∫ L

x0

dx
ve

2π

[
1

Ke
(∂xθ )2 + Ke(∂xφ)2

]
, (6)

and an appropriate current conservation condition at x = x0.
The dimensionless parameter Ke = RQ/2Ze corresponds to
the characteristic impedance of the environment.
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Taking the lead from experiments [13,28,29], we assume
that the transmon transition frequency ωQ falls into the linear
part of the spectrum ω(k). That allows us to use Eq. (4) in
the description of the transmon galvanically coupled to the
transmission line. Once coupled, charge n is promoted [30,31]
to operator n̂,

n̂ = N − θ (x = 0)/π. (7)

The first contribution here is a c number that describes the
external direct current bias I , dN /dt = I/2e. The second
contribution describes dynamical charge (in units of 2e) as-
sociated with quantum fluctuations in the line. The galvanic
coupling with the array stipulates ϕ = φ(x = 0).

In what follows, we will focus on the range of current
values I satisfying

ωQ � π I/e. (8)

This condition means the oscillations in n̂ induced by the cur-
rent are much slower than the transmon’s Josephson plasma
frequency. Therefore, a transmon initially in its ground state
remains in the lowest Josephson plasmon “band” (i.e., in the
ground state |0〉 defined by the instantaneous displacement
charge n̂) upon application of the current I . By projecting
Eq. (1) onto this band, we find

H|0〉 = −λ0 cos(2π n̂) ≡ −λ0 cos[2θ (x = 0) − π It/e]. (9)

The sinusoidal modulation in Eq. (9) is the putative Bloch
oscillation, occurring with frequency

� = π I/e. (10)

The junction nonlinearity causes Bloch oscillations to also
modulate the scattering of high-frequency (ω ≈ ωQ) photons
off the transmon. This is analogous to the mixing of a base-
band signal (Bloch oscillation) and a carrier wave (photon) in
radio transceivers. The mode mixing occurs due to the low-
frequency modulation of the energy of the excited transmon
state |1〉 described by a projected Hamiltonian

H|1〉 = −λ1 cos(2π n̂) ≡ −λ1 cos[2θ (x = 0) − π It/e]. (11)

Condition |λ1| � |λ0|, see Eq. (2), allows us, in the context of
mode mixing in Sec. V, to disregard the charge modulation
of the ground-state energy. Therefore, we may proceed by
adapting the formalism developed in Ref. [32] to quantify the
sideband formation in the photon scattering process.

III. VOLTAGE-CURRENT RELATION IN THE PRESENCE
OF IMPEDANCE MISMATCH

In typical implementations, there is a large impedance
mismatch between the two segments described by Eqs. (6)
and (4), respectively: Ze = 50 � while Z0 can be as high as
20 k�. The impedance mismatch results in the reflection of
waves off the interface between the segments at x = x0. The
plasmon reflection amplitude is

r = Z0 − Ze

Z0 + Ze
. (12)

In what follows, we assume that Z0 > Ze, i.e., r > 0. Reflec-
tion leads to the formation of standing waves in the array. This

results in a resonant structure in the V I relation of the trans-
mon. We show that an appreciable voltage develops across
the transmon only when the Bloch oscillation frequency
� = π I/e (determined by the bias current I) is resonant with
one of the standing wave frequencies.

The coupling between the Josephson junction and the
transmission line is described by Eq. (9). To elucidate the
effect of the coupling on the charge dynamics, we expand
the displacement operator θ (x = 0) into the photon modes in
the line. The expansion reads

θ (x = 0) =
∑

q

√
K�

ωq
θq (aq + a†

q). (13)

Here a†
q and aq are the creation and annihilation operators of

excitations propagating in the entire electromagnetic environ-
ment described by Hamiltonian

H0 ≡ Harray + Hlow-imp =
∑

q

ωqa†
qaq; (14)

see Eqs. (4) and (6). Parameter � = πve/L is the spacing
between two subsequent modes supported by the whole line,
where L → ∞ is the normalization length. In that limit,
the mode spectrum is a continuum ωq = veq, with q the mode
wave number in the long external segment [33]. We denote
the displacement field in a mode q by θq(x). The impedance
mismatch is reflected in the dependence of θq ≡ θq(x = 0)
on ωq:

θq =
√

1 − r2

(1 − r)2 + 2r(1 − cos ωqt0)
, (15)

where t0 = 2x0/v0 is the round trip time for a wave in the array
(0 < x < x0). For 1 − r � 1, θq has sharp resonance peaks
at standing wave frequencies ωq = nδω, where n in a non-
negative integer and

δω = 2π

t0
= πv0

x0
(16)

is the spacing between the resonant modes.
We find the V I relation in two steps. First, we compute the

power P(I ) dissipated from the junction at a given current I
in the form of waves. Then, division by I yields the dissipa-
tive DC voltage as a function of current, V (I ) = P(I )/I . To
evaluate the power P(I ) dissipated into the electromagnetic
environment, we apply Fermi’s golden rule. Denoting the
initial and final states of the system as |i〉 and | f 〉, respectively,
we obtain at T = 0:

P(I ) = 2π
π I

e

∑
f

|〈 f |λ0 e2iθ /2|i〉|2δ(E f − Ei − π I/e),

(17)

where we abbreviated θ ≡ θ (x = 0). Performing the summa-
tion over the final states, we find

P(I ) = λ2
0

4

π I

e
Cθ (� = π I/e), Cθ (�) =

∫
dt e−i�tCθ (t ),

Cθ (t ) = 〈
e−2iθ (0) (0)e2iθ (0) (t )

〉
. (18)
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Here the averaging is over the ground state of the system un-
perturbed by Eq. (9) and θ (0)(t ) = eiH0tθe−iH0t is the boundary
displacement operator in the interaction picture. To evaluate
the charge correlation function Cθ (t ), we use the mode ex-
pansions, Eqs. (13) and (14), which allows us to factorize
Cθ (t ) into a product over modes. The ground-state average
for a single mode is a Gaussian function of θq; see Eq. (15).
Combining contributions of different modes, we obtain for the
correlation function

Cθ (t ) = e−J (t ), (19)

where

J (t ) = 4K
∫ +∞

0

dω

ω

(1 − r2)(1 − eiωt )e−ω/ωQ

(1 − r)2 + 2r(1 − cos ωt0)
. (20)

Here we regularized the logarithmically divergent integral by
introducing a factor e−ω/ωQ ; the cutoff frequency scale [34] is
of the order of the transmon plasma frequency ωQ = √

8EJEC .
Equations (18)–(20) apply to any impedance mismatch.

For instance, for matched impedances r = 0 and we repro-
duce the known [35,36] result for Cθ (�). Typical experimental
parameters correspond to the regime of strong impedance
mismatch; in it, the reflection amplitude is close to unity,
1 − r ∼ 0.01 � 1. From now on, we focus on this practically
relevant case. There it is useful to introduce the loss rate for
the modes in the array:

γ = 1 − r2

2t0
= δω

π

Z0Ze

[Z0 + Ze]2
(21)

(more precisely, γ is a contribution to the loss rate associated
with the mode leakage into the low-impedance circuit). For
Z0 � Ze, the loss rate satisfies the condition πγ � δω. That
allows us to represent the part of the integrand in Eq. (20)
periodic in ω as a sum over Lorentzian resonances:

1 − r2

(1 − r)2 + 2r(1 − cos ωt0)
≈

+∞∑
n=0

δω

2π

2γ

γ 2 + (ω − ωn)2
,

(22)

where ωn = nδω [33]. Substituting this representation into
Eq. (20), we separate J (t ) into the form

J (t ) = J0(t ) + Jres(t ). (23)

Here Jres(t ) encodes the contributions of modes with n � 1,
while J0(t ) comes from n = 0 only. For Jres(t ) we find

Jres(t ) = 4K
+∞∑
n=1

δω

ωn
(1 − e−γ |t |eiωnt )e−ωn/ωQ . (24)

The n = 0 contribution can be expressed in terms of a dimen-
sionless function J (γ t ):

J0(t ) = 4Kδω

γ
J (γ t ), J (y) = 1

π

∫ ∞

0

dx

x

1 − eiyx

1 + x2
. (25)

J0(t ) varies on a “slow” timescale ∼1/γ . Its influence on
the resulting resonant structure of P(I ), Eq. (18), is inconse-
quential, somewhat affecting only the shape of well-separated
resonances. Therefore, in the following we dispense with the
J0(t ) contribution [37].

We now apply Eqs. (23)–(25) in conjunction with Eqs. (18)
and (19) to find P(I ) and V (I ) under strong impedance mis-
match. Having neglected J0(t ), we can cast Eq. (18) in the
following form:

P(I ) = πλ2
0

4e

(
δω

ωQ

)4K

I
∫

dt e−iπIt/e
+∞∏
n=1

e4Keiωnt e−γ |t |/n. (26)

Factor (δω/ωQ)4K describes the renormalization of the am-
plitude of phase slips by the high-frequency modes; it stems
from the first term in parentheses in Eq. (24). Exponential
factor e4Keiωnt e−γ |t |/n accounts for the emission of photons of
frequency ≈ ωn. A pth term in the series expansion of this
factor,

e4Keiωnt e−γ |t |/n =
+∞∑
p=0

(4K/n)p

p!
eipωnt e−pγ |t |, (27)

describes a process with an emission of p photons of fre-
quency ωn. Application of expansion (27) to each exponent
in Eq. (26) breaks down P into the contributions of individ-
ual multiphoton processes. The simplest process is the one
in which driving by current I excites a single photon with
frequency � = π I/e. This is the nominal Bloch oscillation
frequency; see Eq. (10). Were the single-photon emission the
only process possible, we would find in P(I ) resonant lines
of a fixed, small width eγ /π � (e/π )δω at I ≈ eωN/π (here
N = 1, 2, 3, . . . ). However, a photon with frequency ωN can
also “split” into several photons of lower frequency, ωN =∑m

i=0 ωni . As we will show, the higher the N , the larger the
typical number of emitted photons, mtyp. The fixed “uncer-
tainty” γ in the frequency of each additional photon results
in the linewidths increasing with the resonance mode number
N . For sufficiently high N , the resonances are washed out
completely.

The phase space available for the photon splitting is vast
when N � 1. Therefore, the frequencies of photons produced
in a splitting event are almost always pairwise different, mo-
tivating us to restrict the summation in Eq. (27) to p = 0 and
1 [38]. Using this approximation, we can represent P(I ) as

P(I ) = πλ2
0

4e
I

(
δω

ωQ

)4K ∑
N

∫
dt e−i(πI/e−ωN )t

N∑
m=1

(4K )m

m!

∑
n1,...,nm

δn1+···+nm,N

n1 · · · nm
e−γ m|t |. (28)

Here m is the total number of the emitted photons in which the drive quantum of frequency π I/e splits. The sum over ni depends
logarithmically on N . For N � 1, we find ∑

n1,...,nm

δn1+···+nm,N

n1 · · · nm
= m lnm−1 N

N
. (29)
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Using this relation in Eq. (28), noting that at given current I the relevant N is N ≈ π I/eδω, and, rearranging the terms, we obtain

P(I ) = λ2
0K

(
δω

ωQ

)4K ∑
N

δω

∫
dt e−i(πI/e−ωN )t e−γ |t |

N∑
m=1

(4K ln(π I/eδω)e−γ |t |)m−1

(m − 1)!
. (30)

The sum over m is dominated by a typical number of the emitted photons mtyp satisfying

mtyp(I ) ≈ 4K ln(π I/eδω). (31)

We see that although mtyp � 1 is logarithmically large in parameter π I/eδω � 1 it is still relatively small compared to the
relevant values of N ≈ π I/eδω in Eq. (30), i.e., mtyp � N . This allows us to extend the summation over m in Eq. (30) to infinity.
As a result, we find

P(I ) = λ2
0K

(
π |I|
eωQ

)4K ∑
N

δω

∫
dt e−i(πI/e−ωN )t e−γ |t |e−4K ln(π |I|/eδω)(1−e−γ |t | ), (32)

where we wrote (δω/ωQ)4K as (π |I|/eωQ)4K exp{−4K ln(π |I|/eδω)}. Lastly, we use [39] identity∑
N

eiωN t = 2π

δω

∑
k

δ(t − 2πk/δω) (33)

and the relation V (I ) = P(I )/I to obtain

V (I ) = 2πλ2
0K

1

I

(
π |I|
eωQ

)4K

F (π I/eδω), F (�/δω) =
∑

k

Fk (�) cos

(
2πk�

δω

)
, (34)

Fk (�) = exp

[
−2πγ |k|

δω
− 4K ln(|�|/δω)(1 − e−2πγ |k|/δω )

]
. (35)

Equations (34) and (35) comprise the main result of this
section.

Setting K → 0 in Eq. (35), we recover from Eq. (34)
the expected classical-limit result: a system of fixed-width
Lorentzian resonances in V (I ). At finite K , the probability of
“splitting” the Bloch oscillations quantum into many emitted
photons grows with � = π I/e. The enhanced width exceeds
the natural one, (e/π )γ , at 4K ln(�/δω) � 1. The latter con-
dition allows us to expand the exponent in the parentheses
in the Fourier coefficients (35) to linear order in k before
performing summation over k in Eq. (34). On the other hand,
as long as 4K ln(�/δω) � δω/γ and � is close to a resonant
frequency, we are able to replace the summation by integra-
tion [40]. The result is a sequence of resonances in V (I ) at
I = Neδω/π ,

V (I ) = 2πλ2
0K

1

I

(
π |I|
eωQ

)4K ∑
N

δω

π

γN

(π I/e − Nδω)2 + γ 2
N

,

γN = γ (1 + 4K ln N ). (36)

The width of the N th peak is proportional to the typical
number of the emitted photons associated with it, γN =
γ mtyp(Neδω/π ) see Eq. (31). Equation (36) allows us to
establish the range of currents for which our perturbative-in-λ
calculation holds: At a resonance, V (I ) ∼ Kλ2

0δω/Iγ ; yet, the
voltage across the transmon may not exceed ∼λ0/e, leading to
the condition I � λ0/eZe.

By comparing γN with δω, we expect an exponentially
large number Nres of resolved resonances in V (I ),

ln Nres ∼ πZ2
0 /2RQZe, Ires = Nres

eδω

π
. (37)

For higher currents, I � Ires, the resonant structure in the V I
relation is smeared out. We can find the V I relation by noting
that the summation over k in Eq. (35) converges rapidly in this
regime. For I � Ires, the leading contribution to V (I ) comes
from terms with k ∈ {−1, 0, 1}. Discarding all other terms, we

0 1 2 3 4 5
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1.5

2.0

2.5

3.0

3.5

49.6 49.8 50.0 50.2 50.4
0.00
0.05
0.10
0.15
0.20

FIG. 2. Voltage-current relation [Eq. (34), blue] and its
Lorentzian approximation [Eq. (36), orange]. The solid black line
is ∼I4K−1/[1 + 4K ln(π I/eδω)]. The decreasing peak amplitudes
reflects the underlying insulating state of the junction. Here we used
K = 1/8 and a large Ze = 2 k� (r ≈ 0.86; γ /δω ≈ 0.2) to broaden
the resonances for clarity. [Though Eqs. (34) and (36) were derived
for large mode number, see inset, they also capture low mode num-
bers qualitatively.] Inset: Closeup of the resonance at the 50th mode;
the dashed curve is a reference Lorentzian with width γ .
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FIG. 3. Emission power spectral density ωS(ω,�) [Eq. (41)] as
a function of Bloch oscillation frequency � and photon frequency
ω < �. Emission is peaked at waveguide mode frequencies ωn and
the drive frequency �, and is maximal when these coincide. Dashed
lines indicate the cross sections in the inset. Inset: Slices at fixed
� and ω. For fixed � (blue) away from a resonance, emission
peaks appear in pairs, corresponding to excitations of photons at
ω = ωn and “evanescent” photons at ω = � − ωn′ . Their heights are
∼constant and ∼(� − ω)4K−1, respectively, and therefore the former
peaks have comparable height while the latter grow as ω approaches
� [cf. Eq. (41)]. At low ω only the former survive. For fixed ω

(green), the emission power peak amplitudes decreases with � > ω.
Circuit parameters are the same as in Fig. 2.

get

V (I ) = 2πλ2
0K

1

I

(
π |I|
eωQ

)4K

× (1 + 2e−8π (Kγ /δω) ln(�/δω) cos(2π�/δω))|�=πI/e.

(38)

The sharp resonances present at I � Ires are washed out, and
replaced by an exponentially small oscillatory term here. The
leading monotonic dependence in V (I ) is insensitive to the
mismatch and agrees [41] with the result for a junction at-
tached to a semi-infinite superinductor of impedance Z0 [43].
Forthcoming Sections focus on the weakly-inelastic regime of
well-resolved resonances, I � Ires.

To illustrate our results we will use experimentally relevant
parameters Z0 = 4RQ (K = 1/8), δω/2π = 100 MHz, and
ωQ/2π = 10 GHz throughout. In Fig. 2 we plot the voltage-
current relation of Eq. (34), and its limit for well-resolved
resonances [45], Eq. (36). We note that even at N ∼ 1 the
latter gives a good approximation for the full result, Eq. (34).
Having established its validity, we will defer to this Lorentzian

approximation in the next Sections. In the inset we show
the logarithmic broadening of the resonances at higher mode
numbers.

IV. PHOTON RESONANCES IN THE BLOCH
OSCILLATIONS RADIATION

Due to the Bloch oscillations, the transmon radiates waves
into its environment. In this section, we find the radiation
spectrum S(ω,�) of a transmon biased by current I ≡ e�/π ;
see Eq. (10). S(ω,�) is the number of photons emitted in a
frequency interval [ω,ω + dω] per unit time.

Applying the Fermi golden rule to evaluate the time deriva-
tive of a photon mode’s occupation, we derive

S(ω,�) = Kλ2
0

ω
Cθ (� − ω)

∞∑
n=0

δω

π

γ

γ 2 + (ω − nδω)2
, (39)

in close analogy with the derivation of P(I ). Cθ (� − ω) is the
same correlation function as in Eq. (18). Using the relations
between V (I ), P(I ), and Cθ (�) in Eqs. (18) and (34), it is easy
to recover Cθ (� − ω) in the form

Cθ (�′) = 8πK

ωQ

( �′

ωQ

)4K−1
F (�′/δω)�(�′), (40)

with F (�/δω) given by Eq. (34).
As discussed above, Bloch oscillations of a fixed frequency

� excite multiple photons, whose energies sum up to �.
Thus, clearly S(ω,�) �= 0 only at ω < �; this is reflected
by the step function in Cθ (�′) in Eq. (40). At a moderate
inelasticity, 4K ln[(� − ω)/δω] � δω/γ , function F exhibits
resonant structure [given by the sum in Eq. (36)]. Therefore,
the radiation spectrum S as a function of ω and I = π�/e has
resonances in both variables:

S(ω,�) = 8πK2λ2
0

ωQ

1

ω

(
� − ω

ωQ

)4K−1

×
∞∑

n=0

δω

π

γ

γ 2 + (ω − nδω)2
(41)

×
∞∑

N=0

δω

π

γN�(� − ω)

(� − ω − Nδω)2 + γ 2
N

.

The total emission power is the largest when � hits a reso-
nance with one of the modes in the array. When this occurs,
emission S(ω,�) has sharp peaks at ω = ωn with ωn < �.
Here the resonances in � are of the same nature as those in
V (I ) dependence. The power emission spectrum ω × S(ω,�)
is illustrated in Fig. 3.

V. UP-MIXING OF BLOCH OSCILLATIONS
BY A JOSEPHSON PLASMON

Bloch oscillations in the current-biased transmon also af-
fect the transmon’s microwave response properties, such as
its fluorescence spectrum. In this section, we find the cross-
section σ (ω → ω′) of inelastic scattering of a microwave
photon off the transmon. We show that mixing of the pho-
ton with Bloch oscillations creates thresholds in σ (ω → ω′)
at ω′ = ω ± � (as in the previous section, � = π I/e is the
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Bloch oscillations’ frequency). The threshold behavior is de-
termined by the line impedance Z0, and further modified by
the resonances in the environment.

Specifically, we consider how a photon is scattered by
the transmon in nearly resonant conditions, i.e., when the
photon frequency ω is close to the transmon frequency ωQ.
Such a scattering occurs predominantly in the elastic channel.
However, with a small-yet-nonzero probability the scattering
may be accompanied by a phase slip. This makes scattering
inelastic and dependent on the quantum dynamics of the trans-
mon. To describe this inelastic scattering, we use the effective
Hamiltonian derived in Ref. [32]:

Heff = ωQ|1〉〈1| +
∑

ωq>ωc

ωq|q〉〈q| − i
∑

q

tq(|1〉〈q| − |q〉〈1|)

+
∑

0<ωq<ωc

ωqa†
qaq + λ1|1〉〈1| cos[2θ̃ (x = 0)−�t]

(42)

[recall that � = π I/e; see Eq. (10)]. The first line here de-
scribes the coupling of high-frequency (ω ∼ ωQ) photons in
the junctions array to the transmon (|1〉 is the the first ex-
cited state of the transmon). The matrix elements tq contain
information about the resonance of the transmon |0〉 → |1〉
transition with the array modes:

|tq|2 = ��

π

∑
n

γ δω/π

(ωq − nδω)2 + γ 2
. (43)

Here � = πve/L is the frequency spacing of the modes in
the entire environment; 1/� would be the radiative lifetime of
the excited state |1〉 of the transmon were it connected to a
semi-infinite array (x0 → ∞):

� = 1

2Z0C
. (44)

Here C is the capacitance of the junction related to its charging
energy EC = e2/2C. The excited state |1〉 decays because
of the transmon hybridization with the array, therefore 1/�

scales with the impedance Z0.
In the following, we consider the most interesting case [28]

of a relatively strong hybridization,

� � δω. (45)

In this limit, hybridization shifts frequencies ωn of a large
number of the superinductor eigenmodes with ωn within the
interval |ωn − ωQ| � �. The shifted frequencies ωn are solu-
tions [32,46] of the equation

ωn − ωQ = � cot(ωn/δω). (46)

(The waveguide plasmon spectrum is generally dispersive,
so the “bare” mode spacing around ωQ will be a some-
what smaller δω′ < δω. The hybridization in Eq. (46) can
already produce comparable densification; see, e.g., Ref. [13].
For clarity, we neglect dispersion, but our results below
may be easily generalized.) The low-impedance external
circuit broadens these levels into narrow resonances of
width γ � δω.

The second line of Eq. (42) describes coupling of state |1〉
to the low-frequency photons via phase slips; the phase slip

amplitude λ1 is given by Eq. (3). In the displacement charge
ñ, we account only for the low-frequency modes, 0 < ω <

ωc ≡ veqc:

θ̃ (x = 0) =
∑

0<q<qc

√
K�

ωq
θq(aq + a†

q), (47)

cf. Eqs. (13) and (15). Scale ωc separates the low- and high-
frequency modes, �Q � ωQ − ωc, ωc � ωQ. The final results
are independent of a specific value ωc, as long as K < 1/2;
see Ref. [32].

We begin by diagonalizing the first line of Eq. (42) and
expanding state |1〉 in eigenstates |k〉,

|βk|2 = |〈k|1〉|2 =
+∞∑
n=0

�δω/π

(ωQ − ωn)2 + �2

γ�/π

(ωk − ωn)2 + γ 2
.

(48)

In terms of the hybridized states, the Hamiltonian acquires the
form

Heff =
∑
k>qc

ωk|k〉〈k| +
∑

0<q<qc

ωqa†
qaq + V1e−i�t + V †

1 ei�t ,

V1 = λ1

2
exp(2π i ñ)

∑
k,k′

βkβ
�
k′ |k〉〈k′|. (49)

Let us now assume that the system is initially in a state with a
single photon of energy ωk: |i〉 = |k, 0〉 (0 indicates that there
are no “soft” photons in the line). We are interested in the
inelastic scattering cross section of this photon into a photon
with a different (yet close) frequency ωk′ . The respective final
state is |k′, f 〉, where f abbreviates the multiphoton state
formed by a number of “soft” photons. The inelastic scattering
may reduce or increase the frequency of the outgoing photon.
The former process happens already at zero bias. In contrast,
inelastic scattering to higher frequency occurs exclusively due
to the up-mixing of � with the incoming photon of frequency
ωk . In the following, we will focus only on the latter, anti-
Stokes component of inelastic scattering.

We can evaluate the scattering cross section σaS(ωk →
ωk′ ) for this process using Fermi’s golden rule:

σaS(ωk → ωk′ )

= 4π2

�2

∑
f

|〈k′, f |V1|k, 0〉|2δ(ωk′ + E f − (ωk + �)).

(50)

Using Eqs. (48) and (49), we can rewrite Eq. (50) as

σaS(ω → ω′) = 1

2π

�2λ2
1 C̃θ (� + ω − ω′)

[(ωQ − ω)2 + �2][(ωQ − ω′)2 + �2]

×
+∞∑

n,l=0

γ δω/π

(ω − ωn)2 + γ 2

γ δω/π

(ω′ − ωl )2 + γ 2
.

(51)

Here the correlation function C̃θ (�) is defined the same way
as Cθ (�) in Eq. (17), with replacement θ (x = 0) → θ̃ (x = 0);
see Eqs. (13) and (47). This amounts to substituting ωQ → ωc

in Eq. (40); since Cθ is only weakly dependent on the cutoff
and ωc is of the order of ωQ, at our level of treatment we may
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FIG. 4. Bloch oscillation upmixing by transmon fluorescence. (a) Anti-Stokes scattering cross section σaS(ω → ω′) [Eq. (52)] at fixed � =
5.4δω; note the vertical axis is the relative ω′ − ω. The black diamond indicates the region where |ω − ωQ|, |ω′ − ωQ| � �. Vertical, diagonal,
and horizontal streaks correspond to the resonance conditions ω = ωl , ω′ = ωl , and � + ω − ω′ = nδω [cf. Eqs. (46) and (52)]. The latter are
swept upwards with increasing �; as the hybridized modes are not equidistant (note 11 lines fit in a span of 10δω), general values of � would
lead to some triple intersection somewhere in the (ω,ω′) plane where upconversion is strongest, here around (ω − ωQ, ω′ − ω)/δω ≈ (−3, 4).
(b) Upconversion spectrum for fixed incoming ω corresponding to the dashed white line in (a), for different �. Relatively minor changes in
� can have dramatic effects on the upconversion spectrum, as the resonance condition for � + ω − ω′ moves in and out of alignment with
that for ω,ω′. Here the emission lines switch from decreasing with ω′ at � = 5.0δω [blue] to increasing with ω′ at � = 5.4δω [green, same
as in (a)]. This modulation with � is approximately periodic with period δω. The vertical lines indicate the positions of the hybridized modes
[solutions to Eq. (46)]. We use the same circuit parameters as in Figs. 2 and 3.

continue to use Eq. (40) as it appears. Equation (51) is the
main general result of this section. It allows one to evaluate
the anti-Stokes component of inelastic scattering for arbitrary
frequencies of the absorbed and emitted photons, and arbitrary
Bloch frequency.

Again assuming weak inelasticity 4K ln(�/δω) � δω/γ ,
we approximate F by a sequence of Lorentzians. In addition,
we will assume that the incoming photon frequency is in the
vicinity of one of the “environmental” resonances ωn0 close
to the transmon frequency, |ωn0 − ωQ| � �. These simplifi-
cations allow us to keep in Eq. (51) only one term in the sum
over n, and to use the counterpart of Eq. (36) for C̃θ (�′),

σaS(ω → ω′) = 4λ2
1(

ω − ωn0

)2 + γ 2

(γ /π )2

(ω′ − ωQ)2 + �2

×
+∞∑
l=0

δω2

(ω′ − ωl )2 + γ 2

K

ωQ

(
� + ω − ω′

ωQ

)4K−1

(52)

× δω

π

∞∑
N=0

γN�(� + ω − ω′)
(� + ω − ω′ − Nδω)2 + γ 2

N

.

Here γN is given in Eq. (36). It is clear from Eq. (52) that
the cross section σaS(ω → ω′) exhibits a resonant structure
as a function of the incoming and outgoing photon energies
ω,ω′ and the energy transfer � + ω − ω′. We illustrate this
in Fig. 4. In Fig. 4(a) we show σaS(ω → ω′) at fixed Bloch
frequency. Upmixing is expectedly most prominent when the
incoming and outgoing photons are within � of ωQ. The
process is further enhanced for each satisfied resonant con-
dition, that is when ω, ω′, and � + ω − ω′ each coincide
with waveguide modes. Maximal upmixing efficiency occurs

at “triple-resonance,” though generically there will be some
tension in satisfying all three resonance conditions simul-
taneously. As the hybridization with the transmon densifies
the modes around ωQ [13], for resonant ω,ω′ this occurs at
� detuned somewhat below the low-frequency modes nδω

(waveguide dispersion will further magnify this detuning).
Therefore, for fixed and resonant photon frequencies σaS at-
tains maxima at � lesser than those which maximize V (I ).
The hybridization additionally leads to nonuniform spacing
of the high-frequency photon modes. This increases the like-
lihood that at fixed and general values of �, some resonant
pair (ω,ω′) may achieve triple-resonance. The proximity to
this triple-resonance affects σaS much more strongly than the
(� + ω − ω′)4K−1 dependence in Eq. (52); therefore, the res-
onance peaks of σaS might not be monotonically increasing as
ω′ approaches � + ω. This is illustrated in Fig. 4(b).

VI. CONCLUSIONS

In this work we describe Bloch oscillations in a small
Josephson junction embedded in a high-impedance elec-
tromagnetic environment. That such environments can be
implemented by Josephson junction arrays, with plasmon
standing wave modes, begs the question of their importance.
Indeed, the interaction between these photons and the (unbi-
ased) junction is well understood [12,13,47,48]. Our goal here
was to extend this understanding to the reciprocal influence
of environmental resonances on Bloch oscillations, and vice
versa. We make predictions for the voltage-current relation,
radiation spectrum, and inelastic scattering rate.

Let us recapitulate our main results and their experimental
implications. We found that resonant peaks appear in the V I
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relation when the Bloch oscillation frequency � = π I/e due
to a DC bias coincides with a waveguide mode frequency
ωn. Multiphoton processes broaden the resonances, as shown
in Eq. (36). The broadening increases with the current, and
eventually the multiphoton processes wash out the resonant
structure, see Eq. (38).

Besides direct measurement of the V I characteristic, Bloch
resonances can be evidenced in the radiation spectrum emitted
to the transmission line. The photon emission rate, given by
Eq. (41), shows resonance in both the photon frequency ω and
Bloch frequency �. A possible experiment would measure the
emission at fixed frequency ω as the bias current is increased.
The signature of Bloch oscillations would be a lack of emis-
sion until I > eω/π , with subsequent periodic modulation of
the emission intensity with period �I = eδω/π .

Bias currents in the picoampere range [49] will lead to
MHz-range emitted photons, which may be hard to detect.
We thus consider inelastic scattering of photons near the
qubit transition frequency ωQ. In the absence of current, an
incoming photon may “split” in a number of photons of lower
frequency, leading to the Stokes component of inelastic scat-
tering observed in Refs. [14,29]. Bloch oscillations result in
the possibility of blue-shifting the incoming photon to higher
frequency. We predict the appearance of the anti-Stokes in-
elastic scattering component, and elucidate the structure of the
respective scattering cross section σ (ω → ω′); see Eq. (52).
For an incoming photon of frequency ω = ωQ, the anti-Stokes
sideband extends to ω′ = ωQ + �. Once more, the scattering
process is resonant for energy exchange � + ω − ω′ coincid-
ing with waveguide modes. This constraint may be frustrated
due to photon nonlinear dispersion in the junction array, which
is outside the scope of this work.

We may compare our results to recent experi-
ments [13,14,24]. In these devices, impedances as high

as Z0 ≈ 3RQ are achieved, whereas Ze ∼ 50 �. Under these
circumstances, ln Nres � 103 [Eq. (37)]. The Josephson
junction array is typically a few millimeters long, with
low-frequency wave velocity v0 ∼ 106 m/s, so that
δω/2π ∼ 100 MHz. Therefore �102 modes are present
below the Josephson plasma frequency of the transmon,
ωQ/2π ∼ 1–10 GHz; all these modes are in the weakly
inelastic regime. We then expect well-separated resonances
given by Eq. (34).

Circuits comprised of a small Josephson junction galvan-
ically coupled to a high-impedance transmission line were
mostly probed by microwave spectroscopy, which revealed
the presence of inelastic scattering channel, along with the
elastic one [14,29]. In the latest work of that cycle, an
auxiliary measurement of the DC voltage-current character-
istic was also performed [49]. The found nonmonotonic V I
curve carried traits consistent with the presence of Bloch
oscillations. However, there was no clear observation of the
resonances associated with the discrete modes of the trans-
mission line. Further experiments on this class of circuits,
focusing on the signatures we outlined here—V I modulations,
Bloch oscillation radiation spectrum, and anti-Stokes inelastic
scattering—will shed more light on this system.
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