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Representation theory for massless quasiparticles in Bogoliubov-de Gennes systems
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Linearly dispersive gapless quasiparticles can appear at general momentum points or on high-symmetry
momentum lines of superconductors because of topological reasons such as K theory or symmetry indicators
theory. However, the zero modes associated with these quasiparticles are generally “accidental” from symmetry
point of view. In this paper, we apply projective representation (rep) theory to analyze the bulk gapless
quasiparticles in BdG systems. Different from the description of semimetals, the particle-hole “symmetry”
requires special treatment since it anticommutes with the BdG Hamiltonian. Accordingly, the notion of “simple
irreducible reps (irreps)” and “composite irreps” are introduced to label the energy modes. Without charge
conjugation symmetry (unitary symmetry that commutes with the Hamiltonian), no robust zero modes exist
at any fixed momentum point in the bulk. However, robust zero modes at certain high-symmetry momentum
points can be protected by (effective) charge conjugation symmetries, resulting in gapless quasiparticles with
linear, quadratic, or higher-order dispersions. The low-energy properties of the quasiparticles, including the
dispersions and responses to external probe fields, are dictated by the reps carried by these zero modes from the
effective k · p theory. Our theory provides a framework to classify nodal superconductors/superfluids/quantum
spin liquids with specified (projective) symmetry group, and sheds light on the realization of Majorana-type
massless quasiparticles in condensed matter physics.
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I. INTRODUCTION

In condensed matter physics, quasiparticle excitations
emergent in the long-wavelength limit behave like elemen-
tary particles in high-energy physics. For instance, massless
Dirac fermions or Weyl fermions can appear in semimetals
at specific points of the first Brillouin zone (BZ) if the crys-
tal has certain space group symmetries [1–7]. These gapless
quasiparticles lead to observable physical phenomena, such
as negative magnetic resistance and Fermi arc spectra in
surface excitations [8–10]. Furthermore, new types of quasi-
particles without counterparts in high-energy physics can exist
in lattice systems [11–13]. These gapless quasiparticles are
characterized by multiple degeneracies in the energy spec-
trum, carrying projective representations of their symmetry
groups [14]. At high-symmetry points in the BZ, these de-
generacies are ensured by nontrivial irreducible (projective)
representations of the little cogroup, forming massless quasi-
particles [15–18]. For example, at the K and K ′ points in
graphene [19], twofold degeneracy is protected by a two-
dimensional (2D) representation of the group C3v , resulting
in Dirac-like quasiparticles with linear dispersion. Gapless
quasiparticles can also arise from symmetry-protected level
crossings of two bands along certain symmetric lines in the
BZ, where they carry reducible (projective) representations of
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the little co-group [20–25]. A comprehensive description and
classification of quasiparticles require both the projective rep-
resentations of symmetry groups and the symmetry invariants
that label the classes of these representations [26–29]. With
the use of symmetry invariants, many new types of quasipar-
ticles have been discovered in magnetically ordered systems
with weak spin-orbit coupling [30–33], whose symmetry
groups are known as spin space groups [34–36]. Besides
isolated momentum points, nodal line and surface structures
can form if multiple degeneracies are ensured along a line
or surface in the BZ [37–47]. The dispersion of quasiparti-
cles around these nodal points or lines is described by the
effective Hamiltonian known as the k · p model [48–52]. This
Hamiltonian, along with the response theory of quasiparticles
to external probe fields such as electric fields, magnetic fields,
and strain, can be derived from the projective representations
associated with the quasiparticles.

The quasiparticles in semimetals discussed above have
U (1) charge (or particle number) conservation symmetry. An-
other class of quasiparticles are of Bogoliubov type, where
fermions pair to form Cooper pairs, breaking the U (1) sym-
metry down to Z2 [53]. In the BdG Hamiltonian of SCs/SFs or
QSLs, fermion pairing introduces a particle-hole symmetry P ,
ensuring that the energy spectrum is symmetric around zero
energy. Gapless Bogoliubov quasiparticles near the Fermi
level (zero energy) are particularly interesting as they deter-
mine the system’s low-energy physical responses. Due to P ,
the degenerate points of gapless quasiparticles are exactly at
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zero energy, termed zero modes. For instance, d-wave SCs
on a square lattice contain zero modes at four points along
the diagonal lines of the BZ, around which linearly dispersive
quasiparticles arise. Notably, if charge conjugation symmetry
C is preserved, Bogoliubov quasiparticles become Majorana
types, which are their own antiparticles. The “antiparticle”
and particle are related by charge conjugation symmetry C
(or “particle-antiparticle exchange symmetry”) [54]. Unlike in
high-energy physics, where Majorana fermions are generally
massive in 3+1 dimensions, in condensed matter physics,
Majorana excitations at high-symmetry points of the BZ can
be massless (gapless) in C-symmetric SCs or SFs. Although
Majorana zero modes (gapless chiral Majorana edge states)
can appear on the boundary of topological SCs/SFs [55], in
the present paper, we focus on the bulk spectrum.

Previous studies of bulk zero modes have mainly fo-
cused on topological aspects, such as Z2 or Z invariants
or symmetry indicators [56–64]. A comprehensive theory
of gapless quasiparticles in BdG systems, including their
physical response to external probe fields, is still lacking.
In this paper, starting from symmetry groups and their rep-
resentation theory, we systematically study the mechanisms
for the appearance of zero modes in the bulk spectrum
of SCs/SFs or QSLs, and provide methods to determine
the physical properties of gapless quasiparticles. We prove
that without (effective) charge conjugation symmetry, zero
modes at a given momentum point can be adiabatically re-
moved. With (effective) charge conjugation symmetry, zero
modes can stably exist at high-symmetry points in a band
representation, forming gapless quasiparticles with linear,
quadratic, or higher-order dispersions. We define two types
of zero modes—irreducible and reducible—based on the pro-
jective representations of the little co-group. This allows
us to determine the degeneracy of zero modes and sys-
tematically construct the k · p model and response matrix
of gapless quasiparticles to probe fields. Finally, we pro-
pose a classification scheme for point-nodal SCs/SFs/QSLs
for a given symmetry group. Our conclusions apply to all
Altland–Zirnbauer symmetry classes of BdG systems [65,66].
Furthermore, the application of representations differs from
conventional symmetry groups because of P anticommuting
with the Hamiltonian.

The rest of the paper is organized as follows: In Sec. II,
after a brief introduction to symmetry groups for fermionic
BdG Hamiltonians, we derive the conditions for the appear-
ance of zero modes in the bulk spectrum of SCs/SFs or QSLs.
In Sec. III, we provide an efficient method for obtaining the
effective k · p model and the physical response to external
probe fields for gapless quasiparticles. Concrete lattice models
are provided in Sec. IV to illustrate the results from previ-
ous sections. Section V discusses the classification scheme
for point-node SCs/SFs/QSLs and summarizes the main
findings.

II. ZERO MODES IN THE BULK SPECTRUM
OF GENERAL BdG SYSTEMS

In metals and insulators, the symmetry group is com-
muting with the Hamiltonian. However, BdG systems like
SCs/SFs are characterized by their particle-hole symmetry

P , which is anticommuting with the Hamiltonian PH =
−H P and maps the eigenspace of ε to that of −ε, H P|ε〉 =
−PH |ε〉 = −εP|ε〉, namely P|ε〉 ∝ | − ε〉. Therefore, gen-
erally we need to treat the direct sum of the eigenspaces of
{ε,−ε}.

A. Symmetry operations

At the mean-field level, the Hamiltonian of a SC/SF/QSL
reads

H =
∑
i �= j

(ti jc
†
i c j + �i jc

†
i c†

j + h.c) +
∑

i

λic
†
i ci, (1)

which can be written in matrix form in the Nambu
bases �† = [C†,CT ] with C† = [c†

1, c†
2, . . . , c†

N ] and CT =
[c1, c2, . . . , cN ] (N is the total number of the degrees of free-
dom), namely

H = �†H � + h0,

with h0 = 1
2

∑
i λi, H † = H and Tr H = 0. In the follow-

ing, we will briefly introduce the symmetry operations of the
Hamiltonian (1) and categorize them into three distinct types.

(1) Space-time symmetry described by space groups or
magnetic space groups.

If g is a spatial symmetry operation, then

ĝC†ĝ−1 = C†u(g),

namely, ĝc†
i ĝ−1 = ∑N

j=1 u ji(g)c†
j , where operations withˆacts

on the Hilbert space. The Hamiltonian is invariant under the
action of g, ĝHĝ−1 = H, or equivalently U (g)H U −1(g) =
H with

U (g) =
(

u(g)

u∗(g)

)
.

For a SC without magnetic order, the symmetry group is a
direct product of space group and the time reversal group
ZT

2 = {E , T }, namely the type-II magnetic space group. Here
T acts as T̂ C†T̂ −1 = C†u(T )K and U (T )KH KU −1(T ) =
U (T )H ∗U −1(T ) = H with

U (T )K =
(

u(T )

u∗(T )

)
K.

If the system contains magnetic order, then the symmetry
group is generally a magnetic space group of type-I, type-III
or type-IV.

(2) Internal symmetries in the spin and charge sectors.
For spin-1/2 fermions, the set of spin operations form

a group SU (2)s, and the set of charge operations form an-
other group SU (2)c. The action of the two SU (2) groups can
be clearly seen by performing an unitary transformation to
the complete Nambu bases �† = [C†

↑,C†
↓,CT

↑ ,CT
↓ ] into �̄† =

[C†
↑,C†

↓,CT
↓ ,−CT

↑ ] where C†
σ = [c†

1σ , . . . , c†
Lσ ] with σ =↑,↓

and L the number of sites.
In the new bases �̄†, a spin rotation in the SU (2)s group

acts as

�̄† → �̄†I2 ⊗ exp
{
−i

σ

2
· nθ

}
⊗ IL, (2)

where the three Pauli matrices σx,y,z are the generators of the
spin transformations and n is the axis of the spin rotation
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and θ ∈ [0, 2π ] is the rotation angle. If the system is free
of spin-orbit coupling (SOC), then the symmetry group of
the system is then a direct product group of a space group
(or a magnetic space group) and SU (2)s. For systems with
non-negligible SOC, the spatial point group operations also
act on the spin degrees of freedom. The resulting space groups
are known as double groups.

On the other hand, a charge operation in the SU (2)c group
transforms as

�̄† → �̄† exp
{
−i

τ

2
· mϕ

}
⊗ I2L, (3)

where the three Pauli matrices τx,y,z are the generators of
charge transformations, and m is the axis of the charge ro-
tation and ϕ ∈ [0, 2π ] is the rotation angle. In electronic
systems the SU (2)c charge group generally breaks down to
its subgroup.

Notice that the SU (2)s and SU (2)c groups are not com-
pletely independent; they share the same center Z f

2 = {E , Pf },
which is generated by the fermion parity Pf = e−i2π τ

2 ·m ⊗
I2 = I2 ⊗ e−i2π σ

2 ·n. As a consequence, the internal symmetry
operations form a SO(4) group.

In the present paper we will adopt the original Nambu
bases �† = [C†

↑,C†
↓,CT

↑ ,CT
↓ ], where a spin SU (2)s rotation

(2) is given by

�† → �† exp

(
−i

σ̃

2
· nθ

)
⊗ IL, (4)

with the three generators

σ̃x = τz ⊗ σx, σ̃y = I2 ⊗ σy, σ̃z = τz ⊗ σz.

A charge SU (2)c transformation (3) then takes the following
form

�† → �† exp

{
−i

τ̃

2
· mϕ

}
⊗ IL, (5)

with

τ̃x = −τy ⊗ σy, τ̃y = τx ⊗ σy, τ̃z = τz ⊗ I2.

An important charge operation is the charge conjugation
C that exchanges the creation operators with the annihila-
tion operators, such as C̄ = e−i τx

2 π or C̄ = e−i
τy
2 π in the new

bases �̄†. Generally a charge conjugation is of order four
with Ĉ2 = P̂f . In the original Nambu bases �† the charge

conjugation takes the form of C = e−i τ̃x
2 π or C = e−i

τ̃y
2 π . A

Hamiltonian is said to have charge conjugation symmetry if
it is invariant under the charge conjugation transformation,
namely ĈH Ĉ−1 = �†CH C†� = H, which requires

CH C† = H . (6)

Since the charge conjugation exchanges creation operators
with annihilation operators, to preserve the C symmetry we
must have λi = 0 for all sites. Therefore, charge conjugation
symmetry is a very stringent constraint in condensed matter
systems since it requires the chemical potential to be zero ev-
erywhere. If a charge conjugation is combined with operations
in the spin and/or lattice sectors to form a symmetry opera-
tion, then we call it an effective charge conjugation symmetry.

For fermions carrying integer spin (such as the spinless
fermions discussed in Sec. IV C) the charge group is simply

O(2) ∼= U (1) � ZC
2 , where U (1) = {e−iτzθ ; θ ∈ [0, 2π )} and

ZC
2 = {E , τx} is generated by the charge conjugation C = τx

[67].
(3) The particle-hole “symmetry”
Notice that in the complete Nambu bases one has �† =

�T �x with �x = τx ⊗ IN . Furthermore, the transpose of a
fermion bilinear Hamiltonian gives rise to a minus sign (if
h0 = 0), so any BdG system has a particle-hole “symmetry”

�xKH K�x = −H . (7)

Owing to (7), the energy spectrum has a reflection symmetry
centered at E = 0 and the eigenvalues ±ε appear in pairs. The
particle-hole symmetry operation P̂ = �xK in (7) is antiu-
nitary in the first quantization formalism. Since P̂2 = 1, the
corresponding symmetry class is called the D class.

For spin-1/2 systems with spin rotational symmetry, we
adopt the reduced Nambu bases ψ† = [C†

↑,CT
↓ ] in which the

particle-hole symmetry is redefined as P̂ = i�yK with �y =
iτy ⊗ IL and P̂2 = −1. This symmetry class is called the C
class. In the reduced Nambu bases, the SU (2)s group acts
trivially and the SU (2)c operations act as

ψ† → ψ† exp
{
−i

τ

2
· mϕ

}
⊗ IL. (8)

Since P̂ is antiunitary, it transforms momentum k to −k.
Hence in momentum space, P̂ is not necessarily a symme-
try operation. However, the combination of P̂ and spatial
inversion (or time reversal, et al.) operation form an effective
particle-hole symmetry at momentum point k, which anticom-
mute with the Hamiltonian Hk . In late discussion, we denote
the effective particle-hole symmetry as P̃ with P̃ = IP̂ (or
P̃ = T P̂ , et al.). Since {P̃,Hk} = 0, generally P̃ and Hk

cannot be diagonalized simultaneously.
A symmetry operation that commutes with the BdG Hamil-

tonian can be either the first kind or the second kind, or a
combination of them. We write such an operation in a general
form as α = {sα, cα||pα|tα}, where sα, cα, pα respectively de-
note the spin, charge, and lattice point group operations and
tα is a fractional translation. If the system contains spin-orbit
coupling, then the spin rotations sα are locked with the cor-
responding lattice point operations pα . In later discussion, we
will denote the group formed by the combined operations α

as G f = {α}, dubbed the “fermionic” group [68,69]. Double
magnetic space groups (MSGs) [16] and double spin space
groups (SSGs) [34–36,70] are examples of G f , which only
contain one nontrivial charge operation Pf .

When including the particle-hole symmetry, the full group
will be denoted as

Ff = G f + PG f

with P2 = E or P2 = Pf . Notice that the fermionic group G f

is generally an extension of the space group of the lattice,
which is denoted as the “bosonic” group Gb. For instance, in
Sec. IV A, we will study the wallpaper group Gb = p4gm ×
ZT

2 with generators C4, T , {Mx| 1
2 , 1

2 }. When ignoring the spin
rotation symmetry and introducing the reduced Nambu bases,
the corresponding fermionic group G f is generated by C′

4 =
(E ||C4), T ′ = (IK||T ) and M′

x = {e−i τz
2 π ||Mx| 1

2 , 1
2 } satisfy-

ing T ′2 = 1,M′
x

2 = {Pf ||1, 0} and G f /Z f
2 = Gb (here the ′
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stands for lattice operations dressed by spin or/and charge
operations).

In the present paper, we will not dwell on the structures
of all possible fermionic groups G f for a given Gb, and we
just distinguish two types of them: in the first type, G f is
“diagonal” in the particle-hole sector (such as the double
MSGs/SSGs); in the second type, G f contains symmetry op-
erations that are nondiagonal in the particle-hole sector (such
as projective symmetry groups of Z2 QSLs).

In the following discussion, we will focus on the spec-
trum at a momentum k that is invariant under an effective
particle-hole symmetry P̃ , since zero modes at momentum k
without this symmetry are unstable when varying the chemi-
cal potential. Denoting the group of symmetry operations that
commute with Hk as G f (k), then the full little cogroup Ff (k)
is given by Ff (k) = G f (k) + P̃G f (k). Since [Hk, G f (k)] =
0, generally the eigenstates of Hk with eigenvalue εk carry
an irreducible projective representation of G f (k) [the factor
systems ω2(g1, g2) are given in Appendix C]. Noticing that P̃
maps |εk〉 to |−εk〉, in order to obtain more information of the
energy spectrum especially the existence or nonexistence of
zero-energy modes, we need to consider the full group Ff (k)
and its irreps.

Ff (k) has two kinds of projective irreps (see Appendix D):
(i) simple irreps, which are irreducible when restricted to

the subgroup G f (k);
(ii) composite irreps, the restricted rep of G f (k) for a

composite irreps is a direct sum of two irreps of G f (k).

B. Robust and accidental zero modes

Here we systematically study the zero modes in BdG
Hamiltonians. Suppose that Hk contain zero modes and as-
sume that the zero modes span a Hilbert space L0.

(i) If L0 carries a simple irrep of Ff (k), namely if L0 also
carries an irrep of G f (k), then the zero modes are stable in
the sense that they cannot be lifted when keeping all of the
symmetries. We call this set of zero modes as “irreducible zero
modes”.

Although a set of irreducible zero modes carry a simple
irrep of Ff (k), the inverse is not necessarily true. Namely,
a simple irrep of Ff (k) may not contribute any zero modes
to the spectrum because two simple irreps may couple with
each other to form nonzero-energy modes. So we have the
following theorem.

Theorem 1. Every simple projective irrep D(Ff (k)) has
a partner D′(Ff (k)) [carrying the same factor system of
D(Ff (k))] with whom it can couple to form nonzero-energy
modes if the bases of D(Ff (k)) and D′(Ff (k)) are both in-
cluded in the system.

The proof is simple. If P̃ is unitary, noticing P̃2 ∈ G f (k),
one can set D′(G f (k)) = D(G f (k)) and D′(P̃ ) = −D(P̃ ).
Then the Hamiltonian coupling the two reps D(Ff (k)) and
D′(Ff (k)) reads h(k) = εkμx ⊗ I, where μm, m = x, y, z are
the Pauli matrices acting on the D(Ff (k)) ⊕ D′(Ff (k)) direct
sum sector. If P̃ is antiunitary, one can choose D′(Ff (k)) =
D(Ff (k)), then a possible Hamiltonian that couples the two
reps D(Ff (k)) and D′(Ff (k)) is h(k) = εkμy ⊗ I.

According to Theorem 1, the irrep D(G f (k)) gives rise
to irreducible zero modes only when its partner D′(Ff (k)) is

absent in the bases of the system. Later we will show that this
is a stringent condition and it happens only when the system
contains special symmetries.

(ii) If L0 carries a composite irrep of Ff (k) [namely if L0

carries a reducible rep of G f (k)], then the zero modes in L0

are accidental and can be lifted by small perturbations without
breaking any symmetry.

(iii) If L0 carries a reducible rep of Ff (k), then the zero
modes contributed by composite irreps or couples of simple
irreps (the simple irreps in each couple are partners of each
other) are accidental, while the ones contributed by uncoupled
simple irreps are robust.

C. Minimal nonzero modes: {εk, −εk} with εk �= 0

Now we discuss the modes having nonzero energy. Since
P̃ maps the n-dimensional (n-D) eigenspace of Hk with
eigenvalue εk to the one with eigenvalue −εk , we need to
investigate the 2n-D subspace L±εk formed by the direct sum
of the eigenspaces {εk,−εk} for εk �= 0. This subspace L±εk

is called minimal if it cannot be divided into smaller sets
of nonzero modes without breaking any symmetry. There
are two possible types of minimal nonzero modes: (1) L±εk

carries a composite irreducible rep of Ff (k) and is called a
set of irreducible nonzero modes; (2) L±εk carries a direct
sum of two simple irreps of Ff (k), and L±εk will be called a
set of reducible minimal nonzero modes (RMNZM).

1. Irreducible nonzero modes

By definition, the supporting space L±εk of irreducible
nonzero modes forms an irrep of D(Ff (k)). This irrep must
be a composite irrep, namely, the restricted rep on G f (k)
must be reducible; otherwise, it would give rise to a set
of irreducible zero modes. We adopt the eigenbases of the
Hamiltonian for the irreducible nonzero modes, which takes
the form h(k) = εkμz ⊗ In, where μz is the third Pauli matrix
whose eigenvalues ±1 respectively label the eigenspaces with
positive and negative energy. Defining K−1 = K, K1 = I , and
s(g) = −1 for antiunitary elements g ∈ G f (k) and s(g) = 1
for unitary ones, then according to Appendix D the element
g ∈ G f (k) is represented as

D(g)Ks(g) =
(

d (g) 0

0 d ′(g)

)
Ks(g),

where d (g)Ks(g) and d ′(g)Ks(g) =
ω2(g,P̃ )

ω2(P̃,P̃−1gP̃ )
Ks(P̃ )d (P̃−1gP̃ )Ks(P̃ ) are two n-D irreps of

G f (k), and P̃ is represented as

D(P̃ )Ks(P̃ ) =
(

0 ω2(P̃, P̃ )d (P̃2)

In 0

)
Ks(P̃ )

with P̃2 ∈ G f (k).

2. Reducible minimal nonzero modes

We now consider the case in which L±εk contains two
simple irreps of Ff (k) noted as D(Ff (k)) and D′(Ff (k)), re-
spectively (they are partner of each other). By definition,
the “minimal nonzero modes” requires that the restricted
Reps D(G f (k)) and D′(G f (k)) are irreducible. From Schur’s
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TABLE I. Reducible minimal nonzero modes for the space D(Ff (k)) ⊕ D′(Ff (k)) of the group Ff (k) = Gf (k) + P̃Gf (k). “U” stands for
unitary and “A” denotes antiunitary. The situations for unitary P̃ with ηP̃ = 1 correspond to two sets of uncoupled irreducible zero modes.

P̃ Gf (k) D(Gf (k)) = D′(Gf (k)) D(P̃ )[D′(P̃ )]−1 Condition for RMNZM

U U irreducible ηP̃ I (1) ηP̃ = −1, D(Ff (k)) � D′(Ff (k))
A R-class ηP̃ I (2) ηP̃ = −1, D(Ff (k)) � D′(Ff (k))

C-class ηP̃ I , if {D(P̃ ),�z} �= 0 (3) ηP̃ = −1, D(Ff (k)) � D′(Ff (k))
eiθ�z , if {D(P̃ ),�z} = 0 (4) θ ∈ [0, 2π ), D(Ff (k)) ∼= D′(Ff (k))

H-class ηP̃ I , if {D(P̃ ),�n} �= 0 for any n (5) ηP̃ = −1, D(Ff (k)) � D′(Ff (k))
eiθ�n , if {D(P̃ ),�n} = 0 for some n (6) θ ∈ [0, 2π ), n ∈ S2, D(Ff (k)) ∼= D′(Ff (k))

A U irreducible eiθ I (7) θ ∈ [0, 2π ), D(Ff (k)) ∼= D′(Ff (k))

lemma, the restricted reps D(G f (k)) and D′(G f (k)) must be
equivalent such that they can couple to each other. That is,
D(G f (k)) ∼= D′(G f (k)). We thus assume that the bases have
been adjusted such that

D(G f (k)) = D′(G f (k)). (9)

Furthermore, as summarized in Table I, the ability of
coupling between the two simple irreps further restricts the
relation between D(P̃ )Ks(P̃ ) and D′(P̃ )Ks(P̃ ). In later discus-
sion, we define the unitary quantity

X = D(P̃ )[D′(P̃ )]−1

to denote the difference between D(P̃ ) and D′(P̃ ). As shown
in Appendix E, X is commuting with the restricted rep
D(G f (k)).

(I) P̃ is unitary (chiral-like, e.g., P̃ = T P)
(a) If G f (k) is unitary, then from Schur’s lemma one

has X = ηP̃ In with ηP̃ a constant. Since P̃2 ∈ G f (k), hence
[D(P̃ )]2 = [D′(P̃ )]2, namely η2

P̃ = 1, ηP̃ = ±1, see Ap-
pendix E 1 a. When ηP̃ = −1, then L±εk is indeed a set of
RMNZM. When ηP̃ = 1, L±εk contains two simple irreps un-
coupled to each other, hence L±εk corresponds to zero modes.

(b) If G f (k) is antiunitary, denote the maximum uni-
tary subgroup of G f (k) as Hf (k) with G f (k) = Hf (k) +
T0Hf (k), T 2

0 ∈ Hf (k). The projective irreps of G f (k) are
classified into R, C, and H classes [71] according to their
centralizers [72].

(b1) When the restricted rep D(G f (k)) is of the real class
R, then X = ηP̃ In still holds with ηP̃ = ±1. The case with
ηP̃ = −1 stands for RMNZM.

(b2) When the D(G f (k)) is of the complex class C, then
the restricted rep D(Hf (k)) is a direct sum of two nonequiv-
alent irreps with dimension n

2 . Suppose �z is diagonal in this
direct sum space and is represented as �z = ωz ⊗ I n

2
with

ωz the third Pauli matrix. Then the unitary elements in the
centralizer of the rep D(G f (k)) can be written as eiθ�z =
cos θ + i sin θ�z, see Appendix E 1 b, where θ ∈ [0, 2π ). So
we have X = eiθ0�z for some θ0 with a constraint,

e−iθ0�z D(P̃ ) = D(P̃ )eiθ0�z . (10)

If {D(P̃ ),�z} �= 0, then sin θ0 = 0, so θ0 = 0, π . The
case θ0 = π (yielding X = −In) stands for the RMNZM.
If {D(P̃ ),�z} = 0, then θ0 ∈ [0, 2π ) and D(Ff (k)) and
D′(Ff (k)) are equivalent since they are related by a U (1)

transformation �† → � ′† = �†e−i�z
θ0
2 , D(P̃ ) → D′(P̃ ) =

e−i�z
θ0
2 D(P̃ )ei�z

θ0
2 = e−i�zθ0 D(P̃ ). The two irreps can be cou-

pled to form nonzero modes. For instance, when θ0 = 0 the
Hamiltonian can be chosen as hk = εkμy ⊗ �z.

(b3) When D(G f (k)) is of the quaternionic class H, then
the unitary elements in the centralizer of the D(G f (k)) can
be written as eiθ�n (with �n = ω · n ⊗ I n

2
, ω the three Pauli

matrices) for any n ∈ S2, θ ∈ [0, 2π ), see Appendix E 1 b. So
we have

X = eiθ0�n0 , (11)

for some θ0, n0 with the following constraint:

e−iθ0�n0 D(P̃ ) = D(P̃ )eiθ0�n0 . (12)

If {D(P̃ ),�n0} �= 0 for any n0 ∈ S2 [for instance, when
Tr D(P̃ ) �= 0], then only θ0 = 0, π satisfies the relation
(10). Then (11) reduces to X = ηP̃ In with ηP̃ = ±1 and
the case ηP̃ = −1 stands for RMNZM. If there ex-
ist some n0 such that {D(P̃ ),�n0} = 0, then D(P̃ ) and
D′(P̃ ) are related by an SU(2) transformation �† →
� ′† = �†e−i�n0

θ0
2 , D(P̃ ) → D′(P̃ ) = e−i�n0

θ0
2 D(P̃ )ei�n0

θ0
2 =

e−i�n0 θ0 D(P̃ ). Hence, the two irreps D(Ff (k)) and D′(Ff (k))
are equivalent, they can be coupled to form nonzero modes.
For instance, when θ0 = 0 the Hamiltonian can be chosen as
hk = εkμy ⊗ �n.

(II) P̃ is antiunitary (particle-hole like, e.g., P̃ = IP)
If G f (k) is antiunitary, we can multiply P̃ with an antiu-

nitary element T0 ∈ G f (k) to obtain a chiral-like symmetry
operator P̃ ′ = P̃T0, which has been discussed in case (I).
Therefore, we only need to consider the case in which G f (k)
is unitary. Equation (9) indicates that the two irreps D(Ff (k))
and D′(Ff (k)) are equivalent, and consequently D′(P̃ )K =
e−iθ D(P̃ )K with θ ∈ [0, 2π ), namely X = eiθ In, see Ap-
pendix E 2. Now L±ε is a set of RMNZM since there exist a
Hamiltonian matrix hk = εk (sin θ

2 μx + cos θ
2 μy) ⊗ In, which

commutes with D (G f (k)) = D(G f (k)) ⊕ D(G f (k)) and anti-
commutes with D (P̃ )K = D(P̃ ) ⊕ e−iθ D(P̃ )K .

D. Conditions for the existence of zero modes

Now we consider BdG systems on the lattice having a
symmetry group G f , and assume that a fixed number of com-
plex fermion bases (namely local Wannier orbitals) are placed
in certain Wyckoff positions in the unit cell. According to
Appendix C, for any given momentum k, the rep of Ff (k)
can be read out from the generalized band representation,
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and then we can know whether there exist zero modes at
the k. If zero modes do exist, the degeneracy must be even
because the dimension of the Hamiltonian Hk is even and
the nonzero-energy levels appear in pairs {εk,−εk}. In the
following Theorem 2 (see Appendix F for proof), however,
we show that if the G f (k) is diagonal in the particle-hole
sector, then no stable zero modes can be found at a given
momentum k.

Theorem 2. For any BdG system whose symmetry group
G f (k) is diagonal in the particle-hole sector, all zero modes at
the momentum point k are accidental and can be adiabatically
lifted without breaking any symmetry.

However, situations will be changed if the system contains
nondiagonal charge symmetries like the (effective) charge
conjugation symmetry. In Appendix G, it is proved that at
a given P̃ symmetric momentum point k, one can always
find (effective) charge-conjugation symmetries to turn a set
of minimal nonzero modes into zero modes—the minimal
“C-zero modes”. If the C-zero modes originate from irre-
ducible nonzero modes of Ff (k), then they form irreducible
zero modes of the group F c

f (k) = Ff (k) + CFf (k); otherwise
if the C-zero modes come from RMNZM of Ff (k), then they
are called reducible minimal C-zero modes. Then we have the
following Theorem 3.

Theorem 3. At a given P̃-symmetric momentum k [i.e.,
P̃ ∈ Ff (k)] of an arbitrary BdG system, any minimal nonzero
modes (except for one special case) located at the momen-
tum k can be turned into zero modes by adding a single
charge-conjugation symmetry to the original BdG system.
The exception is when P̃ is antiunitary while G f (k) is unitary,
and the irrep D(Ff (k)) carried by a set of irreducible nonzero
modes is of H class, then one needs two charge-conjugation
operations anticommuting with each other to gain zero modes.

Charge conjugations are the simplest charge operations that
are nondiagonal in the particle-hole sector. The above theorem
can be generalized to cases where the charge conjugation
operation C is replaced by general nondiagonal charge opera-
tions D in SU (2)c, e.g., with D3 = E or D6 = E .

On the other hand, zero modes can also appear at unfixed
momenta. For instance, a level crossing of irreducible nonzero
modes carrying two nonequivalent reps of G f (k) can give rise
to zero modes on certain high-symmetry line. So we have the
following theorem:

Theorem 4. On a high-symmetry line of the BZ having a
unitary symmetry M, if the eigenspaces {εk,−εk} of a min-
imal nonzero modes carry different quantum numbers (i.e.,
characters of irreps) of M, then the level crossing of εk,−εk

gives rise to a set of stable zero modes whose momentum is
not fixed.

According to the above theorems, gapless quasiparticles
can be found under one of the following three situations:

(1) Presence of one or two (effective) charge-conjugation
symmetries giving rise to one or more sets of irreducible zero
modes at a high-symmetry point k.

(2) Presence of level crossing of bands carrying different
quantum numbers of certain unitary symmetry operation of a
high-symmetry line.

(3) Occurrence of π -quantized Berry phase around generic
k point caused by the (I ′T ′) symmetry with (I ′T ′)2 = 1.
Here I ′ and T ′ respectively stand for the inversion and the

time-reversal symmetries dressed by spin or/and charge oper-
ations.

The condition (1) can be verified using the band repre-
sentation theory for SCs/SFs/QSLs provided in Appendix C.
The last two conditions are illustrated via concrete lattice
models in Sec. IV. Especially, the I ′T ′ symmetry enforced
π -quantized Berry phase can give rise to nodal-point like
quasiparticles in two dimensions and nodal-line structures in
three dimensions. This is a topological origin of the zero
modes (usually linear dispersive), and is closely related to the
zero modes at generic k points enforced by symmetry indica-
tors [56,57,59–61,63,64,73]. The (projective) representation
theory of symmetry groups discussed in the present paper
provides a different and complementary mechanism to obtain
zero modes and gapless quasiparticles.

III. k · p THEORY AND PHYSICAL RESPONSE

The existence of degenerate modes (zero modes) in the
bulk-energy spectrum can give rise to nodal point or nodal
line structure. The dispersion around the nodal points or nodal
lines are reflected in the effective Hamiltonian called k · p the-
ory. In this section, we will adopt the Hamiltonian approach
[52] to obtain the k · p theory for zero modes of general BdG
Hamiltonians.

Above all, we define the “particle-hole rep” of Ff (k),

D(ph)(g) = +1, D(ph)(gP̃ ) = −1, (13)

with g ∈ G f (k). Here the complex conjugation Ks(g) is hidden
since the particle-hole rep is essentially a real rep.

A. k · p Hamiltonian

When the full symmetry group Ff and the electron bases
in the unit cell are given, the band representation D(Ff ) of
general BdG systems can be obtained (see Appendix C), from
which the stable zero modes are known. Suppose the stable
zero modes at momentum k span a Hilbert space L0. When
projected onto L0, the effective low-energy BdG Hamiltonian
reads

Heff =
∑
δk

�
†
k+δk�(δk)�k+δk =

∑
δk

Hk+δk,

where the �k is the basis of the zero modes, and �(δk) is
a Hermitian matrix �†(δk) = �(δk). When summing over
all the momentum variations, the total Hamiltonian should
preserve the Ff (k) symmetry, namely ĝ(

∑
δk Hk+δk)ĝ−1 =

(
∑

δk Hk+δk), for all g ∈ Ff (k). Assuming ĝ�†(k + δk)ĝ−1 =
�†(k + gδk)D(g)Ks(g), then generally for any g ∈ Ff (k) one
has

D(g)Ks(g)�(δk)Ks(g)D
†(g) = D(ph)(g)�(gδk), (14)

where D(ph)(g) is the 1D particle-hole Rep of Ff (k) defined in
(13).

Starting from (14), we derive the formula to judge the
dispersion relation of the BdG system in momentum space
around the zero modes. For instance, we consider linear
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dispersion around k, namely

�(δk) =
d∑

m=1

δkm�m + O(δk2). (15)

Here δk is a dual vector under the action of group Ff (k),
namely ĝδkm = ∑

n D(v̄)
mn(h)δkn, where (v̄) is the dual Rep of

the vector Rep (v) of the group Ff (k). Notice that δk reverses
its sign under the following actions: the time reversal T ′ (an-
tiunitary), the spatial inversion I ′ (unitary), the particle-hole
transformation P (antiunitary), hence,

D(v̄)(T ′)K = −1K, D(v̄)(I ′) = −1, D(v̄)(P )K = −1K.

(Recall that the ′ stands for lattice operations dressed by spin
or/and charge operations.)

(I) Ff (k) is unitary. If Ff (k) is a unitary group, then for any
g ∈ Ff (k) one has

D(g)�nD(g)† =
∑

m

D(v̄×ph)
mn (g)�m (16)

with D(v̄×ph)(g) ≡ D(ph)(g)D(v̄)(g). Thus, the existence of lin-
ear dispersion is determined by whether the product Rep
D(Ff (k)) ⊗ D∗(Ff (k)) contains the linear Rep D(v̄×ph)(Ff (k))
or not. It can be judged from the quantity

a(v̄×ph) = 1

|Ff (k)|
∑

g∈Ff (k)

|χ (g)|2 · χ (v×ph)(g) (17)

where χ (v×ph)(g) ≡ χ (v×ph)(g) = Tr[D(v̄×ph)(g)]∗. If
a(v̄×ph) = 0, then the dispersion must be of order higher
than 1. If a(v̄×ph) �= 0, then the dispersion is linear, and
one can always find Hermitian matrices �m satisfying the
equation (16) noticing that the Rep (v̄ × ph) is real.

(II) Ff (k) is antiunitary. The matrices �m also carry dual
vector rep of the group Ff (k).

For any g ∈ Ff (k), one has

D(g)Ks(g)�
nKs(g)D(g)† =

∑
m

�mD(v̄×ph)
mn (g), (18)

where D(v̄×ph)(g)Ks(g) ≡ D(ph)(g)D(v̄)(g)Ks(g) is a real Rep of
Ff (k) hence the operator Ks(g) can be hidden. Hence the exis-
tence of linear dispersion also depends on whether the product
Rep D(Ff (k)) ⊗ D∗(Ff (k)) contains the Rep D(v̄×ph)(Ff (k))
or not, under the condition that the CG coefficients can be
reshaped into Hermitian matrices.

Select an antiunitary operation T0 ∈ Ff (k) and introduce
the following matrices:

�̃m = �m · DT(T0).

According to the Hamiltonian approach [52], the symme-
try condition (18) with g = T0 and the Hermitian condition
(�m)† = �m are combined into a single symmetry condition
of �̃m (called η0-symmetry condition),

(�̃
m

)T = η0D
(
T 2

0

)∑
n

D(v̄×ph)
nm (T0)�̃n, (19)

with η0 = ω2(T0, T0).
Therefore, when restricted to the η0-symmetric subspace,

one only needs to consider the unitary symmetries of �̃m as
discussed in case (I). This is a relatively simpler since the
unitary elements are represented in the C field. On the other

hand, �m carry real representations of G f (k) so one need to
treat them in the R field, which is more complicated. This
subtlety makes the Hamiltonian approach a method with a
high efficiency.

Similar to Eq. (17), the existence of linear dispersion can
be judged by the following quantity:

a(v̄×ph) = 1

|Ff (k)|
∑

u

[|χ (u)|2χ (v×ph)(u)

+ ω2(uT0, uT0)χ ((uT0)2)χ (v×ph)(uT0)
]
, (20)

where the sum �u runs over all unitary elements u ∈ Ff (k),
namely if a(v̄×ph) �= 0, the dispersion is linear, otherwise the
dispersion is of order higher than 1. Notice that the character
χ (v×ph)(uT0) in (20) is well defined although uT0 is antiunitary,
because the rep (v × ph) is a real rep such that the allowed
bases transformations can only be real orthogonal matrices,
which keep χ (v×ph)(uT0) invariant.

Now we discuss how to obtain the matrices �m or �̃m in
the case a(v̄×ph) �= 0. Besides the η0-symmetry condition (19),
the symmetry constraints for unitary elements u ∈ Ff (k) reads

D(u)�̃mRT(u) =
∑

n

D(v̄×ph)
nm (u)�̃n, (21)

with R(u) = D(T0)D∗(u)D†(T0). If we consider the set
of matrices �̃m as a single column vector �̃ with
(�̃)(n−1)×d2+(α−1)×d+β = (�̃n)αβ, then the above constrains
(21) indicates that �̃ carries identity rep of any unitary ele-
ment u ∈ Ff (k), namely

W (u)�̃ = �̃, (22)

with W (u) = D(v×ph)(u) ⊗ D(u) ⊗ R(u). Furthermore,
W (T0)K�̃ = �̃ also holds where T0 is represented as
W (T0)K = D(v×ph)(T0) ⊗ D(T0) ⊗ D(T0)K .

When projected to the η0-symmetric space, the rep W (u)
becomes Wη0 (u) ≡ Projη0

W (u) with the matrix entries given
by

[Wη0 (u)]mγ ρ,nαβ = 1

2

[
D(v×ph)

mn (u)Dγα (u)Rρβ (u)

+η0

∑
λ

D(v×ph)
mn (uT0)Dγ β (u)Rρλ

×(u)Dλα ((T0)2)

]
.

The above matrix Wη0 (u) is not a rep for the group formed by
all unitary elements u ∈ Ff (k), but it does contain the identity
rep for that group, which shows that the dispersion contains
linear term. Then the �m can be obtained via the following
procedure:

(1) Obtain the common eigenvectors of Wη0 (u) with eigen-
value 1 for all unitary elements u ∈ Ff (k). These eigenvectors
span a Hilbert subspace L(I ).

(2) Project W (T0)K into L(I ), and perform bases transfor-
mation such that T0 is represented as IK in L(I ). Then the new
bases are all of the allowed �̃.

(3) Reshape each of the new bases into three matrices
�̃x, �̃y, �̃z.
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TABLE II. Linear Reps of the lattice rotation (l stands for an-
gular momentum), time reversal T ′, spatial inversion I ′, charge
conjugation C, and particle-hole transformation P carried by probe
fields: chemical potential λ, momentum k, gradience of temperature
∇T , magnetic field B, quadratic dispersion kαkβ , strain field εαβ , and
so on. The last column is the particle-hole rep of operations in Ff (k).

Prob fields λ ∇T B k kαkβ εαβ D(ph)

Rotation l = 0 l = 1 l = 1 l = 1 l = 0, 2 l = 0, 2 +1
T ′ +1 +1 −1 −1 +1 +1 +1
I ′ +1 −1 +1 −1 +1 +1 +1
C −1 +1 +1 +1 +1 +1 +1
P +1 +1 +1 −1 +1 +1 −1

(4) Finally one has �m = �̃m[D(T0)T]−1.
The above procedure can be applied to the zeroth order

k · p terms, i.e., to judge if an irrep is simple or composite.
This can be done by replacing the rep (v × ph) in Eq. (20)
with the identity rep or the particle-hole rep. If aI = 1, aph =
0, then the irrep is simple and cannot form nonzero modes by
itself; if aI = 1, aph �= 0, then the irrep is composite, which
corresponds to a set of irreducible nonzero modes.

Similarly, one can obtain higher-order k · p terms. For
instance, the linear rep carried by the quadratic dispersion
kαkβ is shown in Table II, where the l = 0 rep is the iden-
tity rep and the l = 2 rep can be reduced to direct sum of
lower-dimensional irreps (μ1) + (μ2) + .... From the irreps
(μ1), (μ2), ... one can construct the corresponding matrices
�(μ1 )m1 , ... that constitute the effective Hamiltonian

H =
∑
μ,m

f (μ)m (δk)�(μ)m + δk · δk �(0),

where f (μ)m (δk) is the mth basis (a quadratic polynomial of
δk) of the irrep μ and �(0) is the l = 0 term.

B. Physical properties

The above method can also be applied to study the phys-
ical properties of the quasiparticles, namely, the response to
external fields f , such as the gradience of temperature ∇T ,
magnetic field B, strain field εαβ , and so on. As summarized in
Table II, the prob fields carry linear reps of g ∈ Ff (k), namely

gfα =
∑

β

D(μ)
βα (g) fβ,

where (μ) is a linear rep of Ff (k). Then in the low-energy
effective Hamiltonian, fermion bilinear terms should be added
to the k · p model,

H ′ =
∑

α

fα�α.

Similar to (18), one has D(g)Ks(g)�αKs(g)D(g)−1 =∑
β D(ph)×(μ)

βα (g)�β . The matrices �α can be obtained
using the method introduced in the previous subsection.
Notice that electric fields E are not an applicable probe
fields, since electric fields are screened in SCs and do not
couple to the charge neutral SFs/QSLs. Instead, temperature
gradience ∇T is an ideal probe field for SCs/SFs/QSLs, and

∇T varies under symmetry operations in the same way as E .
Magnetic fields can be applied as Zeeman fields coupling to
SCs/SFs/QSLs. Despite the Meisner effect of SCs, magnetic
fields can be applied along in-plane directions for thin films
of SCs.

Due to the particle-hole symmetry P and the effective
charge conjugation symmetry C, the response of the Bo-
goliubov quasiparticles to external field is different from
quasiparticles in semimetals. For instance, the chemical po-
tential λ is a scaler field under space-time operations, but it
does not carry an identity rep of the group F c

f (k) = Ff (k) +
CFf (k), hence the response matrix �0 is not simply an identity
matrix. Consequently changing the chemical potential may
either shift the position of the nodal point or fully gap out
the quasiparticle.

Generally, the external fields may give mass to the gapless
quasiparticles. The resulting gapped state may have nontriv-
ial topological properties, such as nontrivial Chern numbers.
These information are maintained in the k · p model and the
response matrix mentioned above. In the following section,
we will illustrate the above results by concrete lattice models.

IV. LATTICE MODELS: GAPLESS QUASIPARTICLES
IN BDG SYSTEMS

In this section, we present four models in two-dimensional
translationally symmetric lattice systems to illustrate the
mechanisms and methods proposed in the previous sections.
The first three models discuss zero modes protected by an
effective charge conjugation C, while the fourth model is a
mean-field Hamiltonian of Z2 QSLs in which the projective
symmetry group contains symmetry elements that are nondi-
agonal in the particle-hole sector.

A. Square lattice: Gb = p4gm × ZT
2

The first model is a spin-1/2 SC/SF of the CI class. We
consider the square lattice with the magnetic wallpaper group
Gb = p4gm × ZT

2 . On the 2a Wyckoff positions A = (0,0)
and B = ( 1

2 , 1
2 ) with site group C4 × ZT

2 , we place spin-1/2
fermionic orbitals [c†

↑, c†
↓]. Assuming SOC is negligible, then

the spin-1/2 fermion forms a Kramers doublet under time
reversal T and is invariant under the site group rotation C4.
Due to the SU(2) spin rotation symmetry, the BdG Hamil-
tonian can be written in the reduced Nambu bases ψ

†
i =

[c†
A↑, c†

B↑, cA↓, cB↓]i, where the symmetry group G f is gen-

erated by C4 = C4, T ′ = (IK||T ),M′
x = {e−i τz

2 π ||Mx| 1
2 , 1

2 }
[here e−i τz

2 π is a charge operation defined in (8)] and trans-
lation, with

Ĉ4ψ
†
i Ĉ−1

4 =ψ
†
C4i, T̂ ′ψ†

i T̂ ′−1 =ψ
†
i K,

M̂′
xψ

†
i M̂′−1

x = i
[
c†

B↑,Mx i, c†
A↑,Mx i+(0,1),

−cB↓,Mx i,−cA↓,Mx i+(0,1)
]
.

Besides the particle-hole transformation

P̂ψ
†
i P̂−1 = [cA↓, cB↓,−c†

A↑,−c†
B↑]iK,
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FIG. 1. The model (23) with symmetry group Gb = p4gm × ZT
2 .

(a) The hopping terms and (b) the pairing terms. The black and white
circles stand for A and B sublattices respectively. The black bonds in
(a) represent the hopping terms, and in (b), the cyan bonds stand for
the phase eiθi, j = +1 while the blue bonds stand for eiθi, j = −1.

we further consider an effective charge conjugation C =
PB

f e−i
τy
2 π with PB

f [cA, cB](PB
f )−1 = [cA,−cB],

Ĉψ
†
i Ĉ−1 = [cA↓,−cB↓,−c†

A↑, c†
B↑]i,

and Ĉ2 = Pf . Then we obtain the complete symmetry group
F c

f , whose band representation can be obtained according
to Appendix C. Irreducible zero modes are found at X =
( 1

2 , 0),Y = (0, 1
2 ), M = ( 1

2 , 1
2 ) points, where the X and Y

points are related by C4 symmetry.
To illustrate the above results, we consider a lattice model

with inter-sublattice hopping and pairing terms,

H0 = t

2

∑
〈iζ , jζ̄ 〉

c†
iζ σ

c jζ̄ σ + �2

∑
〈〈iζ , jζ̄ 〉〉

eiθi, j

×(
c†

iζ ↑c†
jζ̄ ↓ − c†

iζ ↓c†
jζ̄ ↑
) + H.c., (23)

where ζ = A, B and ζ̄ �= ζ . The phase eiθi, j = ±1 of the
pairing term on the bond (i j) alternatively equals to
1,−1, as shown in Fig. 1. After Fourier transforma-
tion, the Hamiltonian can be written in the bases ψ

†
k =

[c†
kA↑, c†

kB↑, c−kA↓, c−kB↓]. The band structure with parameters
t = 1,�2 = 1.5 is shown in Figs. 2(a) and 2(b), where the
twofold degeneracy of the bands are caused by the antiunitary
symmetry CIT ′ with I = C2

4 , (CIT ′)2 = −1. In the follow-
ing, we analysis the protection of zero modes.

At the X ( 1
2 , 0) and Y (0, 1

2 ) points, the little co-group

F c
f (k)/Z f

2 = C2v × ZC
2 × ZT

2 × ZP
2 is represented as

D(C2) = I2 ⊗ νz, D(M′
m) = τz ⊗ νy, D(T ′)K = I4K,

D(P )K = τy ⊗ I2K, D(C) = −iτy ⊗ νz,

with m = x, y and νx,y,z the Pauli matrices acting on the
A, B sublattices. This rep corresponds to a set of fourfold
irreducible zero modes. Around the X,Y nodal points, the
effective k · p Hamiltonian is given by

Heff1 = aδk1τx ⊗ νy + bδk2τz ⊗ νy,

where a, b are constants, k1 = ky, k2 = kx for the X point and
k1 = kx, k2 = ky for the Y point. Furthermore, the response
to the external fields can also be derived based on the theory

FIG. 2. (a) The band of the Hamiltonian H0 in (23) with t =
1, �2 = 1.5; (b) the blue and red dots illustrate the positions of the
zero modes in (a). (c) The band structure of the Hamiltonian H0 + H1

with t = 1, �2 = 1.5, λ = 0.5, t0 = 0.6; (d) the blue and red dots
illustrate the positions of the zero modes in (c).

discussed in Sec. III. For instance, the response to the tem-
perature gradient ∇T at the Y point is linear, which is given
by

H∇T = a′∂xT τz ⊗ νx + b′∂yT τx ⊗ νx.

At the M( 1
2 , 1

2 ) point, the little cogroup F c
f (M )/Z f

2 =
C4v × ZC

2 × ZT
2 × ZP

2 is represented as

D(C4) = I2 ⊗ νz, D(M′
x ) = τz ⊗ νy, D(T ′)K = I4K,

D(P )K = iτy ⊗ I2K, D(C) = −iτy ⊗ νz.

The dispersion is quadratic at the nodal point M with the
following k · p Hamiltonian

Heff2 = c
(
δk2

x − δk2
y

)
τx ⊗ νx + dδkxδkyτz ⊗ νx.

The lowest-order response to the temperature gradient ∇T at
the M point is of second order, which is given by

H∇T = c′(∂xT 2 − ∂yT 2)τx ⊗ νx + d ′∂xT ∂yT τz ⊗ νx.

No zero modes appear at the � point with F c
f (�)/Z f

2 =
C4v × ZC

2 × ZT
2 × ZP

2 . Compared with the M point, C4

and M′
x are represented differently as D(C4) = I2 ⊗ I2 and

D(M′
x ) = iτz ⊗ νx, consequently the irrep at � point corre-

spond to irreducible nonzero modes.
Now we investigate the stability of the zero modes by

adding symmetry breaking terms to the Hamiltonian. Interest-
ingly, if one removes the mirror symmetry and preserves all
the other symmetries by adding, for instance, the �0 pertur-
bation term in Eq. (25), then the dispersion is qualitatively the
same as Fig. 2(a) and the fourfold degenerate zero modes at
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FIG. 3. (a) The Band structure of the Hamiltonian H0 + H1 + H2

with t = 1, �2 = 1.5, λ = 0.5, t0 = 0.6, �0 = 2, �1 = 1.7. (b) The
blue and red dots illustrate the positions of zero modes in (a).

the X, Y, and M points still remain. However, unlike the case
�0 = 0 where the set of fourfold C-zero modes is irreducible,
when �0 �= 0 the fourfold zero modes are reducible minimal
C-zero modes.

On the other hand, if one breaks the C symmetry while pre-
serves all the other symmetries by adding the intra-sublattice
terms

H1 = λ
∑
i,ζ ,σ

c†
iζσ ciζσ + t0

∑
〈i, j〉,ζ ,σ

(c†
iζσ c jζσ + H.c.), (24)

the situations are quite different. From the band structure
shown in Figs. 2(c) and 2(d) for the parameters λ = 0.5, t0 =
0.6, one can see that the fourfold zero modes at the X (or Y)
points split into two twofold zero modes, which are separated
along the x̂ (or ŷ) direction. Since the zero modes are away
from the high-symmetry point, they are now resulting from
level crossings protected by different quantum numbers of the
M′

y (or M′
x) symmetry. Similarly, the fourfold zero modes at

the M point split into two pairs of twofold zero modes, which
are separated and spreading along the (x̂ + ŷ) and (x̂ − ŷ)
directions, respectively. These zero modes are associated with
level crossings protected by different quantum numbers of the
M′

x−y or M′
x+y symmetry.

Zero modes still exist if one breaks both the mirror and C
symmetries by further turning on the nearest neighbor inter-
sublattice pairing and intra-sublattice pairing terms

H2 = �0

∑
〈iζ , jζ̄ 〉

(
c†

iζ ↑c†
jζ̄ ↓ − c†

iζ ↓c†
jζ̄ ↑
)

+�1

∑
〈i, j〉,ζ ,σ

(
c†

iζ↑c†
jζ↓ − c†

iζ↓c†
jζ↑

) + H.c. (25)

Here the �0 term breaks the mirror symmetry while the �1

term breaks both the mirror and C symmetries, and both
terms preserve the C4 and T ′ symmetries. The Band structure
of the Hamiltonian H0 + H1 + H2 with t = 1,�2 = 1.5, λ =
0.5, t0 = 0.6,�0 = 2,�1 = 1.7 are shown in Fig. 3 with
the cones protected by the combined IT ′ symmetry with
(ÎT ′)2 = 1. The IT ′ symmetry gives rise to π -quantized
Berry phase for loops in the BZ surrounding a single zero
mode, which protects the cones from being solely gapped out.
This mechanism makes the zero modes robust when the IT ′
symmetry is preserved.

FIG. 4. The Chern number as a function of θ0, with θ0 the phase
of �̃0 = �0eiθ0 .

Finally, when the pairing terms are complex, then the time
reversal symmetry T ′ and IT ′ are broken and the zero modes
disappear. The fully gapped bands becomes a topological
SC/SF with nonzero Chern number. Due to the unbroken C4

symmetry, the Chern number is either 4 or −4. As shown in
Fig. 4, if we keep �1,2 to be real but vary the phase of �0,
then the Chern number can be changed from 4 to −4 or vice
versa. The phase transition occurs at θ0 = π (�0 is real again),
where the gap closes at 8 nodal points in the BZ.

From the above model, we can see that the zero modes
are quit robust even in the presence of symmetry breaking
perturbations. When the effective charge conjugation symme-
try C is preserved, the zero modes appear at high-symmetry
points. When the C is violated, like in most realist SCs/SFs,
the zero modes do not disappear at once as long as certain
protecting symmetries are still preserved. The C symmetry is
of theoretical significance for BdG systems in the sense that
it provides the physical origin of the zero modes when the C
breaking terms are treated as perturbations. This provides a
systematic way to investigate the physical properties of nodal
SCs/SFs with gapless quasiparticle excitations.

B. Triangular lattice (spin- 1
2 ): Gb = p3 × ZT

2

The second example is a model for p-wave SC of the
DIII class. We consider the magnetic wallpaper group Gb =
p3 × ZT

2 on triangular lattice, and place two orbitals [c†
↑, c†

↓]
at the Wyckoff position 1a(0, 0) with cite group C3 × ZT

2 , as
shown in Fig. 5. The bases [c†

↑, c†
↓] respectively carry angular

FIG. 5. Lattice basis vectors (red) and their dual vectors (blue)
for the magnetic wallpaper group Gb = p3 × ZT

2 . The hollow circles
label the (maximal) 1a Wyckoff positions and the hexagons enclosed
by the doted lines stand for unit cells.
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FIG. 6. (a) The band structure of the Hamiltonian (26); (b) the
blue and red dots illustrate the positions of the zero modes.

momentum j = ± 3
2 as a consequence of spin-orbit coupling,

they reverse their sign under C3 and form a Kramers doublet
under T . In the complete Nambu bases �

†
i = [c†

↑, c†
↓, c↑, c↓]i,

the symmorphic symmetry operations C3 and T are diagonal
in the particle-hole sector,

Ĉ3�
†
i Ĉ−1

3 = −�
†
C3iI4, T̂ �

†
i T̂ −1 = �

†
i I2 ⊗ (−iσy)K.

With the particle-hole symmetry P and the effective charge-

conjugation symmetry C = −e−i
σ̃y
2 πe−i

τ̃y
2 π [see (4) and (5)],

which act as

P̂�
†
i P̂−1 = [c↑, c↓, c†

↑, c†
↓]iK, Ĉ�

†
i Ĉ−1 = [c↑, c↓, c†

↑, c†
↓]i,

one obtains the full symmetry group F c
f . From the band repre-

sentation, minimal C-zero modes are found at the � point and
the three M points.

To illustrate, we construct the following lattice model pre-
serving the Gb × ZC

2 symmetry (ZC
2 = {E , C}),

H0 = it
∑
〈i j〉

(c†
i↑c j↓ + c†

i↓c j↑) + i�1

∑
〈i j〉

(c†
i↑c†

j↑ − c†
i↓c†

j↓)

+ i�2

∑
〈〈i′ j′〉〉

(c†
i′↑c†

j′↓ + c†
i′↓c†

j′↑) + H.c., (26)

where the 〈i j〉 represents the nearest neighbors and 〈〈i′ j′〉〉
represents the next-nearest neighbors. The Hamiltonian
can be diagonalized in the full Nambu bases �

†
k =

[c†
k↑, c†

k↓, c−k↑, c−k↓]. The band structure with parameters t =
0.7,�1 = 0.5,�2 = 0.4 is shown in Fig. 6, which verifies the
existence of zero modes.

At the � point (0,0), the little co-group F c
f (�)/Z f

2 = C3 ×
ZT

2 × ZP
2 × ZC

2 is represented as

D
(
Cz

3

) = −I4, D(T )K = −iI2 ⊗ σyK,

D(P )K = τx ⊗ I2K, D(C) = τx ⊗ I2,

in the bases �
†
k . Without C, the little co-group becomes

Ff (k)/Z f
2 = C3 × ZT

2 × ZP
2 . Defining P̃ = T P , then the

above rep of Ff (k) corresponds to a set of RMNZM of the
case (6) in the Table I. When C is turned on, then the nonzero
modes are turned into reducible minimal C-zero modes. Fur-
thermore, the k · p theory indicates that the lowest-order
dispersion is cubic (see Sec. III A), and around the � point,
the third-order k · p Hamiltonian can be written as

Heff = h1
(
δk3

x − 3δkxδk2
y

) + h2
(
δk3

y − 3δkyδk2
x

)
(27)

where kx, ky are coordinates in the orthogonal frame, and
the matrices h1 = (aI2 ⊗ νz + bI2 ⊗ νx + cτx ⊗ νz + dτx

FIG. 7. Lattice basis vectors (red) and their dual vectors (blue)
for the magnetic wallpaper group Gb = p6m × ZT

2 . The (maximal)
1a Wyckoff positions are indicated by hollow circles, and all mirror
plans are indicated by purple lines.

⊗ νx ), h2 = (a′I2 ⊗ νz + b′I2 ⊗ νx + c′τx ⊗ νz + d ′τx ⊗ νx )
contain eight real parameters a, b, c, d, a′, b′, c′, d ′.

At the C3 related three M points (0, 1
2 ), ( 1

2 , 0), ( 1
2 , 1

2 ), the

little cogroup F c
f (M )/Z f

2 = ZT
2 × ZP

2 × ZC
2 is represented as

D(T )K = −iI2 ⊗ σyK, D(P )K = τx ⊗ I2K,

D(C) = τx ⊗ I2.

For the same reason as the � point, the C symmetry turns
the RMNZM into reducible minimal C-zero modes. The k · p
theory indicates that the energy dispersion is linear at the M
points (see Sec. III A), for instance, the k · p Hamiltonian for
the (0, 1

2 ) point is given by

Heff = h1δkx + h2δky (28)

where h1 = (eI2 ⊗ νz + f I2 ⊗ νx + gτx ⊗ νz + hτx

⊗ νx ), h2 = (e′I2 ⊗ νz + f ′I2 ⊗ νx + g′τx ⊗ νz + h′τx ⊗ νx )
and e, f , g, h, e′, f ′, g′, h′ are real parameters.

If one breaks the C symmetry (by preserving the time
reversal symmetry T ) by including the real hopping terms
H1 = t0

∑
〈i, j〉,σ (c†

iσ c jσ + H.c.), or the real pairing terms

H2 = �0
∑

〈i, j〉,σ [(c†
i↑c†

j↓ − c†
i↓c†

j↑) + H.c.], or the chemical

potential term λ
∑

iσ c†
iσ ciσ , then the zero modes disappear

immediately giving rise to a fully gapped SC/SF state.

C. Triangular lattice (spinless): Gb = p6m × ZT
2

The third model is about a SC for spinless fermions of the
BDI class. We consider a triangular lattice with the magnetic
wallpaper group Gb = p6m × ZT

2 . We put spinless fermonic
bases [c†, c] on the Wyckoff position 1a(0, 0), which carry
projective rep of the site group C3v × CI × ZT

2 , see Fig. 7. In
the fermionic symmetry group G f , the inversion operation I
is associated with a charge operation, namely I ′ = (ei τz

2 π ||I ).
The Nambu bases �

†
i = [c†, c]i vary under the action of the

symmetry group as

Ĉ3�
†
i Ĉ−1

3 = �
†
C3i, M̂m�

†
i M̂−1

m = �
†
Mmi,

Î ′�†
i Î ′−1 = �

†
Ii(iτz ) = [ic†,−ic]Ii, T �

†
i T −1 = �

†
i ,

with m = 4, 5, 6. Besides the particle-hole operation
P�

†
i P−1 = �

†
i τxK = [c, c†]iK , we further consider the
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FIG. 8. The nodal-line Band structure of the Hamiltonian (29)
having C symmetry.

following charge conjugation C with

Ĉ�
†
i Ĉ−1 = �

†
i τy = [ic,−ic†]i.

The band representation of the above group F c
f indicates that

the high-symmetry lines on the mirror planes M1,2,3 (i.e., the
lines linking � and K, K ′ points) are nodal lines of irreducible
C-zero modes.

The simplest lattice model preserving the above symmetry
is a pure pairing model,

H0 = �
∑
〈〈i j〉〉

c†
i c†

j + H.c. (29)

where 〈〈i j〉〉 represents next-nearest neighbors (the nearest-
neighbor pairing terms break the M4,5,6 symmetries).

The band structure with parameter � = 2 is shown in
Fig. 8, where the three nodal liens (locating on the mirror
planes M1,2,3) have the symmetry group F c

f (k)/Z f
2 = ZC

2 ×
ZI ′T

2 × ZMT
2 × ZT P

2 . The symmetry group F c
f (k) is repre-

sented as

D(I ′T )K = iτzK, D(T P ) = τx,

D(C) = τy, D(MmT )K = I2K, m = 4, 5, 6.

It can be seen that the subgroup ZC
2 × ZMT

2 × ZP
2 can protect

the nodal lines. The k · p Hamiltonian at the nodal lines are
given as

Heff3 = aδkvτy, Heff2 = −aδkxτy, Heff1 = aδkwτy,

where kx, ky are coordinates in the orthogonal frame and

δkv = 1
2δkx +

√
3

2 δky, δkw = 1
2δkx −

√
3

2 δky.
Now we break the C symmetry by adding the terms

H1 = λ
∑

i

c†
i ci +

(
t
∑
〈i, j〉

c†
i c j + H.c.

)
,

then the zero modes on the nodal line are lifted except for
six nodal points, as shown in Figs. 9(a) and 9(b). These nodal
points are resulting from level crossing protected by the quan-
tum numbers of the mirror symmetries M′

1,2,3 = I ′M4,5,6,
and the six nodal points are related with each other by C3 and
I ′ symmetries. The k · p effective Hamiltonian for the three
nodal points are

H ′
eff3 = aδkvτy + bδkṽτz, %H ′

eff2 = −aδkxτy − bδkyτz,

H ′
eff1 = aδkwτy + bδkw̃τz,

FIG. 9. (a) Band structure of the Hamiltonian (29) with param-
eters t = 1.5, λ = 0.1, � = 2. The mirror symmetries M′

1,2,3 are
preserved; (b) the red dots illustrate the positions of the zero modes in
(a). (c) Band structure for t = 1.5, λ = 0.1, � = 2, �2 = −2.5. The
mirror symmetries are violated but the I ′T symmetry is preserved;
(d) the red dots illustrate the positions of the zero modes in (c).

with δkv = 1
2δkx +

√
3

2 δky, δkṽ = −
√

3
2 δkx + 1

2δky, δkw =
1
2δkx −

√
3

2 δky, δkw̃ =
√

3
2 δkx + 1

2δky.
If we further break the mirror symmetry M′

1,2,3 by adding
the nearest pairing term

H2 = �2

∑
〈i, j〉

c†
i c†

j + H.c., (30)

the nodal points still exist but their positions drift away
the high-symmetry lines, as shown in Figs. 9(c) and 9(d).
These nodal points are protected by the I ′T symmetry with
(Î ′T )2 = 1. If we break the time-reversal symmetry by setting
�2 as a complex number, then all the zero modes are removed
and a topological SC/SF is obtained with Chern number ±3.

D. Multi-node Z2 QSL on honeycomb lattice: Gb = p3̄1m × ZT
2

The fourth example is a Z2 spin liquid model whose sym-
metry group is a PSG containing off-diagonal elements in the
particle-hole sector. We adopt the PSG of the exactly solvable
Kitaev spin liquid on the honeycomb lattice [74,75] whose
magnetic layer group is Gb = p3̄1m × ZT

2 with point group
D3d × ZT

2 , see Fig. 10. Placing spin- 1
2 Nambu bases �

†
i,ζ ≡

[c†
↑, c†

↓, c↑, c↓]i,ζ , ζ = A, B respectively at the 2c Wyckoff

positions A = ( 1
3 , 2

3 ) and B = ( 2
3 , 1

3 ) of the ith unit cell, then
the PSG is obtained by replacing the generators C3c,C2α, T , I
of D3d × ZT

2 by the spin and charge dressed operations [see
(4) and (5)]

C′
3c = (

e−i τ̃c
2

2π
3 e−i σ̃c

2
2π
3
∥∥C3c

)
, C′

2α =(
e−i τ̃α

2 πe−i σ̃α
2 π

∥∥C2α

)
,

T ′ = (
PB

f e−i
τ̃y
2 πe−i

σ̃y
2 πK

∥∥T ), I ′ = (
PB

f

∥∥I),
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FIG. 10. Lattice basis vectors (red) and their dual vectors (blue)
for the magnetic layer group Gb = p3̄1m × ZT

2 . The (maximal) 2c
Wyckoff positions A, B are indicated by black dots and hollow circles
respectively, and all mirror plans and twofold axes are indicated by
purple lines.

where τ̃c = 1√
3
(τ̃x + τ̃y + τ̃z ), τ̃α = 1√

2
(τ̃y − τ̃z ) and σ̃c, σ̃α

are similarly defined. The Nambu bases [�†
i,A, �

†
i,B] carry a

8-D projective rep of the site group D3 × ZT
2 with

T̂ ′[�†
i,A, �

†
i,B]T̂ ′−1 = [�†

i,A, �
†
i,B]νz ⊗ τx ⊗ I2K,

Î ′[�†
i,A, �

†
i,B]Î ′−1 = [�†

I(i),B,−�
†
I(i),A],

and

Ĉ′
3c�

†
i,ζĈ′

3c

−1 = 1

2
�

†
C3c (i),ζ

⎛⎜⎜⎜⎝
1 −i 1 −i

1 i −1 −i

1 i 1 i

−1 i 1 −i

⎞⎟⎟⎟⎠,

Ĉ′
2α�

†
i,ζ

ˆC′
2α

−1 = 1

2
�

†
C2α (i),ζ

⎛⎜⎜⎜⎝
−1 −i −1 −i

i 1 −i −1

−1 i −1 i

i −1 −i 1

⎞⎟⎟⎟⎠.

The particle-hole operation is simply represented as �xK as
shown in (7).

Considering nearest- and next-next-nearest-neighbor terms
between different sublattices, the most general BdG Hamil-
tonian that preserves the above PSG is given by (the
intra-sublattice terms are not allowed by the PSG)

H0=
∑

〈i, j〉∈z

(�†
i,AUH1U

†� j,B+ h.c.) + (x-,y-bonds)

+
∑

〈〈〈i, j′〉〉〉∈Z

(�†
i,AUH2U

†� j′,B+h.c.)+(X-,Y-bonds), (31)

where H1,H2 are the Hamiltonian matrices in the Majorana
bases

H1 = i

⎛⎜⎜⎝
η0 η1 −η1 0
η1 η2 η4 η3

−η1 η4 η2 η3

0 η3 η3 η5

⎞⎟⎟⎠,H2 = i

⎛⎜⎜⎜⎝
η′

0 η′
1 −η′

1 0
η′

1 η′
2 η′

4 η′
3

−η′
1 η′

4 η′
2 η′

3

0 η′
3 η′

3 η′
5

⎞⎟⎟⎟⎠,

FIG. 11. (a) The Band structure of the Hamiltonian (31) with
parameters given in the main text. The number of the cones is
“12 + 6 + 2”, where the “12” cones in red are the result of zero
modes protected by the I ′T ′ symmetry, the six cones in blue are
protected by the mirror symmetries M′

1,2,3, and each of the two green
cones results from irreducible zero modes; (b) the dots illustrate the
positions of the zero modes in (a).

and U = 1√
2

(
1 0 0 i
0 i −1 0
1 0 0 −i
0 −i −1 0

)
is the transformation matrix

mapping the complex fermion bases �
†
i,ζ into the Majorana

bases [74], namely [c, bx, by, bz]i,ζ = �
†
i,ζU . The parameters

η0,1,2,3,4,5, η′
0,1,2,3,4,5 are real numbers among which η0, η5

come from the solution of the pure Kitaev model. The terms
on the x, y bonds (X, Y bonds) can be obtained from ones on
the z bonds (Z bonds) by successive C′

3c rotations.
The spectrum of the Hamiltonian (31) can support a

series of zero modes in the BZ and the corresponding
state is a multinode QSL. For instance, Fig. 11 shows the
band structure with parameters η0 = 2, η1 = 1.2, η2 =
0.8, η3 = 0.5, η4 = 0.2, η5 = 1.2 and η′

0 = 1.6, η′
1 =

0.2, η′
2 = 0.8, η′

3 = 2.5, η′
4 = 0, η′

5 = 0. There are totally
20 cones, where each of the two cones in green color contains
irreducible zero modes protected by the little cogroup
Ff (K ) = C ′

3v × ZI ′T ′
2 ; the six cones in blue color contain

zero modes protected by crossing of energy bands carrying
different quantum numbers of the mirror symmetries M′

1,2,3;
the 12 cones in red color contain zero modes protected by
π -quantized Berry phase because of the I ′T ′ symmetry.

The two high-symmetry points K = ( 1
3 , 2

3 ) and K ′ =
( 2

3 , 1
3 ) have the little cogroup Ff (k)/Z f

2 = C ′
3v × ZI ′T ′

2 ×
ZPT ′

2 . All of the C′
3c, M′

1,2,3 symmetries can be treated as
effective charge conjugation, and the twofold irreducible zero
modes are represented as

D(C′
3c) =

√
3

2
I + i

2
μz, D(M′

1) =
√

3i

2
μy − i

2
μx,

D(I ′T ′) = μxK, D(T ′P ) = −μz.

According to Eq. (20) one has a(v×ph) = 1. So the dispersion
around the K and K ′ points is linear and the k · p Hamiltonian
has one free parameter a, yielding

Heff1 = a(δkxμx + δkyμy).

Similarly, the k · p Hamiltonian for the cones at the high-
symmetry lines with mirror symmetries M′

1,2,3 have two free
parameters b, c. For example, around the left blue cone, the
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effective Hamiltonian reads

Heff2 = bδkx

√
2

2
(cos θ2μx − sin θ2μy)

+ cδky

√
2

2
(sin θ2μx + cos θ2μy)

with θ2 ≈ 0.47π . Furthermore, the k · p Hamiltonian for the
cones at a generic point is given as

Heff3 = (dμx + eμy)δkx + ( f μx + gμy)δky, (32)

which has four parameters d, e, f , g.
Notice that the point group symmetry elements are as-

sociated with charge and spin operations in the PSG. This
makes the symmetries easy to break. For instance, the Zeeman
coupling term H1 = B

∑
i,ζ �

†
i,ζ

σ̃c
2 �i,ζ from a weak magnetic

field breaks the symmetries e−i σ̃α
2 π , e−i

σ̃y
2 πK in the spin sector.

Consequently the mirror symmetries M′
1,2,3 and the time-

reversal symmetry T ′ in the PSG are broken, hence all of
the cones are gapped out. The resulting state has nonzero
Chern number ±8. Furthermore, a chemical potential term
H2 = λ

∑
i,ζ (�†

i,ζ
τ̃z

2 �i,ζ ) + const can be introduced by dop-
ing the system with charge carriers. This term breaks the

e−i τ̃α
2 π , e−i

τ̃y
2 πK symmetries in the charge sector, consequently

the mirror symmetries M′
1,2,3 and the time reversal symmetry

T ′ in the PSG are also broken. All of the cones are then
gapped out, resulting in a topological SC state with nonzero
Chern number ±2 [75,76] (SC with hole doping has opposite
Chern number with the one with electron doping).

In Fig. 11, the cones with the same color are symmetry
related and form a {k∗}. With the varying of the parameters
η0 ∼ η5 and η′

0 ∼ η′
5, the positions of the cones, the number

of the cones and even the pattern of the cones (the collection
of several {k∗}) may change accordingly. The pattern of the
cones determines the physical response of probe fields. Hence
spin liquid states with the same pattern of cones can be consid-
ered as belonging to the same phase. Therefore, the pattern of
cones is an important information of a gapless QSL in addition
to the PSG.

V. DISCUSSIONS AND CONCLUSIONS

Before concluding this paper, we comment on some inter-
esting issues.

To be Majorana or not. We have shown that with the protec-
tion of effective charge conjugation symmetry C, zero modes
can appear at high-symmetry points. Since charge conjugation
transforms a particle into its antiparticle, the quasiparticle
corresponding to the C-zero modes is its own antiparticle and
can be identified as a Majorana quasiparticle.

We have also shown that when effective charge conju-
gation symmetry C is violated, bulk zero modes can still
appear because of quantum number-protected level cross-
ings or I ′T ′-protected quantized Berry phases. Since the
Hamiltonian does not commute with C, the C-transformed
quasiparticle is not an eigenstate of the Hamiltonian. There-
fore, strictly speaking, quasiparticles associated with zero
modes without C symmetry are not of Majorana type.

Although P always anticommutes with the Hamilto-
nian, P-transformed quasiparticles are not independent of

the original quasiparticles since P is a redundancy of the
SCs/SFs/QSLs.

Classification of nodal SCs/SFs/QSLs. If two BdG systems
have the same symmetry and their low-energy quasiparticles
correspond one-to-one, we can identify the two systems as
the same phase. In this sense, we propose a method to classify
gapless nodal SCs/SFs/QSLs:

(i) The symmetry group, which extends the space group of
the lattice by internal symmetries such as spin rotation and
charge operations.

(ii) The pattern of the bulk zero modes, whose positions
form several sets of k stars, denoted {k�}, where each k� is
a set of symmetry-related equivalent momentum points. For
each set {k�}, we determine the total number of zero-energy
nodes in the system.

(iii) The degeneracy of the zero modes at each point in {k�}.
The degeneracy of zero modes at equivalent k points is the
same.

(iv) The dispersion and physical properties of the quasipar-
ticles, described by the k · p effective theory.

Effect of interactions. It is expected that under weak in-
teractions, the quasiparticles corresponding to the bulk zero
modes remain gapless. However, with increasing interaction
strength, the fate of the quasiparticles depends on the degen-
eracy and the form of dispersion. Quantitative results should
be obtained using renormalization group calculations, which
are beyond the scope of this paper.

In summary, using projective representation theory, we sys-
tematically studied the symmetry conditions for the existence
of bulk zero modes in the mean-field theory of superconduc-
tors, superfluids, and Z2 QSLs, where fermions pair to form
Cooper pairs. We then provided an efficient method to obtain
the k · p effective theory of these gapless quasiparticles, from
which one can determine the dispersions and their physical re-
sponses to external fields. The positions of the zero modes can
be controlled by adjusting the symmetry of the Hamiltonian.
Furthermore, the dispersion of the gapless quasiparticles can
be linear or of higher order. These results are illustrated with
concrete lattice models. Our symmetry representation-based
theory complements the topological origin (theory of symme-
try indicators) of gapless quasiparticles in BdG systems and
aids in the experimental realization of Majorana-like gapless
quasiparticles.
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APPENDIX A: MEANING OF PAULI MATRICES τ, σ, μ, ν, ω

In the main text, we have used different notations of Pauli
matrices. In the following we list their physical meaning.

τx,y,z generate the charge SU (2)c group and act on the
particle-hole degrees of freedom. For instance, the charge
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conjugation can be chosen as C = e−i τx
2 π . The product of τx,y,z

with identity matrix are noted as �x,y,z = τx,y,z ⊗ I .
σx,y,z generate the spin SU (2)s group and act on the spin

degrees of freedom.
μx,y,z act on the positive/negative eigenspaces of the

Hamiltonian. The eigenvalue 1 (or −1) of μz labels the posi-
tive (or negative) eigensapce of the total Hamiltonian, and μx,y

exchange the two subspaces.
νx,y,z act on the A,B sublattices. The eigenvalue 1 (or −1)

of νz labels the positive (or negative) labels the A (or B)
sublattice, and νx,y exchange the two sublattices.

For an irrep D(G) of antiunitary group G of the C or H
type, one can reduce the restricted rep D(H ) into two irreps
with H the maximal unitary subgroup of G. ωx,y,z acts on the
irrep spaces of D(H ). The eigenvalue ±1 of ωz respectively
labels the two irrep spaces, and ωx,y exchange the two sub-
spaces. Furthermore, the notation �x,y,z = ωx,y,z ⊗ I has been
used in the main text.

APPENDIX B: PROOF OF [D(P )K, D(g)Ks(g)] = 0

In the Nambu bases �† = [c†
1, . . . , c†

N , c1, . . . , cN ], sup-
pose a general symmetry operation g (mixing or nonmixing)
is represented as

ĝ�†ĝ−1 = �†

(
A(g) B∗(g)

B(g) A∗(g)

)
Ks(g) = �†D(g)Ks(g).

Specially, the particle-hole symmetry is represented as
D(P )K = [τx ⊗ IN ]K = �xK . Because of the fact that D(g) =
[I2 ⊗ Re(A) + iτz ⊗ Im(A) + τx ⊗ Re(B) + τy ⊗ Im(B)]
and that τxK commutes with the four matrices {I2, iτz, τx, τy},
it is easily verified that D(g)�x = �x[D(g)]∗, Namely,

D(g)Ks(g)D(P )K = D(P )KD(g)Ks(g).

This conclusion can be seen more straightforwardly in the
Majorana representation with

γ l
i = ci + c†

i , γ r
i = −i(ci − c†

i ),{
γ α

i , γ
β
j

} = 2δαβδi j, α, β = l, r.

With these bases, any symmetry operation g is represented as
a REAL matrix D (g), especially P is represented as D (P ) =
I2N K . Hence the commutation of D (P )K and the real rep
D (g)Ks(g) manifests itself.

In the reduced Nambu subspaces ψ† = [C†
↑,CT

↓ ] with

C†
↑ = [c†

1↑, c†
2↑, . . . , c†

L↑], CT
↓ = [c1↓, c2↓, . . . , cL↓] for spin- 1

2

fermions having spin rotation symmetry, one has P2 = −1
with D(P )K = iτy ⊗ ILK . Generally, a symmetry operation g
acts on the lattice and charge (but no spin) degrees of freedom
as

ĝψ†ĝ−1 =ψ†

(
A(g) −B∗(g)

B(g) A∗(g)

)
Ks(g) =ψ†D(g)Ks(g), (B1)

which can be decomposed as D(g) = [I2 ⊗ Re(A) +
iτz ⊗ Im(A) + iτx ⊗ Im(B) − iτy ⊗ Re(B)]. Since iτyK
commutes with the four matrices {I2, iτz, iτx, iτy}. So,
[D(P )K, D(g)Ks(g)] = 0.

Now we verify Eq. (B1). Suppose g acts on C†
↑ as

ĝC†
↑ĝ−1 = (C†

↑A(g) + CT
↓ B(g))Ks(g).

Noticing that C†
↑ and CT

↓ are related by complex conjugation,

we have ĝCT
↑ ĝ−1 = (CT

↑ A∗(g) + C†
↓B∗(g))Ks(g). On the other

hand, noticing that Ĉ2yCT
↑ Ĉ−1

2y = CT
↓ , Ĉ2yC

†
↓Ĉ−1

2y = −C†
↑ and

that Ĉ2y commutes with ĝ (because Ĉ2y only acts on spin while
ĝ does not act on spin), therefore

ĝCT
↓ ĝ−1 = ĝĈ2yC

T
↑ Ĉ−1

2y ĝ−1 = Ĉ2yĝCT
↑ ĝ−1Ĉ−1

2y

= (
Ĉ2yC

T
↑ Ĉ−1

2y A∗(g) + Ĉ2yC
†
↓Ĉ−1

2y B∗(g)
)
Ks(g)

= (−C†
↑B∗(g) + CT

↓ A∗(g)Ks(g) )Ks(g),

which yields Eq. (B1).

APPENDIX C: GENERALIZED BAND REPRESENTATION
FOR SCs/SFs/QSLs

When the pairing terms are switched off, the SCs/SFs be-
come metals or insulators where a number of localized orbitals
in the unit cell in real space determine the energy band struc-
ture in the Brillouin zone. The energy bands as entire entities
form a special representation of the system’s symmetry group
G called the band representation [60,77,78]. Such a band rep
is called elementary if it cannot be decomposed as a direct sum
of smaller band representations. Once the elementary band
reps are known, all the band reps can be obtained by the direct
sum of elementary ones.

The band representations can be generalized to BdG sys-
tems by introducing particle-hole degrees of freedom. We
start from the full symmetry group Ff = G f + PG f . For
simplicity, here we focus on the case where the translation
symmetries of G f are not fractionalized (i.e. the unit cell
is not enlarged). The construction of an elementary band
representation needs two ingredients. The first is a “maxi-
mal” Wyckoff position q1 with a site-symmetry group Gq1

(composed of operations in G f , which stabilize the site
q1). The second is a set of creation and annihilation op-
erators of localized orbitals φ1(q − q1 − Rm), φ2(q − q1 −
Rm), . . . , φr (q − q1 − Rm) centered at q1 in the m-th unit cell,
namely [c†

σ,q1+Rm
, cσ,q1+Rm ] with σ = 1, 2, . . . , r and

c†
σ,q1+Rm

|vac〉 ≡ φσ (q − q1 − Rm),

where |vac〉 is the vacuum state.
The operators [c†

σ,q1
, cσ,q1 ] carry a 2r-dimensional rep

d (l )(Gq1 ) of Gq1 , that is, for any γ = (sγ , cγ ||pγ |tγ ) ∈ Gq1 ,

γ̂ [c†
q1

, cq1 ]γ̂ † = [c†
q1

, cq1 ]d (l )(γ ),

where the index σ has been hidden, namely [c†
q1

, cq1 ] ≡
[c†

1,q1
, . . . , c†

r,q1
, c1,q1 , . . . , cr,q1 ]. More generally, one has

γ̂ [c†
q1+Rm

, cq1+Rm ]γ̂ †= [c†
q1+pγ Rm

, cq1+pγ Rm ]d (l )(γ ).
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Performing a Fourier transformation, one obtains the bases
carrying a rep of both Gq1 and the translation group,

c†
k,σ,q1

=
∑
Rm

eik·Rm c†
σ,q1+Rm

,

c−k,σ,q1 =
∑
Rm

eik·Rm cσ,q1+Rm .

Then for a group element γ = (sγ , cγ ||pγ |tγ ) ∈ Gq1 , we have

γ̂
[
c†

k,q1
, c−k,q1

]
γ̂ −1 = [

c†
pγ k,q1

, c−pγ k,q1

]
d (l )(γ ). (C1)

On the other hand, Wyckoff positions equivalent to q1

form a star {q∗
1} = {q1, q2, . . . , qn} with qi ≡ {pαi |tαi}q1 and

{pαi |tαi} the space operations of the representative αi =
(sαi , cαi ||pαi |tαi ) in one of the n cosets in the left coset decom-
position of G f with respect to its subgroup Gq1 . Notice that
the choice of coset representative is not unique, but in later
discussion, we fix the representative αi in the corresponding
coset and use it to label the coset. Especially, one has

α̂iφσ (q − q1 − Rm)

= ̂(sαi , cαi

)
φσ

(
p−1

αi
(q − tαi ) − q1 − Rm

)
= ̂(sαi , cαi

)
φσ

(
p−1

αi
(q − qi − pαi Rm)

)
.

Supposing αiRm = Rn and denoting

c†
σ,qi+Rn

|vac〉 ≡ ̂(sαi , cαi

)
φσ

(
p−1

αi
(q − qi − Rn)

)
,

then we have

α̂i
[
c†

k,σ,q1
, c−k,σ,q1

]
α̂i

−1 ≡[
c†

pαi k,σ,qi
, c−pαi k,σ,qi

]
. (C2)

The set of bases{[
c†

k,σ,qi
, c−k,σ,qi

]
; 1 � σ � r, 1 � i � n, k ∈ BZ

}
span a (infinite dimensional) band rep of G f . To illustrate,
we investigate the rep of α = (sα, cα||pα|tα ) ∈ G f . For any
coset representative αi, one can always find another coset
representative α j such that

α · αi = (
E , E ||E |Rα,αi

) · α j · γ (C3)

with γ = (sγ , cγ ||pγ |tγ ) ∈ Gq1 and Rα,αi is a Bravais lattice
vector. The Rα,αi can be calculated by acting the (C3) on q1,
and we have

Rα,αi = pα · qi + tα − q j .

Using (C1) and (C2), the induced projective band representa-
tion for α is given by

α̂
[
c†

k,qi
, c−k,qi

]̂
α−1

= [
c†

pαk,q j
, c−pαk,q j

]
d (l )(γ )e−i(pαk)·(pα ·qi+tα−q j ), (C4)

where the index σ has been hidden. Equivalently, the entries
of the band rep of α in the equation (C4) are given as

D(l )
(k,�,qi ),(pαk,�′,q j )

(α)=d (l )
�,�′ (γ )e−i(pαk)·(pα ·qi+tα−q j ) (C5)

with � = 1, . . . , 2r.
Especially, if pα · k = k + bm with bm a reciprocal lattice

vector, namely, if {(pα|tα )} belongs to the little group of the

momentum k, for the Rα,αi is a Bravais lattice vector, then (C5)
reduces to

D(l )k
(�,qi ),(�′,q j )

(α) = d (l )
�,�′ (γ )e−ik·(pα ·qi+tα−q j ). (C6)

Moreover, if one defines the representation matrix for the little
co-group element gα = (sα, cα||pα ) ∈ G f (k) with

D(l )k
(�,qi ),(�′,q j )

(gα ) = D(l )k
(�,qi ),(�′,q j )

(α)eik·tα

= d (l )
�,�′ (γ )e−ik·(pα ·qi−q j ),

then D(l )k
(�,qi ),(�′,q j )

(G f (k)) form a projective rep of the little
cogroup G f (k) with the factor system

ω2(gα, gβ ) = e−iKα ·tβ

where gα = (sα, cα||pα ), gβ = (sβ, cβ ||pβ ), Kα = p−1
α · k − k

with α, β ∈ G f and gα, gβ ∈ G f (k).
Above we illustrated the band rep of unitary elements. The

procedure can be generalized to antiunitary group elements,
which will not be repeated here.

Now we extend the band representation to the full symme-
try group Ff (k). Supposing P̃ = g0P ∈ Ff (k) with g0 /∈ Ff (k)
and g0 mapping [c†

k,{σ,qi}, c−k{σ,qi}] to [c†
−k,{σ ′,q j }, ck,{σ ′,q j }],

then the rep of g0 can be obtained from (C4) or (C5) and the
rep of P has two possibilities. For the class D or DIII, the
Nambu bases read �

†
k = [c†

k,{σ,qi}, c−k,{σ,qi}] and the P is rep-
resented as τx ⊗ IK ; while for the class C or CI, the reduced
Nambu bases read ψ

†
k = [C†

k↑,C−k↓] = [c†
k↑{qi}, c−k↓{qi}] in

which the rep d (l )(γ ) is r dimensional and the P is represented
as iτy ⊗ IK . Then the rep of P̃ can be obtain from the reps of
g0 and P .

APPENDIX D: THE RESTRICTION FROM IRREPS OF
Ff (k) TO ITS NORMAL SUBGROUP Gf (k)

We start from a theorem:
Theorem 5. If a group G has normal subgroup H with G =

H + rH, r2 ∈ H and G/H ∼= Z2, supposing a Hilbert space
L carries a projective irrep D(H ) of H , then the restricted
rep D(H ) contains at most two irreps of H . There are two
possibilities:

(i) D(H ) is an irrep of H ;
(ii) D(H ) can be transformed into a direct sum of two

irreps, namely L = L1 ⊕ L2 where L1,L2 each carries an
irrep of H , and r permutes L1,L2.

Proof. Since L carries a representation of H , it must con-
tain an invariant subspace L1 ⊆ L of H . Namely, for any
u ∈ H , one has

uL1 = L1.

Meanwhile, L carries an irrep of G, so r transforms L1 into
another linear subspace L2 ≡ r(L1) ⊆ L, then it is easily seen
that L2 is also invariant under the action of u ∈ H ,

uL2 = urL1 = r(r−1ur)L1

= ru′L1 = rL1 = L2,

where we have used the fact that u′ = (r−1ur) ∈ H . There-
fore, L2 also carries an irrep of H .
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Since both L1 and L2 are irreducible representation spaces
of H , there are two possibilities:

(i) L1 = L2 = L. In this case, the restricted rep D(H ) from
D(G) is irreducible, we call such D(G) a simple irrep;

(ii) L1 ∩ L2 = ∅. In this case, L′ = L1 ∪ L2 is an irrep
space of G. Noticing that L is an irrep space of G, and
that irreducible space of G containing L1 as a subspace is
unique, we have L′ = L, namely L = L1 ∪ L2. In this case,
the restricted rep D(H ) from D(G) is reducible, we call such
D(G) a composite irrep.

The above proof is valid no matter if H is an unitary group
or an antiunitary, and no matter if the element r is unitary or
antiunitary.

The structure of the simple irreps in case (i) is relatively
simple since D(H ) is already irreducible. Here we discuss the
structure of the composite irreps in case (ii).

Fixing a set of bases [�] = [φ1, . . . , φn] in L1 (assuming
the dimensionality of L1 is n), and denote d (H ) as the d-
dimensional representation of H on L1. In the other subspace
L2, we simply choose the bases as r[�] = [rφ1, . . . , rφn].
Then in the space L the particle-hole operator r is represented
as

D(r)Ks(r) =
(

0 ω2(r, r)d (r2)

In 0

)
Ks(r),

where r2 ∈ H . For any u ∈ H , we have

D(u)Ks(u) =
(

d (u) 0

0 d ′(u)

)
Ks(u),

with

d ′(u) = ω2(u, r)

ω2(r, r−1gr)
Ks(r)d (r−1ur)Ks(r).

Now we apply the above theorem to the little co-group
Ff (k) at momentum k that is invariant under P̃ , with Ff (k) =
G f (k) + P̃G f (k) and

Ff (k)/G f (k) ∼= Z2.

Denoting D(Ff (k)) as a projective irrep of Ff (k), according to
Theorem 5 the restricted rep D(G f (k)) is either irreducible or
a direct sum of two irreps. In the following we discuss three
different situations of Ff (k).

(1) Ff (k) is an unitary group. The simple irrep of Ff (k)
either contribute a set of irreducible zero modes (if there
are effective charge conjugation symmetry) or couple with
another simple irrep to form a set of RMNZM; the composite
irrep of Ff (k) gives rise to a set of irreducible nonzero modes,
where the energy eigenspaces L1 and L2 have opposite ener-
gies ±εk .

(2) Ff (k) is an antiunitary group, G f (k) is unitary and P̃ is
antiunitary. The irrep of Ff (k) falls into three classes, namely
the R,C,H classes. The irrep in the R class is a simple
irrep; the C and H classes are composite irreps (irreducible
nonzero modes), the two classes are distinguished by whether
the representations carried by L1 is equivalent to that of L2 or
not [72].

(3) Ff (k) is antiunitary, G f (k) is antiunitary and P̃ is uni-
tary. Similar to the case where Ff (k) is unitary, the irrep of
Ff (k) can be simple or composite.

The case where both G f (k) and P̃ are antiunitary can be
categorized into the case (2) by redefining P̃ to be a unitary
coset representative.

APPENDIX E: REDUCIBLE MINIMAL NONZERO MODES

A set of reducible minimal nonzero modes (RMNZM)
contains two simple irreps of Ff (k). To ensure that the two
irreps can couple with each other to form nonzero modes, the
restricted reps of the normal subgroup G f (k) should be equiv-
alent. Now we start with two irreps D(Ff (k)) and D′(Ff (k))
satisfying the relation

D(G f (k)) = D′(G f (k)).

Defining a matrix

X ≡ D(P̃ )D′−1(P̃ ),

then we have the following lemma:
Lemma 1. If two simple irreps D(Ff (k)) and D′(Ff (k))

satisfies the relation D(G f (k)) = D′(G f (k)), then the unitary
matrix X = D(P̃ )D′−1(P̃ ) commutes with the restricted rep
D(G f (k)).

Proof. For any h ∈ G f (k), one has

D(P̃ )Ks(P̃ )D(h)Ks(h) = ω2(P̃, h)D(P̃h)Ks(P̃h)

= D(P̃)Ks(P̃ )D
′(h)Ks(h)

= XD′(P̃ )D′(h)Ks(P̃h)

= ω2(P̃, h)XD′(P̃h)Ks(P̃h),

we have

D(P̃h)Ks(P̃h) = XD′(P̃h)Ks(P̃h). (E1)

On the other hand,

ω2(h, P̃−1)D(hP̃−1)Ks(P̃h)

= D(h)Ks(h)D(P̃−1)Ks(P̃ )

= D(h)Ks(h)ω2(P̃−1, P̃ )Ks(P̃ )D
−1(P̃ )

= D′(h)Ks(h)ω2(P̃−1, P̃ )Ks(P̃ )D
−1(P̃ )

= D′(h)Ks(h)ω2(P̃−1, P̃ )Ks(P̃ )[D
′−1(P̃ )D′(P̃ )]D−1(P̃ )

= D′(h)Ks(h)D
′(P̃−1)Ks(P̃ )D

′(P̃ )D−1(P̃ )

= ω2(h, P̃−1)D′(hP̃−1)Ks(P̃h)X
−1,

so we have

D(hP̃−1)Ks(P̃h) = D′(hP̃−1)Ks(P̃h)X
−1. (E2)

Using the above two relations (E1) and (E2), for any
h1, h2 ∈ G f (k), we have

D(P̃h1)Ks(P̃h1 )D(h2P̃−1)Ks(P̃h2 )

= ω2(P̃h1, h2P̃−1)D(P̃h1h2P̃−1)Kh1h2

= ω2(P̃h1, h2P̃−1)D′(P̃h1h2P̃−1)Kh1h2 .
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On the other hand,

D(P̃h1)Ks(P̃h1 )D(h2P̃−1)Ks(P̃h2 )

= XD′(P̃h1)Ks(P̃h1 )D
′(h2P̃−1)Ks(P̃h2 )X

−1

= ω2(P̃h1, h2P̃−1)XD′(P̃h1h2P̃−1)Kh1h2 X −1.

Denoting P̃h1h2P̃−1 = g ∈ G f (k), then we have D′(g)Ks(g) =
XD′(g)Ks(g)X −1, namely

D(g)Ks(g) = XD(g)Ks(g)X
−1.

Since h1, h2 are arbitrary elements in G f (k), we conclude that
for any g ∈ G f (k) the unitary matrix X commutes with the
restricted rep D(G f (k)).

From the above Lemma 1, if two simple irreps of Ff (k)
only differ by the reps of P̃ , then the difference X =
D(P̃ )D′−1(P̃ ) must belong to the centralizer of D(G f (k)).
This is a necessary condition under which two simple irreps
can couple with each other to yield a set of reducible nonzero
modes. In the following, we will list all possible cases that
may lead to a set of RMNZM.

1. When the P̃ is unitary (chiral-like, such as P̃ = T P)

From D(P̃ ) = XD′(P̃ ) one has

[D(P̃ )]2 = XD′(P̃ )XD′(P̃ ).

On the other hand, since P̃2 ∈ G f (k), we have
ω2(P̃, P̃ )D(P̃2) = ω2(P̃, P̃ )D′(P̃2), which yields

[D(P̃ )]2 = [D′(P̃ )]2.

From the above two relations, we have D′(P̃ ) = XD′(P̃ )X , or
equivalently

D(P̃ ) = XD(P̃ )X. (E3)

a. When the Gf (k) is unitary

If G f (k) is unitary, the unitary elements in the centralizer
of D(G f (k)) form a U (1) group {eiθ I; θ ∈ [0, 2π )} according
to Schur’s lemma. Since X belongs to the unitary centralizer,
we have X = ηP̃ I with |ηP̃ | = 1, namely D(P̃ ) = ηP̃D′(P̃ ).

From (E3) we have η2
P̃ = 1, namely ηP̃ = ±1. So there are

only two possible partners,

D′(P̃ ) = ±D(P̃ ).

(1) If ηP̃ = 1, the D′(Ff (k)) is a copy of D(Ff (k)). Hence
the direct sum D̃(Ff (k)) of two D(Ff (k)) is written as

D̃(g) = I2 ⊗ D(g),

D̃(P̃ ) = I2 ⊗ D(P̃ ),

with g ∈ G f (k). Now we solve the allowed Hamiltonian,

which falls in the centralizer of D̃(G f (k)), namely {(x1 x2
x3 x4

) ⊗
I, xi ∈ C}. Moreover, the anticommutation relation between
the Hamiltonian and D̃(P̃ ) further yields(

x1 x2

x3 x4

)
= −

(
x1 x2

x3 x4

)
So, x1 = x2 = x3 = x4 = 0. The solutions of the Hamiltonian
can only be the zero matrix hk = 0. Namely, this case cannot
yield reducible nonzero modes.

(2) If ηP̃ = −1, the reps D(P̃ ) and −D(P̃ ) together can
obtain a nonzero energy: the direct sum D̃(Ff (k)) of two reps
is

D̃(g) = I2 ⊗ D(g), D̃(P̃ ) = μz ⊗ D(P̃ ),

so there exists a nonzero Hermitian Hamiltonian hk = εkμx ⊗
I commuting with D̃(G f (k)) and anticommuting with D̃(P̃ ).
Namely, this case corresponds to RMNZM.

b. When the Gf (k) is anti-unitary

If G f (k) is antiunitary, the centralizer of D(G f (k)) can be
isomorphic to the algebra of the real numbers R, complex
numbers C or quaternions H. Let Hf (k) denote its maximum
unitary subgroup. This will lead to three different situations:

(b1) When D(G f (k)) is of the real class R, the restricted
rep D(Hf (k)) is still irreducible. Moreover, the centralizer of
D(G f (k)) only contains two elements {±I}. Therefore, similar
to the case when G f (k) is unitary, one has ηP̃ = ±1 and
accordingly D′(P̃ ) = ±D(P̃ ).

For ηP̃ = 1, the direct sum of two D(Ff (k)) reps is

D̃(g)Ks(g) = I2 ⊗ D(g)Ks(g), D̃(P̃ ) = I2 ⊗ D(P̃ ),

where g ∈ G f (k), so the centralizer of the direct sum of two

D(Qk ) is {(x1 x2
x3 x4

) ⊗ I, xi ∈ R} and the condition of anticom-

muting with D̃(P̃ ) also makes the solution be zero. This case
does not yield reducible nonzero modes.

For ηP̃ = −1, the direct sum D̃(Ff (k)) of two reps is

D̃(g)Ks(g) = I2 ⊗ D(g)Ks(g), D̃(P̃ ) = μz ⊗ D(P̃ ),

so there also exists a nonzero Hamiltonian hk = εkμx ⊗ I
commuting with D̃(G f (k)) and anticommuting with D̃(P̃ ).
This gives rise to a set of RMNZM.

(b2) When D(G f (k)) is of the complex class C, the
D(Hf (k)) is a direct sum of two nonequivalent irreps. The

centralizer of D(G f (k)) takes the form {(aI 0
0 a∗I), a ∈ C}.

Hence X belongs to the U (1) group X ∈ {eiθ�z , θ ∈ [0, 2π )}
formed by unitary elements in the centralizer.

Letting X = eiθ0�z , since X falls in the centralizer of
D(G f (k), for any g ∈ G f (k), one has

eiθ0�z D(g)Ks(g) = D(g)Ks(g)e
iθ0�z . (E4)

On the other hand, Eq. (E3) yields

e−iθ0�z D(P̃ ) = D(P̃ )eiθ0�z . (E5)

Using eiθ0�z = cos θ0 + i sin θ0�z, Eq. (E5) can be written
as

− sin θ0(i�z )D(P̃ ) = sin θ0D(P̃ )(i�z ). (E6)

and the Eq. (E4) is equivalent to

(i�z )D(g)Ks(g) = D(g)Ks(g)(i�z ). (E7)

(1) If the following relation holds,

D(P̃ )�z = −�zD(P̃ ),
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then any value θ0 ∈ [0, 2π ) satisfies (E6). Actually, D′(P̃ ) =
e−i�zθ0 D(P̃ ) is equivalent to D(P̃ ) for any θ0 ∈ [0, 2π ) be-
cause

e−iθ0�z D(P̃ ) = e−i�z
θ0
2 D(P̃ )ei�z

θ0
2 . (E8)

Namely, under the transformation e−i�z
θ0
2 , D(P̃ ) is trans-

formed into D′(P̃ ) = e−iθ0�z D(P̃ ) without affecting the reps
of elements in G f (k). In the case θ0 = 0, the nonzero Her-

mitian Hamiltonian can be chosen as hk = εk

(
0 −i�z

i�z 0

)
=

εkμy ⊗ �z. The Hamiltonian with nonzero θ0 can be obtained
with the transformation (E8) of the second rep. This gives rise
to a set of RMNZM.

(2) If

D(P̃ )�z �= −�zD(P̃ ),

then (E6) requires that θ0 is either 0 or π . Namely, there are
only two possibilities: D′(P̃ ) = ±D(P̃ ).

Firstly we consider the case D′(P̃ ) = D(P̃ ). In later dis-
cussion, we define

A ≡ {i�z, D(P̃ )} = (i�z )D(P̃ ) + D(P̃ )(i�z ) �= 0.

Supposing that hk =
(

0 H0

H†
0 0

)
is a possible Hamiltonian

for the rep

D(g)Ks(g) = I2 ⊗ D(g)Ks(g), D(P̃ ) = I2 ⊗ D(P̃ ).

It is easy to see that H0 falls in the centralizer of D(G f (k)),
hence

H0 = reiα�z = r(cos α + iα�z )

with r ∈ R, α ∈ [0, 2π ). Meanwhile, H0 anticommutes with
the D(P̃ ), i.e.,

D(P̃ )(cos α+i sin α�z ) = −(cos α+i sin α�z )D(P̃ ). (E9)

We will show that if r �= 0, there exist a contradiction. For
r �= 0, the above Eq. (E9) is equivalent to

2(cos α)D(P̃ ) = − sin α[(i�z )D(P̃ ) + D(P̃ )(i�z )],

namely,

2(cos α)D(P̃ ) = −(sin α)A.

If there exists a solution, then sin α �= 0 (because P̃ is invert-
ible) and

2 cot α = −A[D(P̃ )]−1. (E10)

Notice that

AD(P̃ ) = (i�z )D2(P̃ ) + D(P̃ )(i�z )D(P̃ )

= D2(P̃ )(i�z ) + D(P̃ )(i�z )D(P̃ )

= D(P̃ )[D(P̃ )(i�z ) + (i�z )D(P̃ )] = D(P̃ )A.

So, [A, D(P̃ )] = 0 ⇒ AD−1(P̃ ) = D−1(P̃ )A. Denoting B ≡
AD−1(P̃ ) = D−1(P̃ )A, i.e.,

B = (i�z ) + D(P̃ )(i�z )D−1(P̃ ), (E11)

then we have B �= 0 (since A �= 0) and Tr B = 0.

Actually, B is also a center of D(G f (k)). For any g ∈
G f (k),

[D(g)Ks(g)]B[D(g)Ks(g)]
−1

= [D(g)Ks(g)][(i�z ) + D(P̃ )(i�z )D−1(P̃ )][D(g)Ks(g)]
−1

= [D(g)Ks(g)](i�z )[D(g)Ks(g)]
−1

+ [D(g)Ks(g)D(P̃ )](i�z )[D(g)Ks(g)D(P̃ )]−1

= (i�z ) + [D(P̃ )D(g′)Ks(g′ )](i�z )[D(P̃ )D(g′)Ks(g′ )]
−1

= (i�z ) + D(P̃ )(i�z )D−1(P̃ )

= B, (E12)

where g′ = P̃−1gP̃ ∈ G f (k). Thus, B = λei��z , λ �= 0. From
(E10), we learn that

2 cot α = −B = −λei��z , λ �= 0. (E13)

Therefore, � is either 0 or π . However, in both cases, Tr B ∝
λ �= 0, which is contradicting with (E11). So, the parameter r
in (E9) must be zero, which means hk = 0. This case does not
yield reducible nonzero modes.

For the second case, D′(P̃ ) = −D(P̃ ), namely for the rep

D̃(g)Ks(g) = I2 ⊗ D(g)Ks(g), D̃(P̃ ) = μz ⊗ D(P̃ ),

there exists a nonzero Hermitian Hamiltonian hk = εkμx ⊗ I .
This gives rise to a set of RMNZM.

(b3) When D(G f (k)) is of the quaternionic class
H, the rep D(Hf (k)) is a direct sum of two equiv-
alent irreps. Generally, the centralizer of D(G f (k)) is

{( aI bI
−b∗I a∗I), a, b ∈ C}, whose unitary elements form an

SU (2) group {( aI bI
−b∗I a∗I), aa∗ + bb∗ = 1, a, b ∈ C}. Since

the unitary matrix X = [D(P̃ )D′−1(P̃ )] falls in the centralizer
of D(G f (k)), we can write

X = cos θ0 + sin θ0[nx(i�x ) + ny(i�y) + nz(i�z )]

with θ0 ∈ [0, 2π ), n2
x + n2

y + n2
z = 1. Denoting �n ≡ n · � =

nx�x + ny�y + nz�z, then

X = eiθ0�n = cos �I + i sin θ0�n. (E14)

From (E3), we have e−iθ0�n D(P̃ ) = D(P̃ )eiθ0�n , which is
equivalent to

− sin θ0(i�n)D(P̃ ) = sin θ0D(P̃ )(i�n). (E15)

(1) When the following relation holds

D(P̃ )�n0 = −�n0 D(P̃ )

for certain n0 ∈ S2, then any value θ0 ∈ [0, 2π ) in the above
n0 direction satisfies (E15). The discussions in the C class also
applies here. In the case θ0 = 0, one possible Hamiltonian is

hk = εk

(
0 i�z

−i�z 0

)
= εkμy ⊗ �z. This gives rise to a set of

RMNZM.
(2) When

D(P̃ )�n �= −�nD(P̃ )

is true for all n ∈ S2, then (E15) requires that θ0 is either 0 or
π , namely, there are only two possibilities D′(P̃ ) = ±D(P̃ ).
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Similar to the discussion in the C-class, the case D′(P̃ ) =
D(P̃ ) corresponds to reducible zero modes, and the case
D′(P̃ ) = −D(P̃ ) corresponds to reducible nonzero modes.

2. When the P̃ is anti-unitary (particle-hole-like,
such as P̃ = IP)

If G f (k) is antiunitary, we can multiply P̃ with an an-
tiunitary element T0 ∈ G f (k) to obtain a unitary chiral-like
symmetry P̃ ′ = P̃T0, and then the discuss for the case with
unitary P̃ and with antiunitary G f (k) can be applied. There-
fore, we only need to consider the case in which G f (k) is
unitary.

When G f (k) is unitary, then the unitary elements in
the centralizer of D(G f (k)) form a U (1) group {eiθ I; θ ∈
[0, 2π )}. Lemma 1 indicates that X belongs to the above U (1)
group. Letting X = eiθ0 , then D′(P̃ )K = e−iθ0 D(P̃ )K can be
transformed into D(P̃ )K by adjusting the phase of the bases.
Hence D′(Ff (k)) is always equivalent to D(Ff (k)). Then there
always exists a Hamiltonian hk = εk (sin θ0

2 σx + cos θ0
2 σy) ⊗

In, which commutes with D̃(h) = D(h) ⊕ D(h) and anticom-
mutes with D̃(P̃ )K = D(P̃ ) ⊕ e−iθ0 D(P̃ )K . This gives rise to
a set of RMNZM.

APPENDIX F: PROOF OF THEOREM 2 AND
CONSEQUENCES OF C SYMMETRY

1. Proof of the theorem 2

The theorem states that without nondiagonal (effective)
charge conjugation symmetry C, no zero modes are protected
at any given momentum k.

At momentum k, the electron creation operators C†
k =

[c†
k1, c†

k2, ...c
†
kN ] carry a representation of the point group

G f (k) denoted as M(G f (k)). Generally, M(G f (k)) can be
reduced into direct sum of irreps

M(G f (k)) = d1(G f (k)) ⊕ d2(G f (k)) ⊕ ...

under the bases [b†
k1, b†

k2, . . . , b†
kN ] = [c†

k1, c†
k2, . . . , c†

kN ]U .
Since P̃ transforms creation operators into anni-
hilation operators, we denote [b̃k1, b̃k2, . . . , b̃kN ] =̂̃P[b†

k1, b†
k2, . . . , b†

kN ]̂̃P−1
. Since P̃G f (k) = G f (k)P̃ ,

[b̃k1, b̃k2, . . . , b̃kN ] carry a rep of G f (k),

M̃(G f (k)) = d̃1(G f (k)) ⊕ d̃2(G f (k)) ⊕ ...

with d̃a(g) = ω2(g,P̃ )
ω2(P̃,P̃−1gP̃ )

Ks(P̃ )da(P̃−1gP̃ )Ks(P̃ ) for
a = 1, 2, ... and g ∈ G f (k).

In the direct sum space of da(G f (k)) ⊕ d̃a(G f (k)), the
group Ff (k) = G f (k) + P̃G f (k) is presented as

Da(g)Ks(g) =
(

da(g) 0

0 d̃a(g)

)
Ks(g), g ∈ G f (k), (F1)

Da(P̃ )Ks(P̃ ) =
(

0 ω2(P̃, P̃ )da(P̃2)

Ina 0

)
Ks(P̃ ), (F2)

with na the dimensionality of the rep da(G f (k)). In this space,
there exists a nondegenerate Hamiltonian

hk = εkμz ⊗ Ina

with εk �= 0 lifting all the zero modes. Notice that the above
rep (F1) and (F2) of Ff (k) may be reducible if da(g) = d̃a(g)
for all g ∈ G f (k). Therefore, in electron bases the nonzero-
energy modes have two possible resources:

(i) a composite irrep Da(Ff (k)), in which the restricted rep
Da(G f (k)) = da(G f (k)) ⊕ d̃a(G f (k)) is reducible and da �=
d̃a, give rise to a set of irreducible nonzero modes;

(ii) a direct sum of two simple irreps Da(Ff (k)) =
D+(Ff (k)) ⊕ D−(Ff (k)), in which D+(G f (k)) =
da(G f (k)) = D−(G f (k)) = d̃a(G f (k)), couple with each
other to form a set of reducible minimal nonzero modes.

The above theorem implies that any simple irrep of Ff (k)
at arbitrary k can find its coupling partner to form nonzero-
energy modes. Hence we conclude that without additional
nondiagonal symmetries like the (effective) charge conju-
gation symmetry, zero-energy modes are unstable at any
given k.

2. Extension and induction: From the rep of a normal subgroup
H to the full group G � H

Now we consider the case in which the system has a
(effective) charge conjugation symmetry C at momentum k.
Denoting

F c
f (k) = Ff (k) + CFf (k)

as the complete little co-group at k, then we have
F c

f (k)/Ff (k) ∼= Z2. Similarly, we can define Gc
f (k) with

Gc
f (k) = G f (k) + CG f (k) and Gc

f (k)/G f (k) ∼= Z2. In the
presence of C, a set of minimal nonzero modes can be turned
into zero modes (called C-zero modes) in the following two
ways:

(1) Two simple irreps contained in RMNZM, which are
previously coupled become uncoupleable and form reducible
minimal C-zero modes;

(2) A set of irreducible nonzero modes or a set of RMNZM
are turned into a set of irreducible C-zero modes.

As will be seen, the above ways correspond to two kinds
of operations on irreps, namely, the extension from an irrep of
Ff (k) to that of F c

f (k) and the induction from an irrep of Ff (k)
to that of F c

f (k).
Extension: Supposing H is a normal subgroup of G,

namely H � G, and d1(H ) is a nd -dimensional projective irrep
of H , if there exists an irrep D1(G) of G having factor system
ω2(g1, g2), g1,2 ∈ G and the same dimensionality nd such that
the restricted rep D1(H ) is irreducible and is identical to
d1(H ), namely,

D(ν)(h) = d (ν)(h), for all h ∈ H,

then we dub D(ν)(G) as an extension of irrep d (ν)(H ), and
claim d (ν)(H ) to be extendible to G with the factor system
ω2. If such extension D(ν)(G) exists, then the following two
conditions should be satisfied for d (ν)(H ):

(a) the irrep ω−1
2 (g−1, g)ω2(g−1, h)ω2(g−1h, g)d1(g−1hg) is

equivalent to Ks(g)d1(h)Ks(g) for any g ∈ G. Namely, for a
given unitary element u ∈ G there exist a matrix X such that
for any h ∈ H

ω2(u−1, h)ω2(u−1h, u)

ω2(u−1, u)
d1(u−1hu) = Xd1(h)X −1,
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and for a given antiunitary element a ∈ G there exist a matrix
Y such that for any h ∈ H

ω2(a−1, h)ω2(a−1h, a)

ω2(a−1, a)
d1(a−1ha) = Y d∗

1 (h)Y −1.

(b) D(g1)D(g2) = ω2(g1, g2)D(g1g2) for any g1, g2 ∈ G.
Induction: Otherwise, if such irrep D(ν)(G) does not exist,

but there exists an irrep D (ν̃)(G) having factor system ω2

and with dimensionality multiple of nd such that d (ν)(H ) is
contained in the restricted rep D (ν̃)(H ) after it being reduced
into direct sum of irreps, then we call D (ν̃)(G) an induction of
d (ν)(H ) to G with the factor system ω2.

For instance, if G is an antiunitary group with H its maxi-
mal unitary subgroup, then the irreps of G with a given factor
system ω2 have three classes, the real class R, complex class
C and quaternionic class H. In the R class, the restrict rep to
H is irreducible. Hence, R class is an extension of irrep from
H to G. On the other hand, the C and H classes are induction
of certain irreps from H to G.

3. Consequences of C symmetry

Now, we discuss the effect of the (effective) charge-
conjugation symmetries C. For simplicity we consider the case
in which there is only one charge conjugation operation C.

Firstly, we consider a special case in which C preserves
the supporting space of every minimal nonzero modes L±εk ,
namely we first assume that C does not cause additional
degeneracy for the energy eigenstates with εk �= 0. Such
charge-conjugation symmetries all have the following prop-
erty: For any given minimal nonzero mode, there exists an
extension from Ff (k) to F c

f (k). Recall that a set of minimal
nonzero modes is either

(i) a set of irreducible nonzero modes, which carries a com-
posite irrep of Ff (k) denoted as Da(Ff (k)) with the restricted
rep Da(G f (k)) = da(G f (k)) ⊕ d̃a(G f (k)), or

(ii) a set of RMNZM, which form a direct sum of two
simple irreps of Ff (k) denoted as Da(Ff (k)) = D+(Ff (k)) ⊕
D−(Ff (k)).

Then the presence of C can affect the set of minimal
nonzero modes in different ways. Here we discuss them sepa-
rately. From now on, we will omit the subscript a in the labels
of reps Da and da, d̃a.

(i) For the irreducible nonzero modes D(Ff (k)).
(a) If the irrep D(Gc

f (k)) is an induction from d (G f (k)) [or

from d̃ (G f (k))], namely, there does not exist any extension
from d (G f (k)) or d̃ (G f (k)) to Gc

f (k), then D(F c
f (k)) corre-

sponds a set of irreducible zero modes of F c
f (k).

(b) If there exists an extension from d (G f (k)) [or
d̃ (G f (k))] to d (Gc

f (k)) [or d̃ (Gc
f (k))], then D(F c

f (k)) remains
to be an irreducible nonzero mode of F c

f (k).
(ii) For the RMNZM D(Ff (k)) = D+(Ff (k)) ⊕

D−(Ff (k)).
(a) If there exist an extension from D±(Ff (k)) to

D±(F c
f (k)) [hence there must exist an extension from

d (G f (k)) to d (Gc
f (k))], then D±(F c

f (k)) are two simple irreps
of F c

f (k). If D±(F c
f (k)) satisfy the conditions listed in Table I,

namely if they can couple to each other, then D+(F c
f (k)) ⊕

D−(F c
f (k)) remains to be a set of RMNZM; on the other hand,

if they cannot couple to each other, [for example, C provides
different quantum numbers in D+(F c

f (k)) and D−(F c
f (k)) to

prevent them from coupling to each other], then D+(F c
f (k)) ⊕

D−(F c
f (k)) will form reducible minimal zero modes of F c

f (k).
(b) If C couples D+(Ff (k)) with D−(Ff (k)) such that the

direct sum space D+(Ff (k)) ⊕ D−(Ff (k)) forms a simple ir-
rep D(F c

f (k)) for F c
f (k) [namely D(F c

f (k)) and D(Gc
f (k)) are

both irreducible], then D(F c
f (k)) forms irreducible zero modes

of F c
f (k).

(c) If C couples D+(Ff (k)) with D−(Ff (k)) such that the
direct sum space D+(Ff (k)) ⊕ D−(Ff (k)) forms a composite
irrep D(F c

f (k)) for F c
f (k) [namely D(F c

f (k)) is irreducible but
D(Gc

f (k)) is reducible], then D(F c
f (k)) will form irreducible

nonzero modes of F c
f (k).

Secondly, we consider a different case in which C “joins”
a set of minimal nonzero modes L±ε′

k
with another set of

minimal nonzero modes L±ε′′
k
. Actually, since Gc

f (k)/G f (k) =
F c

f (k)/Ff (k) ∼= Z2, as illustrated in Theorem 5 the charge
conjugation C joins at most two irreps of G f (k) to form an
irreducible rep of Gc

f (k), namely C involves at most two sets
of minimal nonzero modes. The direct sum space L = L±ε′

k
⊕

L±ε′′
k

form a representation space of the group F c
f (k) as well as

Gc
f (k). If L contains two irreps of Gc

f (k), namely if L carries a
composite irreps of F c

f (k) or a direct sum of two simple irreps
(which are couplable partner of each other) of F c

f (k), then L
forms an enlarged set of minimal nonzero modes of F c

f (k)
with doubled degeneracy; otherwise, if L contains four irreps
of Gc

f (k), then the degeneracy of the nonzero modes will not
be enlarged. The C enlarged degeneracy occurs in Sec. IV A,
where the C symmetry causes the twofold degeneracy of the
bands. Such kind of charge conjugation C does not yield zero
modes in general.

In the above discussion, we listed the cases in which zero
modes can appear because of the presence of charge conju-
gation symmetry C. We call these zero modes as “minimal
C-zero modes”, including the irreducible C-zero modes and the
reducible minimal C-zero modes. A natural question is, given
a set of minimal nonzero modes at k, is it always possible to
construct a C to turn them into minimal C-zero modes? The
answer is positive, as stated in the theorem 3. The proof of
this theorem is given in the following Appendix G.

APPENDIX G: THE PROOF OF THE THEOREM 3

We prove Theorem 3 by illustrating the existence of C to
turn any given minimal nonzero modes of Ff (k) at momentum
k into minimal C-zero modes. We assume that C preserves the
space of minimal nonzero modes of Ff (k).

1. When the P̃ is unitary

When P̃ is unitary, the simplest method to obtaining zero
modes is to set C = P̃ (or C = P̃g where g ∈ G f is unitary).
In this case all minimal nonzero modes at momentum k are
turned into zero modes. In the following we will discuss other
solutions of C, which turn certain nonzero modes into zero
modes.

a. When Gf (k) is unitary

Extension: Minimal C-zero modes from RMNZM
D+(Ff (k)) ⊕ D−(Ff (k)). In this case, we have D+(P̃ ) �∼=
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D−(P̃ ) and D+(G f (k)) ∼= D−(G f (k)). When C is unitary
then the induced rep from D+(G f (k)) or D−(G f (k)) to Gc

f (k)
is reducible. Namely, it is not possible to do an induction
from D+(G f (k)) or D−(G f (k)) such that the induced irrep
of Gc

f (k) is equivalent to D+(G f (k)) ⊕ D−(G f (k)) when
restricted to G f (k). Hence, minimal C-zero modes can only
be obtained by extensions from D±(Ff (k)) to D±(F c

f (k)).
There are different ways to do the Z2 extensions,

we only consider the simplest case by assuming that
the effective charge-conjugation C commutes with Ff (k),
namely [C, Ff (k)] = 0. In the direct sum space D+(Ff (k)) ⊕
D−(Ff (k)), C is reducible. Consequently, one obtains
two nonequivalent extension of D+(G f (k)) = D−(G f (k))
by the two 1D reps of Z2, resulting in D+(Gc

f (k)) �∼=
D−(Gc

f (k)) [here C provides two different quantum num-
bers in D+(Gc

f (k)) and D−(Gc
f (k)) respectively]. Considering

D+(P̃ ) �∼= D−(P̃ ), now one obtains a set of reducible minimal
C-zero modes for the group F c

f (k). This construction is applied
in several lattice models in Sec. IV.

Induction: Minimal C-zero modes from irreducible nonzero
modes D(Ff (k)). In this case, the restricted rep D(G f (k))
from the irrep D(Ff (k)) can be reduced into a direct sum of
two nonequivalent irreps, namely D(G f (k)) = d1(G f (k)) ⊕
d2(G f (k)). It is not possible to do extension on subgroup
G f (k) to obtain a set of minimal zero modes. But a Z2

induction is straightforward if C is closed in the space
D(G f (k)). Then D(C) is irreducible in the space D(G f (k))
since d1(G f (k)) and d2(G f (k)) are nonequivalent. Thus ob-
tained D(Gc

f (k)) forms a set of irreducible C-zero modes.

b. When Gf (k) is anti-unitary

We denote the maximum unitary subgroup of G f (k) as
Hf (k).

Induction from irreducible nonzero modes D(Ff (k)).
Since the restricted rep D(G f (k)) is reducible, assume that
D(G f (k)) = d1(G f (k)) ⊕ d2(G f (k)). No matter d1(G f (k))
and d2(G f (k)) are equivalent or not, and no matter, which
class R,H,C they belong to, a Z2 induction to is always
possible.

We first present the constraints of the charge conjugation
C if the induction is applicable. Since the charge conjugation
C permutes the two subspace d1(G f (k)) and d2(G f (k)), we
assume that in the space D(G f (k)) the charge conjugation C
is represented as

D(C) =
(

0 ω2(C, C)d1(C2)[L(C)]−1

L(C) 0

)
, (G1)

where L(C) is an invertible matrix. Then from the theory of
induced rep, for any g ∈ G f (k) we have

D(g)Ks(g) =(
d1(g)Ks(g) 0

0 ω2(g,C)
ω2(C,C−1gC)L(C)d1(C−1gC)Ks(g)L−1(C)

)
. (G2)

Since D(G f (k)) = d1(G f (k)) ⊕ d2(G f (k)), for any g ∈ G f (k)
we have

ω2(g, C)

ω2(C, C−1gC)
L(C)d1(C−1gC)Ks(g)L

−1(C) = d2(g)Ks(g). (G3)

Especially, for unitary elements h ∈ Hf (k), one has

Tr

[
ω2(h, C)

ω2(C, C−1hC)
d1(C−1hC)

]
= Tr [d2(h)].

Supposing that D(Gc
f (k)) form an irrep of Gc

f (k), then
there is only one Hermitian centralizer for D(Gc

f (k)), namely
the identity matrix. If d2(G f (k)) �∼= d1(G f (k)), then the in-
duced rep D(Gc

f (k)) is always irreducible; if d2(G f (k)) =
d1(G f (k)), to make D(Gc

f (k)) irreducible the following con-
dition should be satisfied:

L(C) �= ω2(C, C)d1(C2)L−1(C). (G4)

The simplest example for an induction with d2(G f (k)) =
d1(G f (k)) is the group Gc

f (k) = G f (k) + CG f (k) with C com-
muting with G f (k), ω2(C, C) = 1 and L(C) = iI , namely
D(C) = �y = τy ⊗ I . Since D(C) cannot be block diagonal-
ized via real matrix, D(C) and the rep matrices of antiunitary
elements in G f (k) cannot be simultaneously block diagonal-
ized, meaning that D(Gc

f (k)) is irreducible. Hence D(F c
f (k))

correspond to a set of irreducible C-zero modes. This kind of
induction is applied in the construction of lattice models in
Sec. IV.

Remark. We comment that for unitary G f (k) (without us-
ing Frobenius reciprocity) with d1(G f (k)) = d2(G f (k)), the
induction will be impossible. To see this, notice that the con-
dition (G4) becomes the following one for unitary groups,

L(C) �∝ ω2(C, C)d1(C2)[L(C)]−1. (G5)

However, from (G3) one can also show that [d1(C2)L−2(C)]
commutes with the irreducible representation d1(G f (k)). Ac-
cording to Schur’s lemma, [d1(C2)L−2(C)] are proportional to
identity matrix, which is contradict with the above condition
(G5).

Minimal C-zero modes from the RMNZM D+(Ff (k)) ⊕
D−(Ff (k)). In this case, D+(G f (k)) and D−(G f (k)) are
equivalent. One can always do inductions following the pre-
vious construction for the irreducible nonzero modes with
d1(G f (k)) = d2(G f (k)).

Remark. We comment that, for D±(G f (k)) belong to the
C class and D+(Ff (k)) ∼= D−(Ff (k)) [corresponding to the
case (4) in the Table I], one can just do a Z2 induction on
each irreducible blocks for the subgroup Hf (k). Then the new
irrep of the group Gc

f (k) is of the R class. This also leads to
a set of reducible minimal C-zero modes according to the case
(2) in the Table I. Moreover, one can also do extensions to
obtain a set of reducible minimal C-zero modes following the
discussions in the Appendix G 1 a.

2. When the P̃ is anti-unitary

In this case, we only need to consider the case in which
G f (k) is unitary (otherwise it reduces to the case with unitary
P̃). A set of RMNZM are formed by two equivalent rep-
resentations, namely DR

+ (Ff (k)) ⊕ DR
− (Ff (k)) both of which

belong to the R class, and a set of irreducible nonzero modes
are all irreps of Ff (k), which belong to the H or the C class.
We denote them by DH(Ff (k)) and DC (Ff (k)) respectively.

For the RMNZM DR
+ (Ff (k)) ⊕ DR

− (Ff (k)). Similar to the
case where P̃ is unitary, a Z2 induction is impossible, but a Z2
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extensions is possible to turn the set of RMNZM into a set of
reducible minimal C-zero modes.

For the irreducible nonzero modes DC (Ff (k)). Similar to
the case where P̃ is unitary, a Z2 induction is possible to turn
the set of irreducible nonzero modes into a set of irreducible
C-zero modes.

For the irreducible nonzero modes DH(Ff (k)). In this case,
a single charge operation C fails to turn the set of irreducible
nonzero modes DH(Ff (k)) into C-zero modes.

But we can adopt two charge conjugation operators C1, C2

to obtain a set of C-minimal zero modes. In this case we have
F c1×c2

f (k)/Ff (k) ∼= Z2 × Z2, and the representations of the
two charge operators C1 and C2 should anticommute with each

other D(C1)D(C2) = −D(C2)D(C1) from the Clifford theory
[79].

The process can be understood as an extension followed
by an induction. We first do a Z2 extension by the C1 to make
the two irreps contained in DH(Hf (k)) to be nonequivalent in

DH(Hc1
f (k)). Hence C1 is represented as D(C1) = (iI 0

0 −iI).

Now the irreducible nonzero mode DH(F c1
f (k)) is changed

to the C class. Then we do a Z2 induction by C2, where
C2 is represented as D(C2) = (0 iI

iI 0 ). After the two steps,

a set of irreducible C-zero modes for the group F c1×c2
f (k)

are obtained.
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