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I consider a nonlinear response of conventional superconductors contaminated with nonmagnetic impurities
or imperfections to a circular polarized light. I focus on dc contributions to the induced current density which
describe the emergence of the static magnetization in a superconductor. This effect is known as inverse Faraday
effect. By employing quasiclassical theory of superconductivity, I derive an expression for the induced static
magnetization as a function of frequency of external ac field and disorder scattering rate. The scattering
of electrons off potential impurities is taken into account within the framework of the self-consistent Born
approximation. It is found that the magnitude of the inverse Faraday effect decreases with an increase in disorder
scattering rate. I have also discovered that the value of the induced magnetization has a characteristic minimum
at a frequency which approximately equals twice the value of the pairing gap in a clean superconductor. This
minimum appears due to the resonant excitation of the amplitude Higgs mode.
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I. INTRODUCTION

In the last decade there have been significant advances in
state-of-the-art optical measurements and techniques that have
spurred a lot of interest in the physical phenomena related
to nonlinear responses in conventional and unconventional
superconductors [1–9]. These experimental and theoretical
studies usually uncover and address a number of interest-
ing and important problems. Some of these problems are
concerned with the fundamental aspects of superconductivity
such as various proposals to probe the physics associated
with the excitation of the amplitude Higgs mode [10–15]
and Eliashberg effect [16,17], to name a few. Another set of
problems focuses on development of potential applications of
various nonlinear effects in superconductor-based devices for
it offers one a possibility to manipulate the physical properties
of superconductors such as magnetic and transport response
functions on extremely short time scales [18–20].

Inverse Faraday effect (IFE) in dispersive medium was
discovered by Pitaevskii [21] who demonstrated that static
magnetization can be produced by subjecting a medium to
high-intensity circular polarized light. In subsequent years
this effect has been, and continues to be, actively studied
in various electronic systems [22–30]. For example, Majedi
[31], using phenomenological set of arguments, has recently
proposed that the IFE can be induced in superconductors by
subjecting them to an external microwave radiation, Fig. 1.
Almost immediately after the publication of that work, several
groups have further developed this idea by studying the IFE
in superfluid condensates [32] and in various superconductor-
based devices [33–36]. Most recently, Sharma and Balatsky
[37] utilized the quasiclassical approach to formulate a micro-
scopic theory of the IFE in superconductors.

In the context of the present work it must be mentioned
that in the earlier works [31,37] scattering due to potential
disorder, which is almost inevitably present in supercon-
ducting samples, has been taken into account on a purely

phenomenological level by formally assigning a finite imagi-
nary part to the single particle energies, ε → ε + i�. It is well
known that weak potential disorder does not affect the physi-
cal properties of conventional superconductors in equilibrium
(Anderson theorem) [38–40], and for that reason the approx-
imations taken in the abovementioned works may seem well
justified. However, as it has been established independently
by several groups, potential impurities do affect the supercon-
ducting response functions provided that a superconductor has
been driven out of equilibrium [41–44].

Within the theoretical framework of the quasiclassical
theory of superconductivity [45] this can be understood as
follows. The self-energy due to scattering on potential impu-
rities �̌ enters in the quasiclassical equations in a commutator
with the single-particle matrix correlation function ǧ. Since
in Nambu representation the self-energy part due to disorder
scattering is proportional to ǧ, the corresponding commutator
vanishes identically. Qualitatively, this means that Cooper
pairs scatter coherently off the weak potential impurities,
and pair breaking processes do not occur. When a super-
conductor is driven out of equilibrium, the commutator will
include the derivatives of both �̌ and ǧ with respect to
time and, as a result, no such cancellation occurs. In other
words, the monochromatic radiation breaks time-reversal
symmetry and, as a result, scattering on potential impurities
induces pair breaking. Therefore, in the context of the IFE in
superconductors, it is important to elucidate the role of non-
magnetic disorder and how it affects the ac field induced dc
magnetization.

In this paper I formulate a microscopic theory of inverse
Faraday effect in disordered superconductors in which the
effects of potential disorder are treated self-consistently. In
particular I demonstrate that under the action of external ac
electric field the self-energy correction due to disorder scatter-
ing leads to the renormalization of the quasiparticle energies
and pairing amplitude similar to the renormalization effects
which appear due to the presence of paramagnetic impurities.
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FIG. 1. Schematic representation for the realization of inverse
Faraday effect in superconductors. When a conventional supercon-
ductor is subjected to a circular polarized light with frequency ω, it
induces a static component in the current density and, as a conse-
quence, a static magnetization Mind. The effect is of the second order
in the powers of the amplitude E0 of an external electric field.

I analyze the IFE by calculating the static contribution to
the charge current density to the second order in external
electric field. I have found that the magnitude of the induced
dc magnetization decreases with the increase in disorder scat-
tering rate. Intriguingly, I also find that the magnetization
as a function of disorder scattering rate is suppressed most
strongly when the frequency of electric field coincides with
the resonant frequency of the amplitude Higgs mode ωres.
Furthermore, magnetization as a function of frequency for
a fixed disorder strength exhibits a minimum at ω = ωres.
Therefore, based on these observations I suggest that induced
dc magnetization via IFE in conventional superconductors
contains a “fingerprint” of the amplitude Higgs mode.

II. QUALITATIVE DISCUSSION

When a conventional superconductor is subjected to a
monochromatic external electric field

Eext(r, t ) = E0eikr−iωt + E∗
0e−ikr+iωt (1)

with E0 = E0(x̂ + iŷ) (here x̂ and ŷ are the unit vectors),
Fig. 1, the superconducting order parameter, defined by a
scalar quantity, must couple to the electric field nonlinearly.
As a result of this nonlinear coupling, two collective modes
will be excited: the Carlson-Goldman (phase) mode and the
amplitude Higgs mode. In the context of neutral superfluids,
the former is referred to as the Anderson-Bogoliubov mode
[50]. Usually, these modes are analyzed separately, because in
the Nambu representation they are described by the correla-
tion functions with different matrix structure (see discussion
in Sec. III below). In addition, the phase mode is gapless while
the amplitude mode is gapped at twice the value of the pairing
amplitude in equilibrium, ωres = 2�0.

As it turns out there are several physical effects, such
as inverse Faraday and ponderomotive force effects, for
which an interplay between phase and amplitude modes
becomes crucial and so it could be important for deeper
understanding of these effects to find out how this inter-
play can be identified in the physical observables. In order
to succeed in achieving this goal, one needs to treat these
modes on equal footing. For example, in the IFE the phase

fluctuations produce the correction to the particle density dis-
tribution which, due to the fact that phase mode is gapless,
must be linearly proportional to the gradient of an external
electric field, δn ∼ (vF · ∇)(n · Eext(r, t )) (here vF = vF n is
the Fermi velocity). On the other hand, the amplitude mode is
gapped and, as a result, fluctuations associated with it produce
the correction to particle velocity δv ∼ vF (n · Eext(r, t )), and
gradient corrections can only appear in the second order, i.e.
the amplitude mode is diffusive, ωamp(q) ≈ 2�0 + Dq2 (here
D = v2

F τ/2 is the diffusion coefficient for a two-dimensional
superconductor). As a result, the second order correction to
the current in powers of electric field can be computed us-
ing the hydrodynamic expression j(2) = 〈〈δnδv〉n〉2π/ω, where
the averaging is performed over the directions of the Fermi
velocity and period of oscillating electric field. Among sev-
eral contributions, an expression for j(2) will contain the
terms describing the gyration of electric field which gives
rise to the static magnetization Mind(ω) ∝ Eext × E∗

ext (see
Fig. 1). From quite general considerations one may immedi-
ately discover that Mind(ω) ∝ e2v4

F /ω3, and one can represent
the resulting expression for the induced magnetization as
Mind(ω) = ie2v4

F γω(Eext × E∗
ext ), where function γω ∝ 1/ω3

is determined by the microscopic details such as disorder,
interactions between the constituent quasiparticles, etc. [37]

The excitation of the phase mode corresponds to the re-
distribution of the electronic charge, for the fluctuations in the
phase of the superconducting order parameter are conjugate
to the fluctuations in the particle number by virtue of the
Heisenberg uncertainty relation δNδφ ∼ h̄ [50]. In the ground
state and in the absence of the supercurrent, the supercon-
ducting order parameter can always be chosen to be real
which corresponds to the particle-hole symmetric case. Then,
under the action of an external ac field the phase mode will
be excited leading to a particle-hole asymmetry. Therefore
one immediately concludes that the emergence of the IFE in
superconductors requires particle-hole asymmetry.

In the context of IFE in superconductors, this aspect of
the problem—importance of the particle-hole symmetry—has
been previously emphasized by several groups [32,34,35,37].
Specifically, Mironov et al. [32] have studied how supercon-
ducting condensates may acquire a temperature dependent dc
magnetic moment under the action of the external circularly
polarized light by considering the phenomenological model
based on the time-dependent Ginzburg-Landau theory. Even
though the physics associated with phase fluctuations of the
order parameter has been properly addressed, the model used
in Ref. [32] has a number of important shortcomings such as
a quite restricted range of validity (i.e., temperatures must
be close to the critical temperature) and an assumption of
the gapless superconductivity. This latter assumption does not
allow one to properly account for the contributions from the
excitation of the amplitude mode to the IFE.

Indeed, the fact that the excitation of the amplitude mode
is also crucial for the IFE in superconductors has been
surprisingly overlooked so far. Furthermore, given the dis-
cussion above, it follows that the induced magnetization
must also exhibit a nonmonotonic frequency dependence—a
minimum—around ω ≈ 2�0, which corresponds to the res-
onant frequency for the excitation of the amplitude Higgs
mode (see above). However, in order to check how prominent
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this feature will be it requires a microscopic calculation. In
passing I note that since the amplitude fluctuations can only
produce second order gradient corrections, these fluctuations
alone cannot contribute to the IFE and so at this point it
is not immediately clear how to capture this effect if one
chooses to work in the dirty limit τ�0 	 1 by employing the
Usadel equation [46]. In the following section, I provide the
microscopic derivation of the expression for the function γω

using the quasiclassical theory of superconductivity [45–47].

III. MAIN EQUATIONS

In the problems which are concerned with response of
superconductors to the application of external electromagnetic
radiation, it proves important to write down the equations for
the gauge invariant single-particle propagators [47,48]

ǧ(1, 2) =
(

ĝR(1, 2) ĝK (1, 2)

0 ĝA(1, 2)

)
(2)

within the framework of the quantum field theory for nonequi-
librium systems [49,50]. Each component of the matrix
function ǧ(1, 2) is defined in Keldysh and Nambu spaces,
and the argument of the propagator should be understood
as (1, 2) = (r1, t1; r2, t2). One can follow the avenue of
Refs. [47,51] to derive the quasiclassical equation for the
Wigner transformed single-particle propagator ǧ:

[ετ̌3, ǧ] + e

c
vF A(r, t )[τ̌3, ǧ] + ivF ∂rǧ − [�̌τ̌3

◦, ǧ] + ie

2

× [∂ε(ǧτ̌3)E(i
↔
∂ εt ) + ∂ε(τ̌3ǧ)E(−i

↔
∂ εt )]

× vF E(r, t ) = 0. (3)

In this equation
↔
∂ εt= 1

2

←
∂ ε

→
∂ t , ǧ = ǧ(nε; rt ), r = (r1 +

r2)/2, t = (t1 + t2)/2, vF = vF n is the Fermi velocity, A(r, t )
is a vector potential, E(r, t ) = −(1/c)∂t A(r, t ) is an external
electric field, τ̌3 is the third Pauli matrix which is diagonal
in Keldysh subspace, function E(u) = (eu − 1)/u, �̌ is the
self-energy part which encodes the effects of superconducting
pairing and disorder

�̌τ̌3 = − i

2τ
〈ǧ〉n + iτ̌2�

′ + iτ̌1�
′′, (4)

and τ̌1(2) = 1̂2×2 ⊗ τ̂1(2) are first and second Pauli matrices,
which act in Nambu and Keldysh spaces and are diagonal in
Keldysh space. In all the mathematical expressions throughout
the text which include two vectors a and b in the combination
ab, the dotproduct is always implied. Lastly, the commutator
is defined according to

[A ◦, B] = Ae
i
2 (

←
∂ ε

→
∂ t −

←
∂ t

→
∂ ε )B − Be

i
2 (

←
∂ ε

→
∂ t −

←
∂ t

→
∂ ε )A. (5)

Given the expression for the electric field (1), I will look for
the solution of (3) in the form

ǧ(nε; rt ) = ǧ(nε; kω)ei(kr−ωt ) + ǧ(nε; −k,−ω)e−i(kr−ωt ).

(6)

It is important to emphasize here that Eq. (3) does not preserve
the norm of ǧ, i.e., ǧ2 = 1̂ will be satisfied only when either
E(r, t ) = 0 or in the limit |ε| → ∞ [47]. A similar situation

happens in a problem of nonequilibrium dynamics of the
superconductor with paramagnetic impurities [44], which has
one common feature with our problem at hand: the lack of
time-reversal symmetry.

In the ground state, the Keldysh propagator is just a
parametrization

ĝK
ε = (

ĝR
ε − ĝA

ε

)
tanh

(
ε

2T

)
, (7)

where T is temperature. In the ground state, I can set �′ = �0,
�′′ = 0, and choose ĝR(A)

ε = gR(A)
ε τ̂3 − i f R(A)

ε τ̂2. By employ-
ing the normalization condition ĝR(A)

ε ĝR(A)
ε = 1̂, I find gR(A)

ε =
(ε ± i0)/ζ R(A)

ε , f R(A)
ε = �0/ζ

R(A)
ε , and

ζ R(A)
ε =

⎧⎪⎨
⎪⎩

±sgn(ε)
√

(ε ± i0)2 − �2
0, |ε| > �0,

i
√

�2
0 − ε2, |ε| < �0.

(8)

The value of the superconducting order parameter in equilib-
rium is then determined self-consistently from

�0 = λ

2

∫ ωD

−ωD

f K
ε dε, (9)

where λ is the dimensionless interaction strength and ωD is the
Debye frequency. Naturally, the disorder scattering rate does
not enter into this expression since the commutator in (3) with
the first term in (4) vanishes in equilibrium.

The expressions for the particle density and particle ve-
locity for a given vF are expressed in terms of the Keldysh
propagator as follows:

n(n; rt ) = πνF

2

∫
Tr{ĝK (nε; rt )}dε,

v(n; rt ) = πνF

2

∫
vF Tr{τ̂3ĝK (nε; rt )}dε. (10)

Here νF is the single particle density of states at the Fermi
level. In terms of these quantities, the macroscopic current
density is defined as

j(r, t ) = 〈n(n; r, t )v(n; r, t )〉n. (11)

Although the expressions above are valid in any spacial di-
mensions, for the calculation of the averages over the Fermi
surface, it will be assumed without loss of generality that
I have a two-dimensional superconductor, Fig. 1. As I have
discussed above, our goal is to compute linear corrections for
the Keldysh Green’s function ĝK in electric field, which will
allow us to evaluate nonlinear in electric field correction to the
current density (11).

A. Linear analysis: retarded and advanced functions

I start by computing the linear corrections to ĝR(A). I will
look for the solution of Eq. (3) with

ĝR(A) = ĝR(A)
ε + ĝR(A)

1 , (12)

where ĝR(A)
1 ∝ n · E0. Inserting this expression into (3) and

keeping only terms to the linear order in E0 I obtain the
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following equation for the matrix function ĝR(A)
1 (nε; kω):

[ετ̂3, ĝ1] + ω{τ̂3, ĝ1} − vF (nk)ĝ1 − i�0[τ̂2, ĝ1]

− i

2τ
(ĝ1 − 〈ĝ1〉n)ĝε− ω

2
+ i

2τ
ĝε+ ω

2
(ĝ1 − 〈ĝ1〉n)

= nQ0

ω
{τ̂3, ĝε−ω/2 − ĝε+ω/2} + iδ�kωτ̂1ĝε−ω/2

− iδ�kωĝε+ω/2τ̂1 + nQ0

ω
[τ̂3, ĝε−ω/2 + ĝε+ω/2], (13)

where Q0 = ievF E0, function δ�kω is the Fourier compo-
nent of the linear correction to the superconducting order
parameter δ�(r, t ) = δ�kωei(kr−ωt ), and I suppressed the su-
perscripts R(A) for brevity. In deriving this equation I have
used the auxiliary expressions listed in Appendix A.

Let me first average both sides of this equation over the
Fermi surface. Denoting 〈ĝ1(nε; kω)〉n = Ĵkω(ε), I have

[ε̂, Ĵkω] + ω{τ̂3, Ĵkω} = iδ�kω[τ̂1, ĝε] + vF 〈nkĝ1〉n, (14)

where a new notation ε̂ = ετ̂3 − i�0τ̂2 has been introduced
for brevity. Two comments are in order: (i) note that the
terms which contain disorder scattering rate do not appear
in this equation; (ii) here I have neglected the higher order
derivatives of the bare propagator by replacing the commuta-
tor [δ�̂(r, t ) ◦, ĝ] with its equilibrium expression [δ�̂(r, t ), ĝ]
since the terms which contain δ�kω will be irrelevant for the
IFE. Because δ�kω must be proportional to the electric field,
it will be convenient to use function δ�ω instead, which is
defined by δ�kω = (kQ0/2)δ�ω. By the same token I will
re-define Ĵkω(ε) = (kQ0/2)δĜε(ω). In what follows I can
also neglect the anomalous part of the third term on the right
hand side of Eq. (14) since vF k = (vF /c)ω 	 ω. The same
approximation has already been used in deriving Eq. (3) by
ignoring the contributions from the magnetic field [37,47].

Next, I multiply both sides of Eq. (13) by n · k and average
the resulting expression over the Fermi surface. This yields(

ε̃R(A)
ω τ̂3 − i�̃R(A)

ω τ̂2
)
ĜR(A)

ε − ĜR(A)
ε

(
ε̃

R(A)
−ω τ̂3 − i�̃R(A)

−ω τ̂2
)

= aR(A)
ε (ω)τ̂0 − bR(A)

ε (ω)τ̂1, (15)

where 〈(nk)ĝ1(nε; kω)〉n = (kQ0/2)ĜR(A)
ε (ω), and I have in-

troduced functions

ε̃R(A)
ω = ω + ε + i

2τ
gR(A)

ε+ ω
2
,

�̃R(A)
ω = �0 + i

2τ
f R(A)
ε+ ω

2
(16)

and aR(A)
ε (ω) = (gR(A)

ε−ω/2 − gR(A)
ε+ω/2)/ω, bR(A)

ε (ω) = ( f R(A)
ε−ω/2 +

f R(A)
ε+ω/2)/ω. For ω = 0 formulas (16) coincide with the cor-

responding expressions in [39]. By analyzing the matrix
combinations which enter into both Eqs. (14) and (15), it is
straightforward to realize that both of these equations can be
solved using the following ansatz:

ĜR(A)
ε (ω) = GR(A)

ε (ω)τ̂3 − iF R(A)
ε (ω)τ̂2,

δĜR(A)
ε (ω) = δGR(A)

ε (ω)τ̂0 + δF R(A)
ε (ω)τ̂1. (17)

To summarize, the expression for the linear correction to the
retarded and advanced parts of ǧ is formally given by

ĝR(A)
1 (nε; kω) = ĜR(A)

ε (ω)nQ0 + δĜR(A)
ε (ω)(nk)(nQ0). (18)

Expressions for the components of the functions ĜR(A)
ε (ω) are

listed in Appendix B. Components of δĜR(A)
ε (ω) can be easily

found:

δGR(A)
ε (ω) = vF

2ω
GR(A)

ε (ω), δF R(A)
ε (ω) = − δ�ω

ζ
R(A)
ε

. (19)

Note that there are contributions to δGR(A)
ε (ω) which cancel

out and this is the reason why I have had to retain the normal
component of 〈nkĝ1(nε; kω)〉n in Eq. (14). Furthermore, as
I will show below, this correction plays a crucial role in
determining the magnitude of the IFE.

B. Linear analysis: Keldysh function

The Keldysh components of the quasiclassical function ǧ1

can be computed in full analogy with the calculation of ĝR(A)
1 .

In particular, since the equation for 〈nkĝK
1 〉n is identical to (14)

for the normal component of δĜK
ε (ω) I have

δGK
ε (ω) = vF

2ω
GK

ε (ω). (20)

I proceed with the equation for the Keldysh component of
ĜK

ε (ω) which reads(
ε̃R
ωτ̂3 − i�̃R

ωτ̂2
)
ĜK

ε − ĜK
ε

(
ε̃A
−ωτ̂3 − i�̃A

−ωτ̂2
)

= ãK
ε (ω)τ̂0 − b̃K

ε (ω)τ̂1. (21)

This equation is, of course, quite similar to Eq. (15) for the
retarded and advanced functions above. Functions appearing
in the right hand side of this equation are defined as

ãK
ε (ω) = aK

ε (ω) + i

2τ

(
GR

ε gK
ε− ω

2
− gK

ε+ ω
2
GA

ε

+ f K
ε+ ω

2
F A

ε − F R
ε f K

ε− ω
2

)
,

b̃K
ε (ω) = bK

ε (ω) + i

2τ

(
f K
ε+ ω

2
GA

ε − gK
ε+ ω

2
F A

ε

+ GR
ε f K

ε− ω
2

− F R
ε gK

ε− ω
2

)
, (22)

where aK
ε (ω) = (gK

ε−ω/2 − gK
ε+ω/2)/ω and bK

ε (ω) = ( f K
ε−ω/2 +

f K
ε+ω/2)/ω. In the case of strong disorder when τ�0 	 1, I

see that both functions (22) are linearly dependent on τ−1. I
should emphasize here that no such terms ∝ τ−1 will appear
in the expression for the Keldysh function if one chooses to
work in the dirty limit from the outset by using the Usadel
equation [17,52,53].

The solution of this matrix equation can be found in the
form ĜK

ε (ω) = GK
ε (ω)τ̂3 − iF K

ε (ω)τ̂2 with

GK
ε (ω) = ãK

ε (ω)
(
ε̃R
ω + ε̃A

−ω

) + b̃K
ε (ω)

(
�̃R

ω − �̃A
−ω

)
[
ε̃R
ω

]2 − [
ε̃A−ω

]2 − [
�̃R

ω

]2 + [
�̃A−ω

]2 ,

F K
ε (ω) = b̃K

ε (ω)
(
ε̃R
ω − ε̃A

−ω

) + ãK
ε (ω)

(
�̃R

ω + �̃A
−ω

)
[
ε̃R
ω

]2 − [
ε̃A−ω

]2 − [
�̃R

ω

]2 + [
�̃A−ω

]2 . (23)

I am providing the expression for F K
ε (ω) for completeness

since this function does not contribute to the IFE. I note that
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temperature enters into these expressions only through the
relation (7) and the temperature dependent value of the pairing
gap �0(T ).

C. Induced static magnetization

Having computed the linear-in-electric-field corrections to
the Keldysh Green’s function [(20) and (23)] I go back to
the hydrodynamic expression for the current density (11).
Since linear correction to both particle density and velocity
will be determined by the normal components of ǧK

1 , it will
be convenient to represent the normal component of ĝK

1 as
gK

1 (nε; rt ) = GK
1 (nε; rt ) + δGK

1 (nε; rt ) with

GK
1 (nε; rt ) = ievFGK

ε (ω)nE(r, t )

+ ievFGK
ε (−ω)nE∗(r, t ) (24)

and

δGK
1 (nε; rt ) = ev2

F

2ω
GK

ε (ω)(n∇)nE(r, t )

− ev2
F

2ω
GK

ε (−ω)(n∇)nE∗(r, t ). (25)

Here the electric field E(r, t ) = E0ei(kr−ωt ), and I used
Eq. (20). After I insert these expressions into the equation for
the current, there will be several contributions, but I single out
two contributions which contain the following combination of
E and E∗:

jdc(ω) = ie2v4
F γω〈n(nE)(n∇)(nE∗)〉n

− ie2v4
F γω〈n(nE∗)(n∇)(nE)〉n. (26)

Alternatively, one can derive (26) by averaging the full expres-
sion for current over a period of oscillations 2π/ω. Clearly,
upon averaging over the Fermi surface there is a contribution
to the current ∝ ∇ × (E × E∗) which can be represented as
∇ × Mind. Function γω in expression (26) is formally given
by the following expression:

γω = ν2
F

8ω

∫ ∞

−∞
GK

ε (ω)dε

∫ ∞

−∞
GK

ε′ (−ω)dε′ ≡ I (ω, τ )

ω3
.

(27)

Here on the last step I took into account that coefficients aε(ω)
and bε(ω) are proportional to 1/ω and, as a consequence,
GK

ε (ω) ∝ 1/ω, so that function γω ∝ 1/ω3, while function
I (ω, τ ) encodes the effects of disorder on the induced mag-
netization.

Function I (ω, τ ) appearing in (27) can be evaluated nu-
merically for different values of the disorder scattering rate
and temperature. In the dirty limit τ�0 	 1 this function
will become weakly dependent on the disorder scattering
rate. In order to see this, I first note that in this limit both
numerator and denominator in the expression for GK

ε will be
varying linearly with τ−1. This is because the terms which
are proportional to τ−2 in the denominator cancel out due
to the normalization condition (see Appendix B). In passing
I note that this fact—the dependence of the Keldysh Green
function on disorder scattering rate—is yet another manifes-
tation of the observation made earlier that Anderson theorem
does not apply to disordered nonequilibrium superconductors,
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FIG. 2. Dependence of the function I (ω, τ ), Eq. (27), on fre-
quency of external electric field for various values of the disorder
scattering rate τ−1. Since function I (ω, τ ) determines the magnitude
of the effect, from these results I conclude that disorder suppresses
the value of the induced static magnetization. It is worthwhile to note
that the suppression is strongest at frequencies ωmin ≈ 2�0, which
coincides with the resonant frequency of the amplitude Higgs mode.
The value of the temperature has been set to T = 0.1�0.

i.e., scattering on potential impurities does affect various out-
of-equilibrium response functions, which conceptually is in
agreement with the earlier results [41,42,44].

In Fig. 2 I show the result of the calculation of the fre-
quency dependence of function I (ω, τ ) for different values
of 1/τ�0. As I can see, this dependence is nonmonotonic.
However, this function clearly acquires smaller values with an
increase in τ−1. Note that I (ω, τ ) has a minimum at frequen-
cies � 2�0 which matches the value of the resonant frequency
for the excitation of the amplitude Higgs mode. Notably, the
minimum moves to higher frequencies with increase in the
values of τ−1, which seems to be in agreement with the results
of Ref. [44]. Since such a shift is not expected to appear in the
strongly disordered superconductors [52,53], I attribute this
effect to the perturbative nature of the self-consistent Born
approximation.

In Fig. 3 the dependence of I (ω, τ ) on scattering rate τ−1 is
shown. This dependence turns out to be perfectly monotonic
and reflects the suppression of Mind for four different values of
ω. Notably, the suppression is by far the strongest when ω =
2�0, which is consistent with the results presented in Fig. 2.
I am inclined to interpret this suppression as being caused by
the resonant excitation of the amplitude Higgs mode.

IV. CONCLUSIONS

In this paper, using the quasiclassical theory of supercon-
ductivity, I have investigated how potential impurities may
affect the emergence of the inverse Faraday effect in con-
ventional superconductors. Scattering on potential impurities
have been taken into account within the self-consistent Born
approximation. The normal contribution to the current must
still be determined by the diffusion coefficient D ∝ τ , while
the superfluid component of the current is suppressed by the
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FIG. 3. Dependence of the function I (ω, τ ), Eq. (27), on disorder
scattering rate for various values of frequency of an external elec-
tric field ω. Note that suppression is much stronger at the resonant
frequency of the amplitude Higgs mode ω = 2�0. The value of the
temperature has been set to T = 0.1�0.

pair breaking processes due to nonequilibrium [44]. In agree-
ment with these qualitative observations, I have found that
in the fairly broad range of frequencies, potential impurities
suppress the magnitude of the IFE. In addition, it has been
found that the static magnetization Mind(ω) has a minimum
for ω ≈ 2�0. This frequency also corresponds to the mini-
mal excitation frequency for the amplitude Higgs mode. This
observation provides another example of manifestation of the
amplitude Higgs mode in response functions of a supercon-
ductor driven out of equilibrium [11,17,52–56], and serves as
a characteristic signature of the IFE in conventional supercon-
ductors.

Apart from the quantitative difference between the results
presented here and those of Ref. [37] in which disorder effects
were considered on the phenomenological level, I would like
to emphasize that the microscopic description of the scattering
on potential impurities in out-of-equilibrium superconductors
is important for the proper account of the physics associated
with the excitation of the amplitude Higgs mode. In this regard
my results are in agreement with those of Ref. [41] where it
was shown how scattering on potential impurities leads to the
effective excitation of the amplitude mode.

I certainly hope that my theoretical prediction of the min-
imum in the dc magnetization as a function of frequency can
be verified experimentally. Performing such a measurement
could provide yet another important insight into the physics
of the collective excitations and their impact on the IFE in
conventional superconductors.
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APPENDIX A: AUXILIARY EXPRESSIONS

In this Appendix I provide some auxiliary expressions
which are used to derive the quasiclassical equation (15) in
the main text.

a. Time derivatives. First simplification arises due to our
choice for the time dependence of the electric field:[

∂ε(ǧετ̌3)E
(

i

2

←
∂ ε

→
∂ t

)
+ ∂ε(τ̌3ǧε )E

(
− i

2

←
∂ ε

→
∂ t

)]
e−iωt

= e−iωt

2

[
E
(

− ω

2
∂ε

)
+ E

(ω

2
∂ε

)]
{τ̌3, ∂εǧε}

+ e−iωt

2

[
E
(

− ω

2
∂ε

)
− E

(
ω

2
∂ε

)]
[τ̌3, ∂εǧε]. (A1)

Here I use the bare propagators since these terms always
enter in the combination with external electric field, which is
assumed to be small. This expression can be further simplified
if I take into account the definition of function E. For example,
for the combination in the second line in (A1) it obtains[

E
(

− ω

2
∂ε

)
+ E

(ω

2
∂ε

)]
∂εǧε

=
∫ 1

−1
eη(ω/2)∂ε ∂εǧεdη

= ∂ε

∫ 1

−1
ǧε+η ω

2
dη (A2)

= 2

ω
(ǧε+ω/2 − ǧε−ω/2),

Similarly, for the expression in the third line in (A1) I find[
E
(

ω

2
∂ε

)
− E

(
− ω

2
∂ε

)]
∂εǧε

= ∂ε

(∫ 1

0
−

∫ 0

−1

)
ǧε+ηω/2dη

= 2

ω
(ǧε+ω/2 + ǧε−ω/2 − 2ǧε ). (A3)

Lastly, I note that the last term in the right hand side of this
expression is canceled out by the term which contains the
vector potential in the main equation, Eq. (3). Thus, collecting
all these contributions together and taking into account that
the first order correction to the superconducting order param-
eter vanishes after the averaging over the Fermi surface yields
Eq. (13) in the main text.

b. Self-energy part. For the commutator which involves
the self energy part σ̌ = − i

2τ
〈ǧ〉n after retaining the linear

order terms in powers of electric field, I have

[σ̌u
◦, ǧε + ǧ1] ≈ − i

2τ
[ǧε

◦, ǧ1] − i

2τ
[〈ǧ1〉n

◦, ǧε]

= i

2τ
ǧ1e− i

2

←
∂ t

→
∂ ε ǧε − i

2τ
ǧεe

i
2

←
∂ ε

→
∂ t ǧ1 + i

2τ
ǧεe

i
2

←
∂ ε

→
∂ t 〈ǧ1〉n

− i

2τ
〈ǧ1〉ne− i

2

←
∂ t

→
∂ ε ǧε = i

2τ
(ǧ1 − 〈ǧ1〉n)ǧε− ω

2

− i

2τ
ǧε+ ω

2
(ǧ1 − 〈ǧ1〉n). (A4)
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Note that the averages over the Fermi surface are nonzero only
for the contributions to ǧ1 which are directly proportional to
the dot product nk [see, e.g., (18) in the main text], which
means that averaging both sides of this equation over the
Fermi surface will give zero in this case. This fact is used in
the derivation ofEq. (14) in the main text.

APPENDIX B: EXPRESSIONS FOR THE LINEAR
CORRECTIONS TO THE RETARDED

AND ADVANCED PROPAGATORS

Components of the matrix function Ĝε(ω), Eq. (17), must
satisfy the following system of linear equations:

(ε̃ω − ε̃−ω )Gε(ω) − (�̃ω − �̃−ω )Fε(ω) = aε(ω),

(�̃ω + �̃−ω )Gε(ω) − (ε̃ω + ε̃−ω )Fε(ω) = −bε(ω).
(B1)

Here I have omitted the R(A) superscripts for brevity. The
solution of these equations is

Gε(ω) = aε(ω)(ε̃ω + ε̃−ω ) + bε(ω)(�̃ω − �̃−ω )

ε̃2
ω − ε̃2−ω − �̃2

ω + �̃2−ω

,

Fε(ω) = bε(ω)(ε̃ω − ε̃−ω ) + aε(ω)(�̃ω + �̃−ω )

ε̃2
ω − ε̃2−ω − �̃2

ω + �̃2−ω

. (B2)

Note that in the dirty limit τ�0 	 1, the disorder scattering
rate drops out from these expressions. Specifically, in the limit
when τ−1 � max{ω, ε}, I have

ε̃2
ω − ε̃2

−ω − �̃2
ω + �̃2

−ω

≈ iω

τ

(
gε+ ω

2
+ gε− ω

2

) + iε

τ

(
gε+ ω

2
− gε− ω

2

)
− i�0

τ

(
fε+ ω

2
− fε− ω

2

)
, (B3)

and the terms O(1/τ 2) cancel out due to normalization con-
dition g2

ε − f 2
ε = 1. Since the numerator in Eq. (B2) is also

linear in 1/τ, the final result becomes independent of τ−1.
This result is actually consistent both with the Anderson the-
orem and with the ones from the nonlinear σ model where
the exact averaging over disorder is performed [49,50] and
then nonlinear response is studied using the Usadel equa-
tion [17,52]. However, as it is shown in the main text, the
Keldysh components retain their dependence on τ−1, for these
functions contain all the information above the nonequilib-
rium state of a superconductor.
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