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It has long been known that superconductors in the crossover between superconductivity types I and II exhibit
an intermediate mixed state (IMS) with exotic flux configurations such as vortex clusters and chains. Achieving
a comprehensive microscopic description of the vortex configurations within this intertype region has proven
elusive until now due to the large computational demands involved. We have addressed this long-standing
problem by presenting microscopic calculations of the IMS configurations. Our calculations, performed at zero
temperature, reveal key features of the IMS, including the formation of vortex clusters and the multivortex nature
of interactions between vortices. The obtained boundaries of the IT domain reproduce existing experimental
observations remarkably well. Also, the results match earlier findings obtained using the perturbation theory in
the vicinity of the critical temperature.
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I. INTRODUCTION

The interaction between magnetic fields and supercon-
ductors unveils a diverse manifold of complex phenomena.
Superconductors, distinguished by their response to magnetic
fields, are traditionally divided into two conventional types
based on how an applied magnetic field interacts with the su-
perconducting condensate [1–3]. In type I, the magnetic field
is entirely expelled, while in type II, the magnetic field can
partially penetrate the condensate, leading to the formation of
a mixed state. In this mixed state, Abrikosov vortices, each
carrying a single quantum of magnetic flux, repel each other
and arrange into a periodic lattice [4]. The distinction between
these two types is based on the dimensionless parameter κ ,
which is defined as the ratio of the magnetic London pen-
etration depth λL to the Ginzburg-Landau (GL) coherence
length ξGL [1–3]. According to the GL theory [5], type-I
superconductivity occurs when κGL < κ0, whereas type-II su-
perconductivity takes place at κGL > κ0, where κ0 = 1/

√
2

is the critical value at which the transition between these
conventional superconductivity types occurs.

Notably, extensive investigations into the magnetic re-
sponses of certain materials with κGL ≈ 1 have unveiled
superconductors that defy conventional dual classification
[6–26]. Experimental findings have shed light on the existence
of an intermediate mixed state (IMS) within these crossover
materials [7–10,17]. In this unique state, the magnetic field
penetrates the superconductor while giving rise to a diverse
array of spatial configurations, including Meissner domains
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coexisting with vortex lattice islands, vortex clusters, and
chains, among others. Initially termed as type II/1 [17], these
materials were also referred to as intertype (IT) superconduc-
tors [27–30].

Previous theoretical studies linked the observed IMS flux
patterns to the existence of spatially nonmonotonic inter-
actions between vortices, which are attractive at long and
repulsive at short distances (see, e.g., the review in Ref. [17]).
These interactions induce an instability of the Abrikosov lat-
tice, resulting in its fragmentation into vortex clusters, chains,
and other structures. Recent studies [31,32] have emphasized
that the physics governing the IT regime cannot be fully
explained by pairwise vortex interactions alone, as the many-
vortex interactions play a crucial role in this regime.

For temperatures below the critical temperature Tc, the IMS
state is observed in materials in a finite interval of κGL values
close to κ0, which increases as the temperature T decreases.
The origin of IT superconductivity is closely linked to the
critical Bogomolnyi (B) point (κ0, Tc) of the BCS theory
[33,34]. This point demarcates the boundary between super-
conductivity types I and II as the temperature approaches Tc,
and is characterized by a self-dual, infinitely degenerate IMS
state appearing at the thermodynamic critical field. This state
encompasses various conceivable flux-condensate configura-
tions. Deviations from this point lift the degeneracy, leading
to the formation of a finite IT domain with exotic flux con-
figurations. This mechanism is universal and applies to both
single- and multiband superconductors [27].

Despite the long-standing recognition of the IT regime
as a fundamental property that significantly broadens the
standard dual classification of superconductivity types, even
in conventional superconductors, theoretical investigations
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into IT physics have lagged behind. This lack of progress
has been attributed to the necessity for calculations to go
beyond GL theory, which proves inadequate in describing the
IT regime even in proximity to Tc. As a consequence, until
recently only the boundaries of the IT domain in the κGL-T
plane have been calculated [27,35–40]. A theoretical analy-
sis of IMS configurations has only recently been attempted.
In particular, it has been conducted using the perturbation
expansion of the microscopic BCS theory with respect to
the proximity to the B point, where leading corrections to
the GL theory are included [28]. This approach enables the
description of arbitrary IMS flux-condensate patterns near
Tc in conventional single-band superconductors, yielding the
phase diagram of the IT domain. Notice that at T � 0.6Tc

the perturbative expansion [27] has accurately reproduced the
boundaries of the IT domain, extracted from experimental
results and a stability analysis of a vortex lattice within the
microscopic theory.

However, the results based on the perturbation expansion
are applicable only at high temperatures. Achieving a compre-
hensive microscopic description of the IMS that is valid also at
lower temperatures is extremely demanding due to the highly
inhomogeneous and irregular nature of this state. This work
solves this long-standing problem and presents microscopic
theory calculations for few-vortex states in the entire IT do-
main in a conventional single-band superconductor at T = 0.
The calculations demonstrate that the main characteristics
of the IT domain at lower temperatures remain qualitatively
similar to those close to Tc. The obtained zero-temperature
boundaries of the IT domain agree well with the universal
material-independent experimental measurements for a broad
class of conventional superconductors.

II. MODEL

The calculations are performed using a standard attractive
Hubbard model described by the Hamiltonian

Ĥ =
∑
i jσ

ti j ĉ
†
iσ ĉ jσ − g

∑
i,σ

n̂i↑n̂i↓, (1)

where ĉi is the electron operator at site i of the lattice, σ is the
electron spin, ti j is the hopping amplitude between sites i and
j, which is nonzero ti j = −t only for the nearest neighbors,
and g > 0 is the BCS coupling constant. The magnetic field
is taken into account through the Peierls substitution, which
modifies the hopping integral as ti j → ti j exp[−i e

h̄c

∫ r j

ri
A(r) ·

dr], where A(r) is the vector potential of the field B = ∇ × A.

The superconductivity is described within the mean-
field approximation, which yields the Bogoliubov–de Gennes
(BdG) equations [41,42] for the particlelike and holelike com-
ponents of the wave function ui and v j as

∑
j

[ti j + (Ui − μ)δi j]u j + �ivi = Eui,

−
∑

j

[t∗
i j + (Ui − μ)δi j]v j + �∗

i ui = Evi, (2)

where μ is the chemical potential, and the site-dependent gap
function (order parameter) �i and Hartree-Fock potential Ui

obey the self-consistency equations

�i = g〈ĉi↑ĉi↓〉, Ui = − g

2

∑
σ

niσ , Ne =
∑

iσ

niσ , (3)

where niσ = 〈ĉ†
iσ ĉiσ 〉 with 〈· · · 〉 denoting statistical averaging.

These equations are solved together with the Ampère-
Maxwell equation for the magnetic field, transformed into the
Biot-Savart equation

Aind =
∫

V

j(r′, A0, Aind)dV ′

|r − r′| . (4)

Here, the total vector potential is represented as A = A0 +
Aind, where ∇ × A0 = B0 is a uniform externally applied
field and Aind is generated by the emerging superconducting
current. The latter explicitly depends on the vector potential
through the Peierls factors in the hopping integrals. Solving
the BdG equations self-consistently with respect to the gap,
the Hartree-Fock potential, and the magnetic field is rather
nontrivial because of the convergence problems. To obtain the
solution we employ the recently developed algorithm [41],
which involves two consistency circles and an explicit solu-
tion of the Biot-Savart equation.

The solution is obtained for a three-dimensional (3D) sam-
ple, which is N × N along the x and y axes and is infinite along
the z axis. All lengths in the problem are expressed in units of
the lattice constant a, while the energy unit of the problem is
t . The magnetic field has only a z component B = (0, 0, B),
so that the model is essentially 2D. Notice that the integral in
the Eq. (4) is still 3D.

In the calculations, the size of the sample is chosen as
N = 31, which is much larger than the characteristic lengths
of the superconducting state. Hopping elements ti j are zero
outside the sample, which can be taken into account by using
the boundary conditions u = 0, v = 0 for the sites next to the
sample. We assume the average filling of n = 0.25 electrons
per 2D unit cell, whereas 1D density nz along the z axis
is absorbed in constants of the BdG and Ampère-Maxwell
equations.

III. RESULTS

We present the calculations for the mixed state with two,
three, and four vortices. This is sufficient to demonstrate the
appearance of the IT regime and investigate the essential char-
acteristics of its IMS, in particular, the many-body aspect of
the vortex interactions. At the same time, the calculations in
this case can be done for the small system size of N = 31
taking a reasonably short time.

Results of the calculations are illustrated in Fig. 1, which
plots the spatial distribution of the magnetic field for the
mixed states with two, three, and four vortices, obtained for
selected values of the coupling constant in the interval 2.0 <

g < 3.6. The figure demonstrates an evolution of the mixed
superconducting state between type-II and type-I regimes.
The left panels, obtained at g = 3.6, show well-separated sin-
gle quantum Abrikosov vortices, typical for type II. Notice
that vortices are repelled from the boundaries, which keep
them from moving away. The boundary effects make two
vortices in Fig. 1(a) align along a square diagonal. Three vor-
tices in Fig. 1(b) form an equidistant triangle, which denotes
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FIG. 1. Spatial profile of the magnetic field inside the sample calculated for configurations with (a) two, (b) three, and (c) four vortices for
various values of the superconducting coupling constant g. The value of the external magnetic field is H = n�0/S, where S = N × N is the
sample area, �0 is the flux quantum, and (a) n = 2, (b) n = 3, (c) n = 4.

a standard Abrikosov lattice. Four vortices in Fig. 1(c) are
arranged in a square, following the sample geometry.

When g decreases, vortices move closer one to another.
This indicates that their interaction potential becomes non-
monotonic with the minimum defining the distance between
the vortices. This distance is reduced with decreasing g, until
vortices merge into a large multiquantum vortex, as shown in
the right panels of Fig. 1. This merging is the reason for the
formation of lamellas in the intermediate state of a type-I su-
perconductor (when keeping the total magnetic flux constant).
The crossover regime, demonstrated in the figure, is essen-
tially the IT regime with the IMS. It is important to note that
the obtained vortex configurations are very similar to those
calculated previously within the perturbation theory [28].

Comparing results for different numbers of vortices in
Fig. 1 reveals another feature specific to the IT regime and
found previously within the perturbative results [31,32]: an
important role of the many-vortex interactions. This follows
from the fact that the intervortex distance evolution qualita-
tively depends on the number of vortices. If the interaction
between vortices were a sum of pairwise contributions, the
distance between neighboring vortices would not depend on
the number of vortices in the cluster so that the latter would
preserve its shape with decreasing g. However, Fig. 1 demon-
strates that the intervortex distance is smaller in vortex pairs
than in larger clusters, and the shape of the clusters depends
on both the value of g and on the number of vortices in the
cluster.

A remarkable example of the difference between the two-
and many-vortex interactions can be found in Fig. 1 for g =
2.4. Here, the two-vortex cluster merges into a single two-
quantum vortex, indicating that the two-vortex interaction is
fully attractive. In contrast, three- and four-vortex clusters do
not collapse, meaning that the three- and four-vortex interac-
tions are still repulsive at small separations between vortices.
This fact was earlier noted for clusters of few vortices within
the perturbation theory [32].

The role of the many-vortex interactions is also manifested
in that vortices tend to align themselves in bound pairs inside
large vortex clusters. In particular, this is seen for both three-
and four-vortex clusters in Fig. 1. This tendency is quantified
in Fig. 2, which plots the maximal rmax and minimal rmin

distances between vortices in the three-vortex cluster versus
g. Here, the position of any vortex is obtained as the corre-
sponding point of the vanishing gap function.

At g � 3, rmax = rmin, which corresponds to the formation
of an equidistant triangle [cf. Fig. 1(b) for g = 3.6 and 3.2].
However, when g decreases, rmin �= rmax, and the equidistant
triangle shape breaks down. Two vortices in the cluster form
a closely bound pair whereas the third one is located far
from this pair. This asymmetry is another indication that the
interaction between three vortices differs from that in the pair.

An increased role of the many-vortex interaction in the IT
regime can be explained by estimating the energy of the vortex
cluster, which is the sum of the contributions of the magnetic
field EB and the condensate E�. The latter is found as the
energy loss due to the absence of the condensate in vortex
cores. For a single vortex the latter is estimated as proportional

FIG. 2. Minimal rmin and maximal rmax distances between vor-
tices in the three-vortex cluster as a function of g.
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to the vortex core area E� ∝ S1. When the cores overlap, the
energy is defined by the total area,

∑
i

Si −
∑
i< j

Si ∩ S j +
∑

i< j<k

Si ∩ S j ∩ Sk − · · · . (5)

The first contribution to this sum gives the energy of separated
vortices, the second term is the pairwise interaction due to pair
overlaps of vortices, the third one is the three-body interaction
due to the triple overlaps, etc. Contributions in Eq. (5) have
alternating signs. The sign of the pair overlapping is negative,
yielding the attractive potential. In contrast, the contribution
of the triple overlapping has a positive sign which means
an additional repulsive contribution when three vortices are
close. This explains why the three-vortex cluster does not
collapse even if the pairwise vortex-vortex interaction is fully
attractive.

It is important that in the IT regime, where λ � ξ , the
multiple overlapping of vortex cores is significant, and the
many-vortex component of the vortex interactions is consid-
erable. In contrast, in type-II superconductors, where λ � ξ ,
the interaction is mostly defined by the field contribution. The
field created by several vortices is additive, B = ∑

i Bi, and
the energy of the magnetic field EB ∝ ∑

i j BiB j . It contains
interactions for all vortex pairs but does not have three-vortex
contributions.

We have seen that when the coupling parameter g varies
from 3.6 down to 2, the system evolves along the crossover
from type II to type I, passing through the IT superconduc-
tivity regime with the IMS formations. Earlier experimental
investigations [6–12] (see also Ref. [27]) attributed the IT
domain at T = 0 to the particular range of the GL parameter
0.6 � κGL � 1.2. It is then instructive to establish a con-
nection between parameters of our microscopic model and
κGL, to see if the IT interval observed in the microscopic
calculations corresponds to the IT interval investigated in
earlier works.

Although the GL parameter does not enter the microscopic
model and thus cannot be controlled directly, one can estimate
its value by calculating the zero-temperature superconducting
coherence length ξ (0) and the magnetic penetration depth
λ(0). Notice that the ratio λ(0)/ξ (0) does not give the exact
value of κGL. The latter is defined by the ratio of the GL coher-
ence length and the London penetration depth, and therefore
should be obtained from the limit λ(T → Tc)/ξ (T → Tc).
Nevertheless, as λ(T ) and ξ (T ) are roughly proportional to
(1 − T/Tc)1/2 [27], one can expect a reasonably good estimate
for κGL extracted from the calculations at T = 0.

The values of the ξ (0) and λ(0) are extracted from the so-
lution of the microscopic equations for a single vortex shown
in Fig. 3, where one sees a spatial profile (radial dependence)
of the gap function �(r) and the magnetic field B(r) for the
vortex cross section. The characteristic lengths are extracted
by fitting these dependencies with exponentially decaying
functions.

Obtained ξ (0) and λ(0) are shown in Fig. 4(a) as functions
of the coupling constant g. ξ (0) is a decreasing func-
tion, which is expected, given the standard BCS estimate
ξ (0) ∝ �−1 and the fact that the gap increases with the cou-

FIG. 3. Radial dependence of the order parameter (red points)
and magnetic field (blue points) across a single vortex solution.
Connecting dashed lines are drawn as a guide to the eye.

pling. λ(0) is also a decreasing function, however, it saturates
at large values of g.

The ratio κ (0) = λ(0)/ξ (0) increases with the coupling,
passing through the interval of κ (0) ∼ 1 when g ∼ 2.5 [see
Fig. 4(b)]. This indeed corresponds to the interval when
one finds the IT regime with the IMS (see Fig. 1). The
insets with the field density plots in Fig. 4(b) give the
three-vortex configurations corresponding to the selected
values of κ (0). The calculations reveal that the IT interval
is 0.9 � κ (0) � 2. Notice that in order to compare it with
the usual definition of the GL parameter κGL, one needs to

FIG. 4. (a) Condensate coherence length ξ (0) (red) and magnetic
penetration length λ(0) (blue) are shown as a function of g. (b) The
parameter κ (0) = ξ (0)/λ(0) as a function of g is shown together with
the corresponding field distributions from Fig. 1. Dashed lines in both
panels are shown as a guide to the eye.
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scale it as κ̃ (0) = κ (0)/
√

2, so that the scaled IT interval
is 0.6 � κ̃ (0) � 1.4. It is very close to the experimentally
reported IT interval at zero temperature [10,27].

IV. CONCLUSIONS

This work presents a microscopic analysis of the IMS
in IT superconductors. This analysis is achieved by tracing
the evolution of two-, three-, and four-vortex configurations
through the entire IT domain by numerically solving the BdG
equations for the lattice Hubbard model with an on-site attrac-
tion. The solution employs a recently developed approach that
is fully self-consistent regarding both the superconducting gap
and magnetic field [41]. Notably, this approach does not rely
on any prior knowledge of the IMS configuration, which can
be arbitrarily complex.

The calculations reveal key features of the IMS
configurations at T = 0, including the formation of vortex
clusters and the many-vortex nature of interactions between
vortices. Despite the simplicity of the model, the obtained
interval of the IT domain aligns quantitatively remarkably
well with existing experimental observations. Moreover, the
results confirm earlier findings of the perturbative analysis
[27,28,31] for temperatures close to Tc, thus highlighting
the universal character of IT superconductivity physics
mentioned in Ref. [28]. The microscopic analysis presented

here thus serves as an important milestone in understanding
the general phenomenon of IT superconductivity.

Finally, this work is restricted to the mean-field theory
analysis and does not take into account fluctuations [43,44]
which might be of relevance, especially in the IT regime close
to the degeneracy. However, the fact that our results nicely
fit experimental data in the entire temperature range (when
combining with the perturbation expansion of the mean-field
theory), leads to the conclusion that the fluctuations do not
play a significant role.
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