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We consider nonreciprocal supercurrent effects in Josephson junctions based on multiband superconductors
with a pairing structure that can break time-reversal symmetry. We demonstrate that a nonreciprocal supercurrent
can be generally achieved by the cooperation of interband superconducting phase mismatch and interband
scattering as well as by multiband phase frustration. The effect of interband impurity scattering indicates that the
amplitude and sign of the nonreciprocal supercurrent are sensitive to the interband phase relation. For the case of
a three-band superconductor, due to phase frustration, we show that the profile of the supercurrent rectification is
marked by a hexagonal pattern of nodal lines with vanishing amplitude. Remarkably, around the nodal lines,
the supercurrent rectification amplitude exhibits threefold structures with an alternating sign. We show that
the hexagonal pattern and the threefold structure in the interband phase space turn out to be dependent on the
tunneling amplitude of each band. These findings provide hallmarks of the supercurrent rectification which can
be potentially employed to unveil the occurrence of spin-singlet multiband superconductivity with time-reversal
symmetry breaking.
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I. INTRODUCTION

Nonreciprocal effects in superconductors are generally
based on phenomena where the amplitude of the supercur-
rent depends on the direction of its flow. The rectification
of the supercurrent is then a direct result of the nonrecip-
rocal superconducting transport. Recently, a large body of
works has been devoted to the achievement of supercurrent
rectification [1–8] both motivated by fundamental questions
on the underlying generating mechanisms as well as on the
technological challenges regarding the development of dissi-
pationless electronics and quantum circuits [9]. Nonreciprocal
supercurrent phenomena, apart from conventional super-
conductors, indeed, have been successfully demonstrated
in several materials including noncentrosymmetric super-
conductors [1,10–12], two-dimensional electron gases and
polar semiconductors [13], patterned superconductors [14],
superconductor-magnet hybrids [4,15], Josephson junctions
with magnetic atoms [16] and quantum dots [17], twisted
graphene systems [18], and high Tc superconductors [7,8].

Several mechanisms, either intrinsic or extrinsic in na-
ture, have been proposed to devise a supercurrent diode
with control of the rectification in sign and amplitude. In
this context it is generally accepted that breaking of time-
reversal and inversion symmetries is a key requirement for
achieving a nonreciprocal supercurrent. For instance, Cooper-
pair momenta [18–20] or helical phases [21–27], as well
as screening currents [28,29], and supercurrents related to
self-induced field [30,31] have been considered as physical
scenarios and mechanisms to get nonreciprocal supercurrent

effects. The breaking of time-reversal symmetry is mostly
achieved through external magnetic fields. Vortices are also
expected to yield supercurrent diode effects and their role
has been investigated for a variety of physical configura-
tions [13,31–40]. Proposals of magnetic field-free supercon-
ducting diodes have been using magnetic materials in suitably
designed heterostructures [4,15]. Instead, back-action super-
current mechanisms and electrical gating [41,42] can result
in superconducting rectification effects without the use of
external magnetic fields or magnetic materials.

In this context, the exploitation of an unconventional su-
perconducting state with intrinsic time-reversal symmetry
breaking represents a potential path to get supercurrent rec-
tification. This is indeed an open problem which has not been
fully explored yet. The role of symmetry broken phases in
the normal state and the occurrence of time-reversal broken
superconducting phases have been addressed only for two-
dimensional materials demonstrating that indeed they can lead
to a distinct type of supercurrent rectification without the need
of external magnetic fields [43].

Several superconducting materials exhibit signatures of
spontaneous time-reversal symmetry breaking (TRSB) below
the transition temperature [44–46]. In this type of supercon-
ductors the occurrence of internal magnetic fields is either
due to the magnetic moment of the Cooper pairs, as in
nonunitary spin-triplet pairing, or by the multicomponent
nature of the superconducting condensate in multiband su-
perconductors. For the latter, it is the complex superposition
of distinct order parameters that leads to a breaking of the
time-reversal symmetry. In this context, it is known that
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disorder can facilitate the formation of time-reversal symme-
try broken phases both in multiband superconductors [47–51].
In particular, for spin-singlet multiband superconductors a
distinct role is played by the so-called π pairing, i.e., the
antiphase relation between the order parameters in different
bands or, equivalently, the sign reversal of the Josephson
coupling between Cooper pairs in different bands. Apart from
the connection with the time-reversal symmetry breaking, the
intertwinning of π pairing and multiband electronic structure
often marks the occurrence of unconventional superconduct-
ing phases, e.g., in iron-based [52,53] and oxide interface
superconductors [54,55], electrically or orbitally driven su-
perconductivity [56–60], and multiband noncentrosymmetric
superconductors [54,61–63]. Understanding the mechanisms
for time-reversal symmetry broken multiband phases as well
as identifying specific detection schemes for accessing the
complexity of multiband superconductors are key challenges
not yet fully settled.

In this paper, we consider multiband superconductors
that can break the time-reversal symmetry due to nontriv-
ial interband phase relation and we study the character of
nonreciprocal supercurrent effects. We demonstrate that non-
reciprocal supercurrent in Josephson junctions with multiband
superconductors can be generally achieved by exploiting
the combination of the interband superconducting phase
mismatch and the strength of the interband scattering. In par-
ticular, we find that the effect of interband impurity scattering
can help to distinguish among a dominant 0 or π pairing in the
superconductor. We show that distinct variations in the ampli-
tude and sign of the rectification amplitude can be observed as
a function of the interband impurity scattering strength. In the
case of three-band superconductors there is a phase frustration
in the complex superposition of the order parameters that
results in the formation of nodal lines or large regions in the
parameter space with vanishing rectification amplitude. The
nodal patterns are marked by multifold structures with sign
changes of the rectification amplitude. The location and shape
of these structures depend on the tunneling amplitudes.

The paper is organized as follows. In Sec. II we present
supercurrent nonreciprocal effects in a Josephson junction
combining single- and two-band superconductors with time-
reversal symmetry breaking pairing by focusing on the role
of interband impurity scattering. Section III is devoted to a
multiband phase frustrated configuration. There, we present
the study of a Josephson junction hosting a three-band
superconductor interfaced with a convectional single-band su-
perconductor. The conclusions are given in Sec. IV.

II. JOSEPHSON CURRENT BETWEEN A SINGLE-BAND
AND A TWO-BAND SUPERCONDUCTOR

In this section, we demonstrate how the interplay of in-
terband impurity scattering and nontrivial interband phase
can yield supercurrent nonreciprocal effects. This is done by
considering a Josephson junction composed of a conventional
single-band superconductor interfaced to an unconventional
superconductor with two bands whereas the time-reversal
symmetry breaking arises from the nontrivial interband super-
conducting phase relation.

Let us start with the description of the unconventional two-
band superconductor in the presence of impurity scattering
and zero magnetic field. In the dirty limit the Eilenberger for-
malism for a two-band superconductor, as for the conventional
single-band s-wave counterpart, can be reduced to the Usadel
equations for quasiclassical Green’s functions decomposed in
spherical harmonics [64]:

ω fi−Di(gi∇2 fi− fi∇2gi ) = �igi + �i j (gi f j − gi f j ), (1)

where fi = fi(r, ω), gi = gi(r, ω) are the r coordinate-
dependent anomalous and normal quasiclassical Green’s
functions connected by the standard normalization condition
gi

2 + | fi|2 = 1, {i, j} = 1, 2. The remaining notations are as
follows: ω ≡ ωn = (2n + 1)πT is the Matsubara frequency,
Di are the intraband diffusion coefficients caused by the
intraband elastic scattering, �i represent complex order pa-
rameters in a two-band superconductor. Finally, �i j denote the
interband scattering coefficients, which are absent in the case
of a clean multiband superconductor. When �i j = 0, Eq. (1)
can be decoupled and the Green’s functions of different bands
are related only through the interband interaction in the self-
consistency equations for the order parameters.

To determine the supercurrent, Eq. (1) must be evaluated
together with the expression for the current density

j(r) = −eπ iT
∑

i

∑
ω

NiDi( f ∗
i ∇ fi − fi∇ f ∗

i ), (2)

where Ni corresponds to the partial contribution of each band
to the density of states at the Fermi level.

A. The model and main equations

Now, we proceed with the study of the properties of the
Josephson junction between the standard single-band super-
conductor (left lead) and the unconventional multiband one
with the TRSB state (right lead). The Josephson junction is
studied as a weak link connecting two superconducting leads
in the form of a thin short filament of length L, which in
turn is an extension of the multiband superconductor. Based
on the condition that the length L � min ξi(T ) being the
temperature-dependent coherence lengths one can consider
Josephson junction as a quasi-one-dimensional system and
neglect all terms in Eq. (1) except the gradient one [65]

gi
d2

dx2
fi − fi

d2

dx2
gi = 0. (3)

Equation (3) can be solved using the parametrized func-
tions �i which are connected with the Green’s functions fi

and gi by the following expressions (see, e.g., Ref. [66]):

gi = ω√
ω2 + �i�

∗
i

, fi = �i√
ω2 + �i�

∗
i

, �i = ω fi

gi
.

(4)
With this parametrization the normalization conditions for
the Green functions are fulfilled automatically. We notice
that in the single-band superconducting lead of the Joseph-
son junction at x = −L/2 the function �0 = �0. Here and
hereafter the zero subscript is attributed to the parameters
of the left side of the Josephson junction. Furthermore,
we suppose that the critical temperature T (s)

c of the bulk
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conventional single-band superconducting bank of the Joseph-
son junction is at least not less than that of the bulk
multiband superconductor T (m)

c , i.e., it will be assumed that
the T (s)

c � T (m)
c , where the upper indices s and m emphasize

the belonging to a conventional single-band and an un-
conventional TRSB multi-band superconductor, respectively
[67]. Although this condition imposes considerable restric-
tions on the list of superconducting materials that can be
used to implement this type of diode, nevertheless, the most
suitable and promising compound for the role of a multi-
component (effective two-band) superconductor with broken
time-reversal symmetry can be BaxK1−xFe2As2. As exper-
iments have shown [68], at the doping level x ≈ 0.73 a
state with broken time-reversal symmetry emerges in this
superconductor, with the critical temperature T (m)

c ≈ 10 K. In
view of this, s-wave single-band counterpart of the Josephson
junction can be niobium nitride NbN with T (s)

c ≈ 16 K or
some compounds from superconducting A15 family (as V3Si
with T (s)

c ≈ 16 K) or even clean two-band superconducting
magnesium diboride MgB2 with T (s)

c ≈ 39 K, in which both
components of the order parameter have an isotropic s-wave
structure without the presence of the TRSB state. In any case,
it is important to note that the Josephson junction must remain
always superconducting, i.e., none of the ingredients of the
diode enter the normal state at the given temperature chosen
for the calculations.

The Josephson phase ϕ, which we define as the difference
between the phases of the order parameter �0 of the single-
band superconductor (left lead) and the order parameter �1

of the multiband superconductor (right lead), determines the
boundary condition

�0(−L/2) = |�0| exp(−iϕ/2). (5)

Now let us determine the boundary conditions for the
Green’s functions in Eq. (3) for the two-band superconducting
bank (at x = L/2). They can be found in the homogeneous
expressions of Eqs. (1) where the gradient terms are now
being ignored. In general case, there is no analytical solution
for �i j �= 0. However, close to T (m)

c an amenable conjecture
for the Green’s functions can be found by the method of
successive approximations over the moduli of the order pa-
rameters �i, which yields [47]

f (0)
1 (L/2) = (ω + �21)�1 + �12�2

ω(ω + �12 + �21)
,

f (0)
2 (L/2) = (ω + �12)�2 + �21�1

ω(ω + �12 + �21)
, (6)

and

f (1)
1 (L/2) = �12(ω + �21)(�1 − �2)

∣∣ f (0)
2

∣∣2 − [((ω + �21)2 + �12(ω + 2�21))�1 + �12(ω + �12)�2]
∣∣ f (0)

1

∣∣2

ω(ω + �12 + �21)
,

f (1)
2 (L/2) = �21(ω + �12)(�2 − �1)

∣∣ f (0)
1

∣∣2 − [((ω + �12)2 + �21(ω + 2�12))�2 + �21(ω + �21)�1]
∣∣ f (0)

2

∣∣2

ω(ω + �12 + �21)
. (7)

In Eqs. (6) and (7) the values of the order parameters on the
right side of the junction are

�1(L/2) = |�1| exp(iϕ/2) (8)

and
�2(L/2) = |�2| exp(iϕ/2 + iφ). (9)

Here φ is the intrinsic difference between the phases of the
order parameters of the two-band superconductor that can
attain nonzero values due to the presence of the interband
scattering (�i j �= 0) solely [47,48,69,70]. In the absence of the
latter, the values of φ can be equal to 0 or π depending on the
attractive or repulsive nature of the interband interaction and
corresponds to s++ or s± pairing symmetry, respectively. Oth-
erwise, for φ different from 0 or π , a two-band superconductor
is characterized by a complex superposition of the two order
parameters that thus breaks the time-reversal symmetry.

We notice that the solutions for the anomalous Green’s
functions cannot be used for the entire temperature range
of superconducting state since the applicability of Eqs. (6)
and (7) is restricted by the region where both |�i| are small,
i.e., nearby the critical temperature T (m)

c . In turn, the latter
depends not only on the intraband and interband interactions
but also on the interband scattering rate � = �12 = �21 (with
the additional assumption of the equal density of states at the
Fermi level for each of the bands N1 = N2), which lowers

the value of T (m)
c as compared to the critical temperature

T (m)
c0 of a clean two-band superconductor when � = 0 [47,64].

Correspondingly, our study of the current-phase relations will
be performed for temperatures close enough to the T (m)

c of the
dirty two-band superconductor (see Appendix B and Fig. 6
therein).

B. Current-phase relations and the diode effect

Equations (3) with boundary conditions (6) and (7) admit
an analytical solution. Substituting the solutions of Eqs. (3)
to (2) for the current density we derive the explicit expression
for the Josephson current flowing between the single-band
and the dirty two-band superconductor (see details of the
derivation in Appendix A):

I (ϕ) = πT

e

∑
i

1

RNi

∑
ω

Ci√
1 − κ2

i + C2
i

×

⎡
⎢⎣arctan

⎛
⎜⎝ωκiCi + �−

i

(
κ2 − 1

)
ω

√
κ2

i − C2
i − 1

⎞
⎟⎠

− arctan

⎛
⎜⎝ωκiCi + �−

0

(
κ2 − 1

)
ω

√
κ2

i − C2
i − 1

⎞
⎟⎠

⎤
⎥⎦. (10)
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FIG. 1. Current-phase relation for the Josephson junction be-
tween a single-band and an s++ two-band superconductor with
(a) � = 0 and φ = 0 and an s± + is++ two-band superconductor with
representative values of the interband scattering � ≈ 0.062T (m)

c0 , and
the interband phase difference φ ≈ 3

25 π (b). We employ representa-
tive values of the order parameters in the two-band superconductors:
|�1| = 2|�0|, |�2| = 3|�0| at T = 0.7 T (m)

c0 . The amplitude of the
supercurrent I is taken in units of π |�0 |

eRN1
.

Here the Josephson phase difference ϕ enters implicitly via
the functions

κi = �+
0 − �+

i

�−
0 − �−

i

, (11)

Ci = �−
0 �+

i − �+
0 �−

i

ω(�−
0 − �−

i )
, (12)

where

�±
0 = 1

2 (�0 ± �∗
0 ), �±

i = 1
2 (�i ± �∗

i ), (13)

and RNi are partial contributions to the junction’s resistance
(also referred as Sharvin resistance for the case of point con-
tacts [71]). In the following, we assume RN1 = RN2 = RN3.

For the case of Josephson junction between two differ-
ent s-wave single-band superconductors, Eq. (10) yields the
current-phase relation already obtained in Ref. [72]. Another
important remark is that the derivation of Eq. (10) was done
in the single-channel limit for a disordered regime of diffusive
type for the Josephson junction.

Using Eq. (10) one can plot the current-phase relation I (ϕ)
of the Josephson junction between a single-band supercon-
ductor and a two-band superconductor with the s++ [Fig. 1(a)]
and the chiral order-parameter pairing, i.e., s+− + is++ [see
Fig. 1(b)]. For the sake of clarity, in these figures we introduce
the notation of the critical current I+

c (filled red dot) for the
maximum forward supercurrent and I−

c (filled blue dot) for
the maximum negative amplitude of the supercurrent.

As one can see from Fig. 1(a) in the case of s++ pairing
symmetry, when φ = 0 and � = 0, the current-phase rela-
tion is symmetric and the supercurrent exhibits a reciprocal
behavior [73,74]. As expected, this behavior is qualitatively
consistent with that one of the Josephson junction between
two different single-band s-wave superconductors separated
by a very thin normal layer [72] or to the that of standard
Josephson junction with constriction (S-c-S type) [65,75]. For
this pairing state the forward (I+

c ) and backward (I−
c ) critical

currents of the junction are identical, i.e., I+
c = I−

c .
The current-phase relation is substantially different when

considering the effect of interband scattering assuming a
complex superposition of 0 and π pairing order parameters

(i.e., s± + is++). First of all, as one can see from Fig. 1(b)
that the current-phase relation I (ϕ) becomes nonsinusoidal,
in contrast to the similar pattern in Fig. 1(a). Moreover, it
has the asymmetry of the so-called ϕ0 Josephson junction,
i.e., at ϕ = 0 the supercurrent amplitude is not zero [76,77].
Another remarkable feature of this current-phase relation is
that for specific values of � and the intrinsic phase difference
φ, the critical currents I+

c and I−
c of the Josephson junction

can be substantially different in amplitude, with I+
c which can

be even become identically zero.
Such an unusual asymmetric pattern of the current-phase

relation in Josephson junction hosting a single-band and
a two-band superconductor opens the path for achieving
nonreciprocal supercurrent effects guided by multiband time-
reversal symmetry broken phases. The corresponding diode
rectification amplitude η can be determined by evaluating
the difference among the maximal amplitudes of the critical
currents for forward (I+

c ) and backward (I−
c ) flow directions:

η = I+
c − |I−

c |
I+
c + |I−

c | . (14)

We start by observing that the rectification amplitude for
the current-phase relation as shown in Fig. 1(a) is η = 0 (I+

c =
|I−

c |) while that one corresponding to Fig. 1(b) can reach
the value η ≈ −0.3. One can then track the evolution of the
current-phase relation and within the non-self-consistent ap-
proach extract the corresponding rectification amplitudes for
any value of the interband phase difference φ and interband
scattering rate �. The outcome of this analysis is reported in
Fig. 2. We find that the rectification amplitude has a distinct
dependence on the interband scattering rate when comparing
the pairing configuration at φ < π/4 with that close to φ ∼ π .
Indeed, in the former region, close to 0-interband pairing
coupling, the rectification amplitude of the supercurrent is
negligible below a critical threshold for the interband scatter-
ing rate �. Then, the increase of � leads to a growth of the
rectification amplitude and a subsequent sign reversal with
equally sized rectification states. To additionally emphasize
these statements, we make cross sections of the phase diagram
in Fig. 2(a) for some fixed values of �. The results of these
cross sections in the form of η(φ) dependencies are presented
in Fig. 2(b).

By inspection of the current-phase relation across the tran-
sition, one can grasp the origin of the achieved rectification.
This is due to the occurrence of a 0-to-π Josephson phase
transition that is marked by a sign change of the odd-parity
first-harmonic component. It is known that, in general, the
supercurrent rectification value is sizable when the first and
second harmonics are comparable in amplitude [78]. For this
reason, since the second-harmonic component is typically
smaller than the first harmonic when approaching the 0-to-π
phase transition we have that the first and second harmonics
get similar amplitude.

It is worth noting that for two-band superconductors with
s++- (φ = 0 or equivalently φ = 2π ) or s±-wave (φ = π )
symmetry of the order parameter the diode effect does not
occur even in the presence of impurities.

We point out that, in principle, for the constructed phase di-
agram of the superconducting diode rectification amplitude, of
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(a)

(b)

FIG. 2. (a) Contour map of the supercurrent rectification ampli-
tude η for the Josephson junction as a function of the phase difference
φ and the interband scattering rate �/T (m)

c0 assuming a two-band
superconductor with |�1| = 2|�0|, |�2| = 3|�0| at T = 0.7T (m)

c0 .
η is determined by evaluating the difference among the maximal
amplitude of the critical currents for forward (I+

c ) and backward
(I−

c ) flow directions as in Eq. 14. (b) Cross sections of the color
map shown in (a) as a function of rectification amplitude η versus
the phase difference φ for different values of the � = 0.02T (m)

c0 (blue
line), � = 0.0617T (m)

c0 (green line), and � = 0.08T (m)
c0 (red line).

course, only the states with a phase difference φ different from
zero in a two-band superconductor can be realized only when
� �= 0. Therefore, the lower parts of the diagram adjacent to
the φ axis are limiting cases that cannot be physically achieved
when � is vanishing. To underline this feature, we intention-
ally depict the lower part in Fig. 2(a) as a white area. However,
as can be seen in Fig. 2, the highest rectification amplitude η is
attained away from the above-mentioned region of the phase
diagram. Moreover, there can be other mechanisms to get a
nontrivial phase difference φ due to intraband and interband
interaction [see, for instance, Eq. (7) in Ref. [47] or Eq. (9) in
Ref. [70]]. A detailed justification of our non-self-consistent
approach for the calculation of η is presented in Appendix B,
where we also provide the schematic and the comparative
treatment with the fully self-consistent analysis.

III. JOSEPHSON CURRENT BETWEEN A SINGLE-BAND
AND A THREE-BAND SUPERCONDUCTOR

The replacement of the two-band superconductor by
a three-band counterpart in the Josephson junction leads
to additional phase interference effects and, as a conse-
quence, yields a different structure in the current-phase
relation [74,79–82] as well as frustration effects in the dynam-
ics [83]. Since the Josephson current is now determined by
three partial contributions instead of two, for convenience and
clarity, we exclude the effect of interband scattering and set

FIG. 3. Current-phase relations for the Josephson junction be-
tween single- and three-band superconductor with φ = θ = 0 (a) and
φ ≈ 1.22, θ ≈ 1.33 (in radians) (b) for |�1| = |�2| = |�3| = |�0|
at T = 0. Current is measured in units of π |�0 |

eRN1
.

�i j = 0, i.e., we consider a dirty three-band superconductor
with a strong enough dominant intraband scattering as com-
pared to its interband counterparts.

Equation (10) remains applicable for the given Josephson
system with the only correction now for the contribution to the
current from the third band of the three-band superconductor.
Based on the assumption �i j = 0 one can find an exact ex-
pression for the boundary conditions without the necessity of
solving Eqs. (1) by the method of successive approximations
like in a two-band case. Here, boundary conditions acquire the
form

�0(−L/2) = |�0| exp (−iϕ/2) (15)

for the left lead (single-band superconductor) and

�1(L/2) = |�1| exp (iϕ/2),

�2(L/2) = |�2| exp (iϕ/2 + iφ),

�3(L/2) = |�3| exp (iϕ/2 + iθ ) (16)

for the right bank (three-band superconductor). The intrinsic
phase differences φ and θ correspond to the pairs of order
parameters �1,�2 and �1,�3 of a bulk three-band super-
conductor [84].

To avoid cumbersome expressions we further assume the
coincidence of the order-parameter amplitude in supercon-
ducting leads: |�0| = |�1| = |�2| = |�3|. Moreover, bearing
in mind that in the case under consideration we deal with
the exact solutions of Eqs. (1) for Green’s functions, we can
treat the case at zero temperature by summing over Matsubara
frequencies in Eq. (10). The resulting Josephson current is
given by the following expression:

I (ϕ) = π |�0|
eRN1

cos
ϕ

2
Artanh

[
sin

ϕ

2

]
,

+ π |�0|
eRN2

cos
(ϕ

2
+ φ

)
Artanh

[
sin

(ϕ

2
+ φ

)]
,

+ π |�0|
eRN3

cos
(ϕ

2
+ θ

)
Artanh

[
sin

(ϕ

2
+ θ

)]
. (17)

Equation (17) can be regarded as a generalization of the clas-
sical formula, derived by Kulik and Omelyanchouk for the
S-c-S contact at T = 0 [65,75], for the case of the Josephson
junction between the conventional s-wave and three-band su-
perconductor. As expected [Fig. 3(a)] at φ = 0 and θ = 0 and
the critical currents turn out to be reciprocal: I+

c = |I−
c |.
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FIG. 4. Diode rectification amplitude of the Josephson junction
between a single-band and a three-band superconductor as a function
of phases differences in a three-band superconductor for (a) RN1 =
RN2 = RN3, (b) RN1/RN2 = 1, RN1/RN3 = 2, and (c) RN1/RN2 = 2,
RN1/RN3 = 3 at zero temperature.

Instead, for the three-band superconductor with a time-
reversal broken order parameter (when φ and θ are different
from zero and/or π ), the current-phase relation exhibits a
complex nonsinusoidal pattern [Fig. 3(b)]. Indeed, one can ob-
serve that for certain values of the intrinsic phase differences
{φ, θ} a strong asymmetry of critical currents is achieved
[Fig. 3(b)]. There, the profile of the current-phase relation
presented in Fig. 3(b) can provide a sizable rectification value
η ≈ 0.25.

The overall rectification amplitude of the Josephson junc-
tion with three-band superconducting lead is reported in Fig. 4
for different cases of band-dependent tunneling amplitude
by scanning the whole space of interband phase relation.
In Fig. 4(a) the symmetric case with all the bands having
the same resistance is shown. The profile of the rectification
can be understood by inspection of the harmonic content of
the current-phase relation in Eq. (17). Indeed, at φ = π/3
and θ = π/6 + (2n + 1)π

2 (for n = 1, 2, . . . ) all the even
harmonic components are vanishing. Hence, the rectifica-
tion amplitude is zero because the current-phase relation has

FIG. 5. Diode rectification amplitude of the Josephson junction
between a single-band and a three-band superconductor as a function
of phase difference φ in a three-band superconductor with the fixed
value of the phase difference θ = π/3 for RN1 = RN2 = RN3 (blue
line), RN1/RN2 = 1, RN1/RN3 = 2 (green line), and RN1/RN2 = 2,
RN1/RN3 = 3 (red line) at zero temperature.

a fixed parity. Since the parity of the current-phase rela-
tion cannot be fixed in isolated points of the phase space
there must be nodal lines. Indeed, along the lines defined
by the relation θ = (2n + 1)π/2 + φ, θ = (2n + 1)π/2 + φ,
θ = nπ − φ, the even harmonics of the second and third terms
of Eq. (17) cancel out. This implies that the rectification
amplitude has to vanish. Since the rectification amplitude can
be maximized when the first- and the second-harmonics com-
ponents have comparable amplitude we expect that moving
away from the nodal lines there will be regions where the
rectification increases. This is indeed a feature of the pattern
of the rectification amplitude [Fig. 4(a)] with phase space
domains of sizable rectification strength developing around
the nodal lines. A modification of the tunneling amplitude RN

alters the balance between the terms which are dependent on
θ and φ leading to a variation of the nodal lines [Fig. 4(a)]
and of the rectification pattern around them. To make the
behavior of the nodal lines clearer, we take cross sections of
the phase diagrams in Fig. 4 for a given value of the phase
difference θ . For this purpose, we fix θ = π/3 so that in the
case of equal partial contributions to the Josephson-junction
resistance, the cross section passes through the intersection
points of the nodal lines. Figure 5 shows the evolution of
the dependence of the rectification amplitude η as a function
of phase difference φ at θ = π/3 for the same resistance
contributions as in Figs. 4(a)–4(c).

Finally, we point out that for the diagram in Fig. 4, the
states close to θ = 0 and φ = 0 lines do not fulfill the stability
conditions and are metastable configurations [84]. The same
arguments apply for the states {φ=0, θ =0}, {φ=0, θ =π},
{φ=π, θ =0}, {φ=π, θ =π}. For other points of the phase
diagram it is instead possible to set the intraband and inter-
band interactions (elements of 3 × 3 matrix), which satisfy
the conditions of achieving a stable ground state.

As a final remark, we would like to note that this model
can be generalized to the case of a larger number of order
parameters in a multiband superconductor. We do not present
here the diagram of a superconducting diode for the case of a
pure n-band superconductor because of technical difficulties
in its visualization. However, it is obvious that in this case the
rectification amplitude pattern becomes even more nontrivial.
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IV. CONCLUSIONS

The effects of nonreciprocal supercurrent in Josephson
junctions have been studied using multiband superconduc-
tors that can disrupt time-reversal symmetry by interband
phase reconstruction. It has been shown that nonreciprocal
supercurrent can be achieved through a combination of inter-
band superconducting phase mismatch and scattering, as well
as by exploiting multiband phase frustration. The presence
of impurity scattering between bands affects the magnitude
and direction of the nonreciprocal supercurrent, depending
on the interband phase relationship. In the case of a three-
band superconductor with a phase-frustrated configuration,
the supercurrent rectification profile is characterized by a
hexagonal pattern of nodal lines with zero amplitude. In-
terestingly, the amplitude of supercurrent rectification shows
a three-fold pattern with alternating signs around the nodal
lines. We have found that the hexagonal pattern and the
threefold structure in the interband phase space are influ-
enced by the band-dependent tunneling amplitudes. These
findings applied to corresponding diodes can be used to detect
a state with the time-reversal symmetry breaking in multi-
band superconductors due to a nontrivial interband phase
relation.

Finally, we point out that the behavior of the junction with
three-band superconductor interfaced to a one-band super-
conductor can be also mimicked by designing a double-loop
superconducting quantum interference device. Indeed, re-
cently a double-loop interferometer based on conventional
superconductor-normal-superconductor weak links has been
demonstrated to yield a rectification hosting nodal lines and
multifold sign tunable patterns [85]. We argue that the use
of such double-loop interference device based on multiband
superconductors can be employed to disentangle the interband
phase complexity. Also, we believe that our findings provide
new functionalities for superconducting electronics.
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APPENDIX A: DERIVATION OF THE EXPRESSION
FOR THE JOSEPHSON CURRENT

By means of parametrization given by Eq. (4), simplified
Usadel equations (3) can be reduced to their first integrals

1

ω
g2

i

∂�+
i

∂x
= Ai,

1

ω
g2

i

∂�−
i

∂x
= Bi, (A1)

where A and B are integration constants, and we recall that

g2
i = ω2

ω2 + (�+
i )2 − (�−

i )2 (A2)

and

�±
i = 1

2 (�i + �∗
i ). (A3)

Comparison of Eqs. (A1) yields the equality

Ai
∂�−

i

∂x
= Bi

∂�+
i

∂x
. (A4)

From Eq. (A4) it follows

�+
i = κi�

−
i + ωCi, (A5)

where κi = Ai
Bi

and C are integration constants.
Now we can substitute Eq. (A5) into (A1) and solve the

first-order differential equation for �−
i (x), which gives

�−
i = − Ciκiω

κ2
i − 1

+
ω

√
κ2

i − C2
i − 1

κ2
i − 1

× tan
[√

κ2
i − C2

i − 1
(
Bix + x(0)

i

)]
(A6)

and using again Eq. (A5) we get the solution also for

�+
i = − Ciω

κ2
i − 1

+
ωκi

√
κ2

i − C2
i − 1

κ2
i − 1

× tan
[√

κ2
i − C2

i − 1
(
Bix + x(0)

i

)]
, (A7)

where x(0)
i is the integration constant.

To find all constants, we apply the boundary condi-
tions (5), (8), and (9) and obtain systems of corresponding
equations

�−
0 = −C1κ1ω

κ2
1 − 1

+
ω

√
κ2

1 − C2
1 − 1

κ2
1 − 1

tan

[√
κ2

1 − C2
1 − 1

(
−B1

L

2
+ x(0)

1

)]
,

�+
0 = − C1ω

κ2
1 − 1

+
ωκ1

√
κ2

1 − C2
1 − 1

κ2
1 − 1

tan

[√
κ2

1 − C2
1 − 1

(
−B1

L

2
+ x(0)

1

)]
,

�−
1 = −C1κ1ω

κ2
1 − 1

+
ω

√
κ2

1 − C2
1 − 1

κ2
1 − 1

tan

[√
κ2

1 − C2
1 − 1

(
B1

L

2
+ x(0)

1

)]
,

�+
1 = − C1ω

κ2
1 − 1

+
ωκ2

√
κ2

1 − C2
1 − 1

κ2
1 − 1

tan

[√
κ2

1 − C2
1 − 1

(
B1

L

2
+ x(0)

1

)]
(A8)
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and

�−
0 = −C2κ2ω

κ2
2 − 1

+
ω

√
κ2

2 − C2
2 − 1

κ2
2 − 1

tan

[√
κ2

2 − C2
2 − 1

(
−B2

L

2
+ x(0)

2

)]
,

�+
0 = − C2ω

κ2
2 − 1

+
ωκ2

√
κ2

2 − C2
2 − 1

κ2
2 − 1

tan

[√
κ2

2 − C2
2 − 1

(
−B2

L

2
+ x(0)

2

)]
,

�−
2 = −C2κ2ω

κ2
2 − 1

+
ω

√
κ2

2 − C2
2 − 1

κ2
2 − 1

tan

[√
κ2

2 − C2
2 − 1

(
B2

L

2
+ x(0)

2

)]
,

�+
2 = − C2ω

κ2
2 − 1

+
ωκ2

√
κ2

2 − C2
2 − 1

κ2
2 − 1

tan

[√
κ2

2 − C2
2 − 1

(
B2

L

2
+ x(0)

2

)]
. (A9)

After long but straightforward calculations we have the solutions for eight constants:

Ci = �−
0 �+

i − �+
0 �−

i

ω(�−
0 − �−

i )
, (A10)

κi = �+
0 − �+

i

�−
0 − �−

i

, (A11)

Bi = 1

L
√

κ2
i − C2

i − 1

⎡
⎢⎣arctan

⎛
⎜⎝ωκiCi + �−

i

(
κ2

i − 1
)

ω

√
κ2

i − C2
i − 1

⎞
⎟⎠ − arctan

⎛
⎜⎝ωκiCi + �−

0

(
κ2

i − 1
)

ω

√
κ2

i − C2
i − 1

⎞
⎟⎠

⎤
⎥⎦, (A12)

x(0)
i = 1

2

1√
κ2

i − C2
i − 1

⎡
⎢⎣arctan

⎛
⎜⎝ωκiCi + �−

i

(
κ2

i − 1
)

ω

√
κ2

i − C2
i − 1

⎞
⎟⎠ + arctan

⎛
⎜⎝ωκiCi + �−

0

(
κ2

i − 1
)

ω

√
κ2

i − C2
i − 1

⎞
⎟⎠

⎤
⎥⎦. (A13)

Substitution of Eqs. (A6) and (A7) into the expression for the
current density (2) leads to

j = −2iπT
∑

i

NiDi

∑
ω

BiCi. (A14)

After that, Eq. (A14) for the current density can be trans-
formed into the expression for the current, which finally
results in Eq. (10).

APPENDIX B: A BRIEF DESCRIPTION OF THE
SELF-CONSISTENT APPROACH

A self-consistent approach implies that the Usadel equa-
tions (1) and the expression for the current density (2) must be
supplemented by the equation for order parameters �i, which
we did not involve into our consideration here:

�i = 2πT
∑

j

〈ω0〉∑
ω>0

λi j f j, (B1)

where λi j is the matrix of intraband (i = j) and interband (i �=
j) coupling constants and 〈ω0〉 is the cutoff frequency.

As it was shown already for the case of a bulk homo-
geneous two-band superconductor, when gradient terms are
excluded from the consideration in Eqs. (1), the Usadel equa-
tions admit approximated solutions (6) and (7). Subsequent
substitution of these solutions to the self-consistent equa-
tion (B1) allows to derive an internal phase difference between

the order parameters [47,70]

cos φ = −a12 + c11|�1|2 + c22|�2|2
2c12|�1||�2| , (B2)

where coefficients are expressed as

a12 = −N1

(
λ12

det λi j
+ 2πT

ωc∑
ω>0

�12

ω(ω + �12 + �21)

)
, (B3)

cii = NiπT
ωc∑

ω>0

�i j (ω + � ji )[ω2 + (ω + � ji )(�i j + � ji )]

ω3(ω + �i j + � ji )4 ,

(B4)

and

c12 = N1πT
ωc∑

ω>0

�12(ω + �12)(ω + �21)(�12 + �21)

ω3(ω + �12 + �21)4 . (B5)

Also, the expression for the critical temperature as a
function of the impurity scattering rate � can be obtained
within the linearized Usadel equations (1) taking into account
Eq. (B1) [64]. Here we only provide the final result of cal-
culations showing the suppression of the critical temperature
T (m)

c with respect to the critical temperature T (m)
c0 of a clean

two-band superconductor without impurities, i.e., when � =
�12 = �21 = 0:

U

(
�

πT (m)
c

)
= − 2[wλ ln t + λ(λ11+ λ22)− 2w] ln t

2wλ ln t + λ(λ11 + λ22− λ12 − λ21) − 2w
,

(B6)
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FIG. 6. The critical temperature T (m)
c of a dirty two-band super-

conductor as a function of the interband scattering rate � with λ11 =
0.35, λ22 = 0.347, λ12 = λ21 = −0.01. The values of T (m)

c and � are
calibrated to the critical temperature of a two-band superconductor
without impurities T (m)

c0 and � = 0, respectively.

where the new function is introduced U (x) = ψ ( 1
2 + x) −

ψ ( 1
2 ) expressed via the digamma function ψ (x), t =

T (m)
c /T (m)

c0 and where λ is the largest eigenvalue of the ma-
trix of intraband and interband coefficients and w = det λi j =
λ11λ22 − λ12λ21. The numerical solution of the transcendental
equation (B6) is presented in Fig. 6.

Within the self-consistent approach one can consider a
certain two-band superconductor with given values of mi-
croscopic constants λi j . Then by setting the value of the
microscopic interband scattering coefficient � = �12 = �21

(also, assuming for simplicity N1 = N2) one can compute the
values of the order-parameter moduli |�1|, |�2| and the intrin-

sic phase difference φ. After that, the rectification amplitude
of the diode η can be immediately evaluated based on the
current-phase relation (10).

In our non-self-consistent approach, the value of the inter-
band scattering coefficient and the intrinsic phase difference
is captured already in the phase diagram in Fig. 2 to get a
certain value of the rectification amplitude η. Also, we fix the
values of |�1| and |�2| with respect to the modulus of the
order parameter of the single-band superconductor |�0|. This
means that now our consideration is converting into a search
for the unknown microscopic parameters of a corresponding
two-band superconductor, namely, four interaction constants
(two intraband λ11, λ22 and two interband λ12, λ21) and the
modulus of the order parameter of the single-band supercon-
ductor, through which the moduli of the order parameter of
the two-band counterpart have been determined before.

Thus, we have five unknown variables and three equations,
two of which stem from Eq. (B1) for the order parameters
by substituting known expressions for the anomalous Green’s
functions [see Eqs. (6) and (7)] and one for the phase differ-
ence (B2). Eventually, there is an underdetermined system of
equations, which allows us to freely speculate about the fixed
so far values � and φ for a certain unconventional two-band
superconductor in order to satisfy given value of the rectifica-
tion amplitude η. In other words, the phase diagram in Fig. 2 is
not plotted for any particular two-band superconductor as an
element of a Josephson diode, but for different unconventional
two-band superconductors.
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